JP2683762B2 - Method for producing bisphenol A / phenol crystal adduct having good hue - Google Patents

Method for producing bisphenol A / phenol crystal adduct having good hue

Info

Publication number
JP2683762B2
JP2683762B2 JP3311989A JP31198991A JP2683762B2 JP 2683762 B2 JP2683762 B2 JP 2683762B2 JP 3311989 A JP3311989 A JP 3311989A JP 31198991 A JP31198991 A JP 31198991A JP 2683762 B2 JP2683762 B2 JP 2683762B2
Authority
JP
Japan
Prior art keywords
crystallization
crystal
phenol
adduct
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3311989A
Other languages
Japanese (ja)
Other versions
JPH05125007A (en
Inventor
信男 守屋
啓二 下田
孝雄 亀田
佐知夫 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP3311989A priority Critical patent/JP2683762B2/en
Priority to ES92304932T priority patent/ES2097877T3/en
Priority to DE69217133T priority patent/DE69217133T2/en
Priority to EP96200435A priority patent/EP0718267B1/en
Priority to ES96200436T priority patent/ES2126977T3/en
Priority to ES96200435T priority patent/ES2126976T3/en
Priority to EP96200436A priority patent/EP0718268B1/en
Priority to DE69227849T priority patent/DE69227849T2/en
Priority to DE69227850T priority patent/DE69227850T2/en
Priority to EP92304932A priority patent/EP0522700B1/en
Priority to CNB991038622A priority patent/CN1190404C/en
Priority to CN92105365A priority patent/CN1059428C/en
Priority to CNB991038959A priority patent/CN1167659C/en
Priority to CNB991038614A priority patent/CN1190403C/en
Priority to KR1019920012309A priority patent/KR100189205B1/en
Priority to US08/026,126 priority patent/US5345000A/en
Publication of JPH05125007A publication Critical patent/JPH05125007A/en
Application granted granted Critical
Publication of JP2683762B2 publication Critical patent/JP2683762B2/en
Priority to KR1019980044545A priority patent/KR100190335B1/en
Priority to KR1019980044546A priority patent/KR100190336B1/en
Priority to KR1019980044544A priority patent/KR100190334B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、色相の良好なビスフェ
ノールA・フェノール結晶アダクトの製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bisphenol A / phenol crystal adduct having a good hue.

【0002】[0002]

【従来技術及びその問題点】ビスフェノールA〔2,2
−ビス(4′−ヒドロキシフェニル)プロパン〕を製造
するために、酸触媒の存在下、過剰のフェノールにアセ
トンを反応させることは知られている。また、この反応
生成物から高純度ビスフェノールAを分離回収するため
に、反応生成物を冷却してビスフェノールAとフェノー
ルとの結晶アダクト(以下、単に結晶アダクトとも言
う)を析出させ、得られたアダクト結晶からフェノール
を除去することも知られている。このようなビスフェノ
ールAの製造方法において、製品として回収されるビス
フェノールAの純度及び色相は、その結晶アダクトの純
度及び色相に大きく依存し、高純度で色相の良い結晶ア
ダクトの製造方法が要求される。過剰のフェノールにア
セトンを反応させて得られるビスフェノールAを含むフ
ェノール溶液から高純度結晶アダクトを得るために、そ
のフェノール溶液を、複数段の晶析工程をその中間に結
晶アダクトの分離工程と溶解工程を介して結合した一連
の晶析工程によって処理する方法は知られている。この
ような複数の晶析工程を用いる従来の結晶アダクトの製
造方法においては、各段の晶析工程では1つの晶析塔が
用いられており、そして、その晶析工程の段数を増加さ
せることによってより高純度の結晶アダクトを得ること
ができる。しかし、この場合、晶析工程の段数を増加さ
せると、その晶析工程段数の増加に応じて、結晶アダク
ト分離装置及び結晶アダクト溶解槽の数も増加させる必
要があり、晶析装置系が複雑になるとともに、大型化
し、装置コストが高くなるという問題を含む。
BACKGROUND OF THE INVENTION Bisphenol A [2.2
-Bis (4'-hydroxyphenyl) propane] is known to react acetone with excess phenol in the presence of an acid catalyst. In order to separate and recover high-purity bisphenol A from this reaction product, the reaction product is cooled to precipitate a crystal adduct of bisphenol A and phenol (hereinafter, also simply referred to as a crystal adduct), and the obtained adduct is obtained. It is also known to remove phenol from crystals. In such a method for producing bisphenol A, the purity and the hue of bisphenol A recovered as a product largely depend on the purity and the hue of the crystal adduct, and a method for producing a crystal adduct with high purity and good hue is required. . In order to obtain a high-purity crystal adduct from a phenol solution containing bisphenol A obtained by reacting excess phenol with acetone, the phenol solution is subjected to a crystallization step of a plurality of stages, a crystal adduct separation step and a dissolution step. It is known to process by a series of crystallization steps linked via a. In the conventional method for producing a crystal adduct using a plurality of crystallization steps, one crystallization tower is used in each crystallization step, and the number of crystallization steps should be increased. It is possible to obtain a crystal adduct of higher purity. However, in this case, if the number of stages of the crystallization process is increased, it is necessary to increase the number of crystal adduct separation devices and crystal adduct dissolution tanks in accordance with the increase in the number of crystallization process stages. In addition, there is a problem that the size becomes large and the device cost becomes high.

【0003】[0003]

【発明が解決しようとする課題】本発明は、結晶アダク
トを得るための晶析装置系を小型化するとともに、高純
度でかつ色相の良好な結晶アダクトを効率よく製造する
ための方法を提供することをその課題とする。
SUMMARY OF THE INVENTION The present invention provides a method for miniaturizing a crystallizer system for obtaining a crystal adduct and efficiently producing a crystal adduct of high purity and good hue. That is the subject.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、第1段の晶析工程を
行うための直列に連結された2つの晶析塔の第1の晶析
塔(A)にビスフェノールAが溶解したフェノール溶液
を供給し、ビスフェノールA・フェノールの結晶アダク
トからなる粒径100μm以下の微結晶成分含有率が3
0重量%以下の粗大種晶を析出させるとともに、この晶
析工程で得られた種晶を含む晶析生成物を第2晶析塔
(B)に導入し、前記第1晶析塔(A)より低い温度で
その種晶の結晶成長を行って粒径100μm以下の微結
晶成分含有率が30重量%以下の粗大結晶アダクトを生
成させた後、この第1段の晶析工程で得られた晶析生成
物を固液分離工程に導入して結晶アダクトを母液から分
離し、次いでこの結晶アダクトを該母液よりも純度の高
いフェノールで再溶解した後、第2段の晶析工程を行う
ための直列に連結された2つの晶析塔の第1の晶析塔
(C)に供給し、ビスフェノールA・フェノールの結晶
アダクトからなる粒径100μm以下の微結晶成分含有
率が30重量%以下の粗大種晶を析出させるとともに、
この晶析工程で得られた結晶アダクトを含む晶析生成物
を第2晶析塔(D)に導入し、前記第1晶析塔(C)よ
り低い温度でその種晶の結晶成長を行って粒径100μ
m以下の微結晶成分含有率が30重量%以下の粗大結晶
アダクトを生成させることを特徴とする色相の良好なビ
スフェノールA・フェノール結晶アダクトの製造方法が
提供される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, the phenol solution in which bisphenol A is dissolved is supplied to the first crystallization tower (A) of the two crystallization towers connected in series for performing the first crystallization step. , A bisphenol A / phenol crystal adduct having a particle size of 100 μm or less and a microcrystalline component content of 3
Coarse seed crystals of 0 wt% or less are precipitated, and the crystallization product containing the seed crystals obtained in this crystallization step is introduced into the second crystallization tower (B), and the first crystallization tower (A ) The crystal growth of the seed crystal is performed at a lower temperature to produce a coarse crystal adduct having a grain size of 100 μm or less and a fine crystal component content of 30% by weight or less, and then obtained in the first crystallization step. The crystallized product is introduced into the solid-liquid separation step to separate the crystal adduct from the mother liquor, and the crystal adduct is redissolved in phenol having a higher purity than the mother liquor, followed by the second crystallization step. Is supplied to the first crystallization tower (C) of the two crystallization towers connected in series, and the content of the fine crystal component of the bisphenol A / phenol crystal adduct having a particle size of 100 μm or less is 30% by weight or less. While precipitating coarse seed crystals of
The crystallization product containing the crystal adduct obtained in this crystallization step is introduced into the second crystallization tower (D), and the seed crystal is grown at a temperature lower than that of the first crystallization tower (C). Particle size 100μ
Provided is a method for producing a bisphenol A / phenol crystal adduct having a good hue, which is characterized in that a coarse crystal adduct having a fine crystal component content of m or less is 30% by weight or less.

【0005】次に本発明を図面により説明する。図1は
本発明を実施する場合の装置系統図を示す。この図にお
いて、A,B,C,Dは晶析塔を示し、Eは固液分離装
置、Fは溶解槽を示す。各晶析塔A,B,C,Dは、そ
の内部に、上部に開口部を有する内筒Pが挿入配設され
ている。また、各晶析塔A,B,C,Dには、微結晶ア
ダクト溶解タンクQが付設されている。晶析塔A及びB
は直列に連結されて、第1段の晶析工程を行うための装
置系を構成し、晶析塔C及びDは直列に連結されて第2
段の晶析工程を行うための装置系を構成する。被処理原
料であるビスフェノールAを含むフェノール溶液は、ラ
イン1及びライン2を通って、直列に連結された2つの
晶析塔A,Bのうちの第1晶析塔Aの下部に供給され、
ここでビスフェノールA・フェノール結晶アダクトから
なる種晶が析出される。この晶析塔Aにおいては、その
塔内上部の結晶アダクト(種晶)を含むフェノール溶液
が内筒P内を流下し、ライン3を通って外部へ抜出さ
れ、ポンプ4、ライン5及び冷却器6及びライン2を通
って第1晶析塔A内に循環され、これによって、晶析塔
A内のフェノール溶液は冷却され、晶析塔Aは所定温度
に冷却される。晶析塔A内の内筒Pから抜出された種晶
を含む晶析生成物(以下、単にスラリーとも言う)の一
部は、ライン7、ポンプ8、ライン9、ライン10及び
加熱器11を通って微結晶アダクト溶解タンクQに導入
され、ここで結晶アダクトのうちの微細結晶が溶解さ
れ、一定の大きさの粗大結晶の種晶のみを含むスラリー
がライン13を通って晶析塔Aの下部に循環され、これ
によって晶析塔A内に含まれる種晶の粒径が揃えられ、
晶析塔A内には、微結晶の種晶含有率が低く、粗大結晶
の種晶含有率の高い種晶が生成される。晶析塔A内にお
ける微結晶アダクトは、その比表面積が大きく、着色原
因物質(色相悪化原因物質)に対して高い吸着性を示
す。従って、晶析塔Aで種晶として得られる結晶アダク
ト中の微結晶成分の粒子含有率を可及的に減少させるこ
とにより、色相のよい種晶を得ることができる。本発明
者らの研究によれば、結晶アダクト中の粒径100μm
以下の微結晶成分の粒子含有率を30重量%以下、好ま
しくは20重量%以下に保持することにより、色相の良
い高純度粗大結晶アダクトを製造し得ることが見出され
た。
Next, the present invention will be described with reference to the drawings. FIG. 1 shows a system diagram of an apparatus for carrying out the present invention. In this figure, A, B, C and D represent crystallization towers, E represents a solid-liquid separator, and F represents a dissolution tank. Inside each of the crystallization towers A, B, C and D, an inner cylinder P having an opening at the top is inserted and arranged. Further, a microcrystal adduct dissolution tank Q is attached to each of the crystallization towers A, B, C and D. Crystallizer A and B
Are connected in series to form an apparatus system for performing the first-stage crystallization step, and the crystallization towers C and D are connected in series to form a second
An apparatus system for performing the step crystallization process is configured. A phenol solution containing bisphenol A as a raw material to be treated is supplied to the lower part of the first crystallization tower A of the two crystallization towers A and B connected in series through line 1 and line 2,
Here, seed crystals composed of bisphenol A / phenol crystal adduct are deposited. In the crystallization tower A, the phenol solution containing the crystal adduct (seed crystal) at the upper part of the tower flows down in the inner cylinder P, is extracted to the outside through the line 3, and is pumped by the pump 4, the line 5 and the cooling. It is circulated in the first crystallization tower A through the vessel 6 and the line 2, whereby the phenol solution in the crystallization tower A is cooled and the crystallization tower A is cooled to a predetermined temperature. A part of the crystallization product containing seed crystals extracted from the inner cylinder P in the crystallization tower A (hereinafter, also simply referred to as slurry) is part of a line 7, a pump 8, a line 9, a line 10 and a heater 11. Is introduced into a fine crystal adduct dissolution tank Q through which the fine crystals in the crystal adduct are dissolved, and a slurry containing only seed crystals of coarse crystals of a certain size is passed through line 13 to the crystallization tower A. Of the seed crystals contained in the crystallization tower A are made uniform,
In the crystallization tower A, seed crystals having a low content of fine crystals and a high content of coarse crystals are generated. The microcrystalline adduct in the crystallization tower A has a large specific surface area and exhibits a high adsorbability for a coloring-causing substance (a substance causing a deterioration in hue). Therefore, by reducing the content of the fine crystal component particles in the crystal adduct obtained as a seed crystal in the crystallization tower A as much as possible, a seed crystal with a good hue can be obtained. According to the research conducted by the present inventors, the grain size in the crystal adduct is 100 μm.
It has been found that a high-purity coarse crystal adduct having a good hue can be produced by maintaining the particle content of the following fine crystal component at 30% by weight or less, preferably 20% by weight or less.

【0006】本発明で被処理原料として用いるビスフェ
ノールAを含むフェノール溶液は、通常、ビスフェノー
ルA:7〜50重量%、好ましくは10〜30重量%を
含有し、その他の成分として、ビスフェノールAの異性
体、トリスフェノール等を8重量%以下の割合で含む。
ライン1から供給されるビスフェノールAを含むフェノ
ール溶液の温度は、結晶アダクトの飽和温度より1〜2
0℃程度高い温度である。晶析塔Aの晶析温度は45〜
70℃、好ましくは48〜57℃である。ライン3、ポ
ンプ4、冷却器6及びライン2を通って循環されるスラ
リーは、冷却器6において、その温度を10℃程度以
下、好ましくは、5℃以下程度降下される。晶析塔Aに
おけるフェノール溶液の滞留時間は0.5〜10時間、
好ましくは0.5〜5時間である。一方、ライン7、ポ
ンプ8、ライン10、加熱器11を通って微結晶アダク
ト溶解タンクQに導入されるスラリーは、その加熱器1
1において、その温度を0.5〜5℃程度上昇される。
このタンクQにおけるフェノール溶液の滞留時間は3〜
15分程度である。微結晶溶解タンクQ内においては、
主に粒径100μm以下の微結晶アダクトが溶解され、
この微結晶アダクトが溶解されたスラリーは、ライン1
3を通り、晶析塔Aへ戻され、晶析塔Aにおいて、結晶
の成長が促進され粗大結晶の種晶が得られる。
The phenol solution containing bisphenol A used as a raw material to be treated in the present invention usually contains bisphenol A: 7 to 50% by weight, preferably 10 to 30% by weight. Body, trisphenol, etc. in a proportion of 8% by weight or less.
The temperature of the phenol solution containing bisphenol A supplied from the line 1 is 1-2 from the saturation temperature of the crystal adduct.
It is a high temperature of about 0 ° C. The crystallization temperature of the crystallization tower A is 45 to
The temperature is 70 ° C, preferably 48 to 57 ° C. The temperature of the slurry circulated through the line 3, the pump 4, the cooler 6 and the line 2 is lowered in the cooler 6 by about 10 ° C. or less, preferably about 5 ° C. or less. The residence time of the phenol solution in the crystallization tower A is 0.5 to 10 hours,
It is preferably 0.5 to 5 hours. On the other hand, the slurry introduced into the microcrystalline adduct dissolution tank Q through the line 7, the pump 8, the line 10 and the heater 11 is the heater 1
In No. 1, the temperature is increased by 0.5 to 5 ° C.
The retention time of the phenol solution in this tank Q is 3 to
It takes about 15 minutes. In the microcrystal dissolution tank Q,
Mainly, crystallite adducts with a particle size of 100 μm or less are dissolved,
The slurry in which the crystallite adduct is dissolved is line 1
It is returned to the crystallization tower A through 3 and the crystal growth is promoted in the crystallization tower A to obtain a seed crystal of a coarse crystal.

【0007】第1晶析塔A内の内筒Pの底部から抜出さ
れたスラリーの一部は、ライン7、ポンプ8、ライン1
2及びライン21を通って、第2晶析塔Bの下部に導入
され、ここで結晶アダクトの成長が行われる。この第2
晶析塔Bは、前記晶析塔Aに関して示したのと同様に操
作される。晶析塔Bにおいて、その温度範囲は45〜7
0℃であり、晶析塔Aの晶析温度よりも3〜10℃程度
低く保持される。冷却器26を通るスラリーは、ここで
その温度を10℃程度以下、好ましくは、5℃以下程度
降下される。一方、加熱器31を通るスラリーは、ここ
でその温度を0.5〜5℃程度上昇される。晶析塔Bに
付設された微結晶アダクト溶解タンクQ内においては、
粒径100μm以下の結晶アダクト成分が溶解され、微
結晶アダクトが溶解されたスラリーは、ライン33を通
り、晶析塔へ戻され、その結晶の成長が促進される。晶
析塔B内の内筒Pの底部から抜出されるスラリー中の結
晶アダクトの濃度は35重量%以下、好ましくは25重
量%以下であり、その結晶アダクト中の粒径100μm
以下の微結晶成分の粒子含有率は30重量%以下、好ま
しくは20重量%以下である。
Part of the slurry withdrawn from the bottom of the inner cylinder P in the first crystallization tower A is line 7, pump 8, line 1.
It is introduced into the lower part of the second crystallization tower B through 2 and the line 21, and the crystal adduct is grown there. This second
Crystallizer B is operated in the same manner as shown for Crystallizer A above. In the crystallization tower B, the temperature range is 45 to 7
The temperature is 0 ° C., and is kept about 3 to 10 ° C. lower than the crystallization temperature of the crystallization tower A. The temperature of the slurry passing through the cooler 26 is lowered by about 10 ° C. or less, preferably about 5 ° C. or less. On the other hand, the temperature of the slurry passing through the heater 31 is raised here by about 0.5 to 5 ° C. In the microcrystal adduct dissolution tank Q attached to the crystallization tower B,
The crystal adduct component having a particle size of 100 μm or less is dissolved, and the slurry in which the fine crystal adduct is dissolved is returned to the crystallization tower through the line 33 to promote the growth of the crystal. The concentration of the crystal adduct in the slurry extracted from the bottom of the inner cylinder P in the crystallization tower B is 35% by weight or less, preferably 25% by weight or less, and the particle size in the crystal adduct is 100 μm.
The particle content of the following microcrystalline component is 30% by weight or less, preferably 20% by weight or less.

【0008】第2晶析塔B内の内筒Pの底部から抜出さ
れたスラリーの一部は、ライン35を通って固液分離装
置Eに導入され、ここで結晶アダクトと母液とが分離さ
れ、分離された結晶アダクトはライン36を通って結晶
アダクト溶解槽Fに導入され、ここで再び溶解される。
固液分離装置Eとしては、従来公知のもの、例えば、遠
心分離機や、濾過装置等が用いられる。溶解槽Eとして
は、従来公知のもの、例えば、内部に撹拌器を有する撹
拌槽や、加熱型の溶解槽が用いられる。溶解槽Fにおい
ては、精製フェノールをライン81から導入し、この精
製フェノールを用いて、撹拌下、結晶アダクトを希釈溶
解させるのが好ましい。この場合、必要に応じ、加熱を
併用することもできる。溶解槽の温度は、70〜160
℃、好ましくは80〜100℃である。精製フェノール
としては、その純度が母液よりも高いものを用いる。
A part of the slurry withdrawn from the bottom of the inner cylinder P in the second crystallization tower B is introduced into the solid-liquid separator E through a line 35, where the crystal adduct and the mother liquor are separated. The separated and separated crystal adduct is introduced into the crystal adduct dissolution tank F through the line 36, and is again melted therein.
As the solid-liquid separation device E, a conventionally known device such as a centrifuge or a filtration device is used. As the dissolution tank E, a conventionally known one, for example, a stirring tank having a stirrer therein or a heating type dissolution tank is used. In the dissolution tank F, it is preferable to introduce purified phenol from the line 81 and use this purified phenol to dilute and dissolve the crystal adduct under stirring. In this case, heating may be used in combination, if necessary. The temperature of the melting tank is 70 to 160.
C., preferably 80 to 100.degree. As the purified phenol, one having a higher purity than that of the mother liquor is used.

【0009】結晶アダクトを精製フェノールで希釈溶解
させる場合、その精製フェノールとしては、製品ビスフ
ェノールAの着色原因とならない、不純物含有率の少な
いものであればどのようなものでもよい。本発明で好ま
しく用いることのできる精製フェノールとしては、例え
ば、(i)フェノールとアセトンとの反応生成物か分離
されたフェノール、(ii)ビスフェノールを含むフェ
ノールの晶析生成物から分離されたフェノール、(ii
i)結晶アダクトを洗浄した後の使用済みフェノール及
び(iv)工業用フェノールの中から選ばれる少なくと
も一種のフェノールの精製物が用いられる。フェノール
とアセトンとの反応によりえられる反応生成物は、それ
に含まれる生成ビスフェノールAを濃縮するために、そ
の反応生成物からフェノールが分離されるが、本発明で
は、このフェノールの精製物を洗浄液として用いること
ができる。また、ビスフェノールAを含むフェノール溶
液を晶析処理して結晶アダクトを析出させる場合、通
常、複数段の晶析工程と晶析生成物の固液分離工程が採
用され、それに応じて複数種の母液(フェノール溶液)
が得られるが、本発明ではこれらの母液を形成するフェ
ノールの精製物を洗浄液として用いることができる。本
発明で用いるフェノール精製物は、それら母液のいずれ
の母液を形成するフェノールの精製物でも良いが、好ま
しくは最終段の晶析工程で得られる晶析生成物から分離
された母液を形成するフェノールの精製物を用いるのが
よい。本発明においては、結晶アダクトを洗浄した後に
は使用済みのフェノールが得られるが、本発明では、こ
の使用済みフェノールの精製物も洗浄液として有利に用
いることができる。本発明で用いる前記フェノール精製
物を得るための原料フェノールとしては、その純度が9
5重量%以上、好ましくは97重量%以上のものの使用
が好ましい。また、本発明では、工業用フェノールの精
製物を洗浄液として用いることができる。この場合、工
業用フェノールとしては、フェノール純度95重量%以
上、好ましくは97重量%以上のものが用いられる。次
に、前記フェノールから精製フェノールを得るための方
法について詳述すると、先ず、フェノールを強酸型イオ
ン交換樹脂と接触させて処理する。強酸型イオン交換樹
脂としては、スルホン基を有するものが用いられ、この
ような強酸型イオン交換樹脂は、従来良く知られている
ものである。例えば、ロームアンドハース社から入手し
得るアンバーライト及びアンバーリストや、三菱化成社
から入手し得るダイヤイオン等のケル型のものを好まし
く用いることができる。この強酸型イオン交換樹脂を用
いるフェノールの処理は、強酸型イオン交換樹脂を含む
充填塔にフェノールを流通させる方法や、強酸型イオン
交換樹脂を入れた撹拌槽にフェノールを入れて撹拌する
方法等により実施することができる。処理温度は45〜
150℃、好ましくは50〜100℃である。強酸型イ
オン交換樹脂とフェノールの接触時間は、5〜200
分、好ましくは15〜60分程度である。この強酸型イ
オン交換樹脂を用いてフェノールの処理を行う場合、フ
ェノール中の水分は、0.5重量%以下、好ましくは
0.1重量%以下にする。これより水分が多くなると、
強酸型イオン交換樹脂による不純物除去効果が悪化す
る。フェノール中からの0.5重量%以下までの水分の
除去は、フェノール中に公知の共沸剤を加え共沸させる
ことによって行うことができる。前記強酸型イオン交換
樹脂と接触処理されたフェノールは、高沸点不純物を含
むもので、蒸留処理することにより、その高沸点不純物
を蒸留残渣として分離する。蒸留塔の運転条件はフェノ
ールと高沸点不純物が分離できればよいが、留出フェノ
ール中に高沸点不純物が混入しない条件で行う必要があ
り、留意すべきポイントとして蒸留処理温度を200℃
以下にすることである。200℃以下の温度であれば運
転圧力は任意に設定されるが、通常50Torr〜76
0Torrの減圧ないし常圧下で行われる。運転温度が
200℃をこえると高沸点不純物等の分解がおこり精製
フェノールの品質を低下させるので好ましくない。前記
処理によって得られた精製フェノールは、APHA基準
の色相が10以下のものであり、結晶アダクト及び製品
ビスフェノールAに付着しても、その色相を特に悪化さ
せることはない。
When the crystalline adduct is diluted and dissolved with purified phenol, any purified phenol may be used so long as it does not cause the coloring of the product bisphenol A and has a low impurity content. Examples of the purified phenol that can be preferably used in the present invention include (i) a reaction product of phenol and acetone or a separated phenol, (ii) a phenol separated from a crystallization product of a phenol containing bisphenol, (Ii
A purified product of at least one phenol selected from i) used phenol after washing the crystal adduct and (iv) industrial phenol is used. The reaction product obtained by the reaction of phenol and acetone is separated from the reaction product in order to concentrate the produced bisphenol A contained therein, but in the present invention, the purified product of this phenol is used as a washing liquid. Can be used. In the case of crystallizing a phenol solution containing bisphenol A to precipitate a crystal adduct, a plurality of stages of crystallization and a solid-liquid separation step of a crystallization product are usually adopted, and a plurality of kinds of mother liquor are accordingly prepared. (Phenol solution)
However, in the present invention, the purified product of phenol forming these mother liquors can be used as a washing liquid. The purified phenol product used in the present invention may be a purified product of phenol forming any mother liquor of those mother liquors, but preferably phenol forming a mother liquor separated from the crystallization product obtained in the final crystallization step. It is preferable to use the purified product of. In the present invention, the used phenol is obtained after washing the crystal adduct, but in the present invention, the purified product of the used phenol can be advantageously used as the washing liquid. The raw material phenol used to obtain the purified phenol product according to the present invention has a purity of 9
It is preferable to use 5 wt% or more, preferably 97 wt% or more. Further, in the present invention, a purified product of industrial phenol can be used as a cleaning liquid. In this case, as the industrial phenol, phenol having a phenol purity of 95% by weight or more, preferably 97% by weight or more is used. Next, the method for obtaining purified phenol from the phenol will be described in detail. First, the phenol is contacted with a strong acid ion exchange resin to be treated. As the strong acid type ion exchange resin, one having a sulfone group is used, and such a strong acid type ion exchange resin is conventionally well known. For example, amberlite and amberlyst available from Rohm and Haas Co., or Kell type ones such as Diaion available from Mitsubishi Kasei can be preferably used. The treatment of phenol with this strong acid ion exchange resin is carried out by a method of circulating phenol in a packed column containing a strong acid ion exchange resin, a method of putting phenol in a stirring tank containing a strong acid ion exchange resin, and stirring it. It can be carried out. Treatment temperature is 45 ~
The temperature is 150 ° C, preferably 50 to 100 ° C. The contact time between the strong acid type ion exchange resin and phenol is 5 to 200.
Minutes, preferably about 15 to 60 minutes. When the phenol is treated using this strong acid type ion exchange resin, the water content in the phenol is 0.5% by weight or less, preferably 0.1% by weight or less. If there is more water than this,
The effect of removing impurities by the strong acid type ion exchange resin deteriorates. Removal of water up to 0.5% by weight or less from the phenol can be carried out by adding a known azeotropic agent to the phenol to cause azeotropic distillation. Phenol, which has been subjected to the contact treatment with the strong acid ion exchange resin, contains high-boiling-point impurities, and the high-boiling-point impurities are separated as a distillation residue by performing a distillation process. The operating conditions of the distillation column should be such that phenol and high-boiling impurities can be separated, but it is necessary to carry out under conditions where high-boiling impurities are not mixed in the distilled phenol.
It is to do the following. The operating pressure is arbitrarily set at a temperature of 200 ° C. or lower, but usually 50 Torr to 76
It is carried out under reduced pressure of 0 Torr or normal pressure. When the operating temperature exceeds 200 ° C., high-boiling impurities and the like are decomposed to deteriorate the quality of the purified phenol, which is not preferable. The purified phenol obtained by the above treatment has an APHA standard hue of 10 or less, and even if it adheres to the crystal adduct and the product bisphenol A, the hue is not particularly deteriorated.

【0010】溶解槽FからのビスフェノールAを含むフ
ェノール溶液は、ライン41を通り、第2段の晶析系を
構成する第1の晶析塔Cの下部に導入する。この場合、
フェノール溶液は、ビスフェノールAの濃度が7〜50
重量%、好ましくは10〜30重量%になるようにその
濃度を調整する。この晶析塔Cは、前記晶析塔Aに示し
たのと同様に操作される。晶析塔Cにおいて、その晶析
温度は、45〜70℃であり、晶析塔Aの温度よりも0
〜10℃程度高く保持される。冷却器46を通るスラリ
ーは、ここでその温度を10℃程度以下、好ましくは、
5℃以下程度降下される。一方、加熱器51を通るスラ
リーは、ここでその温度を0.5〜5℃程度上昇され
る。晶析塔Cに付設された微結晶アダクト溶解タンクQ
内においては、粒径100μm以下の微結晶アダクト成
分が溶解され、微結晶成分が溶解されたスラリーは、ラ
イン53を通り、晶析塔Cへ戻され、その結晶の成長が
促進される。この晶析塔Cにおいては、粒径10μm以
下の微結晶成分含有率が30重量%以下、好ましくは2
0重量%以下の色相の良い粗大種晶が生成される。
The phenol solution containing bisphenol A from the dissolution tank F is introduced into the lower part of the first crystallization tower C which constitutes the crystallization system of the second stage through the line 41. in this case,
The phenol solution has a bisphenol A concentration of 7 to 50.
The concentration is adjusted to be 10% by weight, preferably 10 to 30% by weight. This crystallization tower C is operated in the same manner as that shown in the above crystallization tower A. In the crystallization tower C, the crystallization temperature is 45 to 70 ° C., which is 0 than the temperature of the crystallization tower A.
It is kept high at about 10 ° C. The temperature of the slurry passing through the cooler 46 is about 10 ° C. or lower, preferably,
The temperature is lowered below 5 ° C. On the other hand, the temperature of the slurry passing through the heater 51 is raised here by about 0.5 to 5 ° C. Microcrystal adduct dissolution tank Q attached to crystallization tower C
Inside, the crystallite adduct component having a particle size of 100 μm or less is dissolved, and the slurry in which the crystallite component is dissolved is returned to the crystallization tower C through the line 53, and the growth of the crystal is promoted. In this crystallization tower C, the content of fine crystal components having a particle size of 10 μm or less is 30% by weight or less, preferably 2
Coarse seed crystals having a good hue of 0% by weight or less are produced.

【0011】晶析塔C内の内筒Pの底部から抜出された
スラリーの一部は、ライン52、ライン61及びライン
62を通って、第2段の晶析系を構成する第2晶析塔D
の下部に導入され、ここで結晶の成長が行われる。この
第2晶析塔Dは、前記晶析塔Aに示したのと同様に操作
される。晶析塔Dにおいて、その晶析温度は45〜70
℃であり、晶析塔Cの温度よりも0〜10℃程度低くか
つ晶析塔Bよりも0〜10℃程度高く保持される。一
方、加熱器71を通るスラリーは、ここでその温度を
0.5〜5℃程度上昇される。晶析塔Dに付設された微
結晶アダクト溶解タンクQ内においては、粒径100μ
m以下の微結晶アダクト成分が溶解され、微結晶成分が
溶解されたスラリーは、ライン73を通って、晶析塔へ
戻され、その結晶の成長が行われる。晶析塔D内の内筒
Pの底部から抜出されるスラリー中の結晶アダクトの濃
度は35重量%以下、好ましくは25重量%以下であ
り、その結晶アダクト中の粒径100μm以下の微結晶
アダクト成分の含有率は30重量%以下、好ましくは2
0重量%以下である。晶析塔D内の内筒Pの底部から抜
出されたスラリーは、ライン80を通って製品スラリー
として回収される。このスラリーは、必要に応じて固液
分離され、得られた結晶アダクトは、これをビスフェノ
ールAの回収工程へ送って、フェノールを除去し、ビス
フェノールAを回収する。
A part of the slurry withdrawn from the bottom of the inner cylinder P in the crystallization tower C passes through a line 52, a line 61 and a line 62 to form a second crystal forming a second stage crystallization system. Analysis tower D
Is introduced into the lower part of where the crystal growth takes place. The second crystallization tower D is operated in the same manner as the crystallization tower A described above. In the crystallization tower D, the crystallization temperature is 45 to 70.
The temperature is 0 ° C, which is lower than the temperature of the crystallization tower C by about 0 to 10 ° C and higher than that of the crystallization tower B by about 0 to 10 ° C. On the other hand, the temperature of the slurry passing through the heater 71 is increased by about 0.5 to 5 ° C. here. In the fine crystal adduct dissolution tank Q attached to the crystallization tower D, the particle size is 100 μm.
The slurry in which the crystallite adduct component of m or less is dissolved and the crystallite component is dissolved is returned to the crystallization tower through the line 73, and the crystal is grown. The concentration of the crystal adduct in the slurry extracted from the bottom of the inner cylinder P in the crystallization tower D is 35% by weight or less, preferably 25% by weight or less, and the crystal adduct has a particle size of 100 μm or less. The content of the components is 30% by weight or less, preferably 2
0% by weight or less. The slurry extracted from the bottom of the inner cylinder P in the crystallization tower D is recovered as a product slurry through the line 80. This slurry is subjected to solid-liquid separation as necessary, and the obtained crystal adduct is sent to a bisphenol A recovery step to remove phenol and recover bisphenol A.

【0012】[0012]

【発明の効果】本発明によれば、高純度で、APHA1
5以下の色相の良好なビスフェノールA・フェノール結
晶アダクトを高収率で得ることができる。このビスフェ
ノールA・フェノール結晶アダクトは、これからフェノ
ールを分離除去することにより、高純度で色相のよいビ
スフェノールAを与える。本発明においては、1つの晶
析工程を2つの晶析塔を用い、その第1晶析塔では種晶
を析出させ、その第2晶析塔で第1晶析塔より低い温度
でその種晶の結晶成長を行わせることから、結晶アダク
トの色相悪化を促進させる着色原因物質の吸着量の多い
微細結晶アダクトの生成率を低減させ、着色原因物質の
吸着量の低い色相のよい高純度粗大結晶アダクトの生成
率を増加させ、晶析工程を1つの晶析塔を用いて実施す
る場合よりも、色相の良好な高純度結晶アダクトを容易
に得ることが可能になる。1つの晶析塔を用いる1つの
晶析工程を複数段用いて、本発明で得られるのと同様の
色相の良い結晶アダクトを得ようとすると、その晶析工
程は、本発明で用いる晶析工程よりも多くの晶析工程が
必要となり、例えば、本発明による2塔1段の晶析工程
と同じ効果を得るには、2段階以上の1塔晶析工程が必
要となり、それに応じて、結晶アダクトの分離工程及び
再溶解工程の数も増加し、結局、装置系は複雑かつ大型
のものとなる。また、本発明では、結晶アダクトの再溶
解工程で用いるフェノールを、結晶アダクトの分離後の
母液を用いずに、それよりも高純度のフェノールを用い
ることから、色相のより改善された結晶アダクトを得る
ことが可能となる。
INDUSTRIAL APPLICABILITY According to the present invention, APHA1 with high purity can be obtained.
A good bisphenol A / phenol crystal adduct having a hue of 5 or less can be obtained in high yield. This bisphenol A / phenol crystal adduct gives bisphenol A having a high purity and a good hue by separating and removing phenol therefrom. In the present invention, two crystallization towers are used in one crystallization step, seed crystals are deposited in the first crystallization tower, and seed crystals are deposited in the second crystallization tower at a temperature lower than that of the first crystallization tower. Crystal growth of crystals promotes deterioration of the hue of crystal adducts. Reduces the production rate of fine crystal adducts that have a large amount of adsorption of color-causing substances, and reduces the amount of adsorption of color-causing substances. It is possible to increase the production rate of crystal adducts and easily obtain a high-purity crystal adduct having a good hue, as compared with the case where the crystallization step is performed using one crystallization tower. When it is attempted to obtain a crystal adduct having a good hue similar to that obtained in the present invention by using one crystallization step using one crystallization tower in a plurality of stages, the crystallization step is performed in the crystallization step used in the present invention. More crystallization steps than the steps are required. For example, in order to obtain the same effect as the two-column one-stage crystallization step according to the present invention, two or more one-column crystallization steps are required. The number of steps for separating and re-dissolving the crystal adduct also increases, and eventually the apparatus system becomes complicated and large. Further, in the present invention, the phenol used in the re-dissolving step of the crystal adduct, without using the mother liquor after the separation of the crystal adduct, since using a phenol of higher purity than that, a crystal adduct with an improved hue is obtained. It becomes possible to obtain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する場合の装置系統図の1例を示
す。
FIG. 1 shows an example of an apparatus system diagram for implementing the present invention.

【符号の説明】[Explanation of symbols]

A,B,C,D 晶析塔 E 固液分離装置 F 結晶アダクト溶解槽 P 内筒 Q 微結晶アダクト溶解タンク A, B, C, D Crystallization tower E Solid-liquid separation device F Crystal adduct dissolution tank P Inner cylinder Q Microcrystal adduct dissolution tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅岡 佐知夫 神奈川県横浜市鶴見区鶴見中央二丁目12 番1号 千代田化工建設株式会社内 (56)参考文献 特開 平1−213246(JP,A) 特公 昭53−9585(JP,B2) 特公 昭55−19204(JP,B2) 化学装置百科辞典編纂委員会編「増補 化学装置百科辞典」(株式会社 化学 工業社 昭和51年5月25日発行)p104 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sachio Asaoka 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd. (56) Reference JP-A-1-213246 (JP, A) Japanese Patent Publication No. Sho 53-9585 (JP, B2) Japanese Patent Publication No. Sho 55-19204 (JP, B2) "Encyclopedia of Chemical Equipment Encyclopedia" edited by the Committee for Chemical Equipment Encyclopedia (Chemical Industry Co., Ltd. May 25, 1976) Issued) p104

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1段の晶析工程を行うための直列に連
結された2つの晶析塔の第1の晶析塔(A)にビスフェ
ノールAが溶解したフェノール溶液を供給し、ビスフェ
ノールA・フェノールの結晶アダクトからなる粒径10
0μm以下の微結晶成分含有率が30重量%以下の粗大
種晶を析出させるとともに、この晶析工程で得られた種
晶を含む晶析生成物を第2晶析塔(B)に導入し、前記
第1晶析塔(A)より低い温度でその種晶の結晶成長を
行って粒径100μm以下の微結晶成分含有率が30重
量%以下の粗大結晶アダクトを生成させた後、この第1
段の晶析工程で得られた晶析生成物を固液分離工程に導
入して結晶アダクトを母液から分離し、次いでこの結晶
アダクトを該母液よりも純度の高いフェノールで再溶解
した後、第2段の晶析工程を行うための直列に連結され
た2つの晶析塔の第1の晶析塔(C)に供給し、ビスフ
ェノールA・フェノールの結晶アダクトからなる粒径1
00μm以下の微結晶成分含有率が30重量%以下の粗
大種晶を析出させるとともに、この晶析工程で得られた
結晶アダクトを含む晶析生成物を第2晶析塔(D)に導
入し、前記第1晶析塔(C)より低い温度でその種晶の
結晶成長を行って粒径100μm以下の微結晶成分含有
率が30重量%以下の粗大結晶アダクトを生成させるこ
とを特徴とする色相の良好なビスフェノールA・フェノ
ール結晶アダクトの製造方法。
1. A phenol solution in which bisphenol A is dissolved is supplied to a first crystallization tower (A) of two crystallization towers connected in series for performing the first crystallization step, and bisphenol A is supplied.・ Particle size consisting of crystalline adduct of phenol 10
A coarse seed crystal having a fine crystal component content of 0 μm or less and 30% by weight or less is precipitated, and the crystallization product containing the seed crystal obtained in this crystallization step is introduced into the second crystallization tower (B). The crystal growth of the seed crystal is performed at a temperature lower than that of the first crystallization tower (A) to generate a coarse crystal adduct having a grain size of 100 μm or less and a fine crystal component content of 30% by weight or less. 1
The crystallization product obtained in the step crystallization step is introduced into the solid-liquid separation step to separate the crystal adduct from the mother liquor, and the crystal adduct is then redissolved in phenol having a higher purity than the mother liquor. The particle size of the bisphenol A / phenol crystal adduct, which is supplied to the first crystallization tower (C) of the two crystallization towers connected in series for performing the two-stage crystallization step, is 1
A coarse seed crystal having a fine crystal component content of 00 μm or less and 30 wt% or less is precipitated, and the crystallization product containing the crystal adduct obtained in this crystallization step is introduced into the second crystallization tower (D). The crystal growth of the seed crystal is performed at a temperature lower than that of the first crystallization tower (C) to generate a coarse crystal adduct having a grain size of 100 μm or less and a fine crystal component content of 30 wt% or less. A method for producing a bisphenol A / phenol crystal adduct having a good hue.
JP3311989A 1991-07-10 1991-10-30 Method for producing bisphenol A / phenol crystal adduct having good hue Expired - Lifetime JP2683762B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP3311989A JP2683762B2 (en) 1991-10-30 1991-10-30 Method for producing bisphenol A / phenol crystal adduct having good hue
DE69217133T DE69217133T2 (en) 1991-07-10 1992-05-29 Process for the preparation of a crystalline adduct of bisphenol A with phenol and device therefor
EP96200435A EP0718267B1 (en) 1991-07-10 1992-05-29 Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
ES96200436T ES2126977T3 (en) 1991-07-10 1992-05-29 PROCEDURE FOR THE PRODUCTION OF CRYSTALLINE ADDICT OF BISPHENOL A AND PHENOL.
ES96200435T ES2126976T3 (en) 1991-07-10 1992-05-29 PROCEDURE FOR THE PRODUCTION OF CRYSTALLINE ADDICT OF BISPHENOL A AND PHENOL AND APPARATUS FOR THIS.
EP96200436A EP0718268B1 (en) 1991-07-10 1992-05-29 Process for the production of crystalline adduct of bisphenol A and phenol
DE69227849T DE69227849T2 (en) 1991-07-10 1992-05-29 Process and preparation of a crystalline adduct of bisphenol A with phenol and device therefor
DE69227850T DE69227850T2 (en) 1991-07-10 1992-05-29 Process for the preparation of a crystalline adduct of bisphenol A with phenol
EP92304932A EP0522700B1 (en) 1991-07-10 1992-05-29 Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
ES92304932T ES2097877T3 (en) 1991-07-10 1992-05-29 PROCEDURE FOR THE PREPARATION OF A CRYSTALLINE ADDICT OF BISPHENOL A WITH PHENOL AND APPARATUS FOR IT.
CNB991038622A CN1190404C (en) 1991-07-10 1992-06-30 Condensation processing method for desorption gas of compound containing phenol, bisphenol A and steam
CN92105365A CN1059428C (en) 1991-07-10 1992-06-30 Method of purifying bisphenol a/phenol crystalline adduct, method of producing crystalling adduct,device for crystallization of crystalline adduct, and method for producing bisphenol A
CNB991038959A CN1167659C (en) 1991-07-10 1992-06-30 Processes for refining phenol, preparing and refining addition of bisphenol A and phenol crystal and preparing bisphenol A
CNB991038614A CN1190403C (en) 1991-07-10 1992-06-30 Crystal separating-out device of bisphenol A. phenol crystal adduct, manufacture ad device thereof
KR1019920012309A KR100189205B1 (en) 1991-07-10 1992-07-10 Process for the production of crystalline adduct of bisphenol and phenol and apparatus therefor
US08/026,126 US5345000A (en) 1991-07-10 1993-03-03 Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
KR1019980044545A KR100190335B1 (en) 1991-07-10 1998-10-23 Method of purifying bisphenol a. phenol crystalline adduct, method of producing the crystalline adduct, and method of producing bisphenol a.
KR1019980044546A KR100190336B1 (en) 1991-07-10 1998-10-23 Method of purifying bisphenol a, phenol crystalline adduct, method of producing the crystalline adduct, and method of producing bisphenol a.
KR1019980044544A KR100190334B1 (en) 1991-07-10 1998-10-23 Process for the production of crystalline adduct of bisphenol a and phenol and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311989A JP2683762B2 (en) 1991-10-30 1991-10-30 Method for producing bisphenol A / phenol crystal adduct having good hue

Publications (2)

Publication Number Publication Date
JPH05125007A JPH05125007A (en) 1993-05-21
JP2683762B2 true JP2683762B2 (en) 1997-12-03

Family

ID=18023865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311989A Expired - Lifetime JP2683762B2 (en) 1991-07-10 1991-10-30 Method for producing bisphenol A / phenol crystal adduct having good hue

Country Status (1)

Country Link
JP (1) JP2683762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129757A1 (en) * 2007-03-30 2008-10-30 Mitsubishi Chemical Corporation Process for production of bisphenol a
CN110272451B (en) * 2019-07-18 2021-08-17 肯特催化材料股份有限公司 Preparation method of tetraphenylphenol phosphonium salt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539585A (en) * 1976-07-14 1978-01-28 Toshiba Ceramics Co Protective tube for continuous temperature measurement
JPS5519204A (en) * 1978-07-26 1980-02-09 Sanwa Chem:Kk Production of inorganic acid salt of guanidine
JPS6038335A (en) * 1983-08-11 1985-02-27 Mitsui Toatsu Chem Inc Production of bisphenol a
JPH01213246A (en) * 1988-02-22 1989-08-28 Mitsui Toatsu Chem Inc Crystallization of addition product of bisphenol a and phenol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学装置百科辞典編纂委員会編「増補 化学装置百科辞典」(株式会社 化学工業社 昭和51年5月25日発行)p104

Also Published As

Publication number Publication date
JPH05125007A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US5345000A (en) Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
EP0332203B1 (en) Process for preparing high-purity bisphenol a
JP5030472B2 (en) Manufacturing method and manufacturing equipment of high purity bisphenol A
KR910003253B1 (en) Process for preparing 2,2-bis(4-hydroxyphinyl)propane of high purity
US4950805A (en) Process for washing and obtaining solids of slurry
JP2557578B2 (en) Method for recovering liquid phase oxidation catalyst for paraxylene
JP2683762B2 (en) Method for producing bisphenol A / phenol crystal adduct having good hue
JP2001316313A (en) Method for producing crystalline adduct of bisphenol a and phenol for producing high-quality bisphenol a
EP0351127B1 (en) Method of purifying L-glutamine
JPH075543B2 (en) Method for producing high-purity caprolactam
JP4398674B2 (en) Method for producing bisphenol A
KR101099150B1 (en) Crystallization of Adipic Acid from its Solution in Aqueous Nitric Acid
EP0801053B1 (en) Recovery of catalyst components from diarylcarbonate containing reaction solutions by suspension cristallization
JP2962441B2 (en) Method for producing bisphenol A with low coloring properties
JP3173732B2 (en) Method for producing bisphenol A with excellent hue
JPH05117191A (en) Production of bisphenol a-phenol crystalline adduct having good hue
JP2796556B2 (en) Method for producing high-grade bisphenol A / phenol crystal adduct
JPH0558611B2 (en)
JP2005232134A (en) Method for producing bisphenol-a
JPH08325183A (en) Production of bisphenol a
JPH03127751A (en) Purification of dimethylphenol
JP4517678B2 (en) Method for producing purified bisphenol A
JPH0778030B2 (en) Method for producing high-quality bisphenol A
JP3882859B2 (en) Method for producing hydrated hydrazine
KR930002293A (en) Method for purifying bisphenol A phenol crystal adduct, method for preparing this crystal adduct and crystallizing device therefor and method for producing bisphenol A

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 15