JP4398674B2 - Method for producing bisphenol A - Google Patents

Method for producing bisphenol A Download PDF

Info

Publication number
JP4398674B2
JP4398674B2 JP2003159089A JP2003159089A JP4398674B2 JP 4398674 B2 JP4398674 B2 JP 4398674B2 JP 2003159089 A JP2003159089 A JP 2003159089A JP 2003159089 A JP2003159089 A JP 2003159089A JP 4398674 B2 JP4398674 B2 JP 4398674B2
Authority
JP
Japan
Prior art keywords
bisphenol
phenol
adduct
solid
mother liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003159089A
Other languages
Japanese (ja)
Other versions
JP2004359594A (en
Inventor
潤 小比類巻
修一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003159089A priority Critical patent/JP4398674B2/en
Priority to PCT/JP2004/007885 priority patent/WO2004108643A1/en
Priority to CNB2004800143902A priority patent/CN1331831C/en
Priority to TW93116030A priority patent/TWI353973B/en
Publication of JP2004359594A publication Critical patent/JP2004359594A/en
Application granted granted Critical
Publication of JP4398674B2 publication Critical patent/JP4398674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビスフェノールAの製造方法に関し、詳しくは、フェノールとアセトンから高品質のビスフェノールAを効率良く製造する方法に関する。
【0002】
【従来の技術】
ビスフェノールAはエポキシ樹脂或いはポリカーボネート樹脂の原料として重要な化合物であり、近年その用途及び需要が増大している。高品質の樹脂を得るためには、無色で高純度のビスフェノールAが要求されている。
ビスフェノールAは、通常、フェノールとアセトンとを酸性触媒の存在下に反応させることにより製造される。酸性触媒としては、強酸性陽イオン交換樹脂が代表的である。反応生成物は、ビスフェノールAの他に、未反応フェノール、未反応アセトン、反応生成水及び着色物質等の反応副生物を含んでいる。反応副生物のうち、主なものは、2−(2−ヒドロキシフェニル)−2−(4−ヒドロキシフェニル)プロパン(以下2,4′−異性体と記すことがある)であり、他にトリメチルインダン、ダイアニン化合物(Dianin’s Compound)、トリスフェノール、ポリフェノール及び着色物質等がある。これらの物質は、ビスフェノールAを原料として製造される樹脂等の性能を低下させるので好ましくない。
【0003】
反応混合液から高純度のビスフェノールAを回収する方法の一つとして、該反応生成液から、未反応アセトン、反応生成水及び一部の未反応フェノールを蒸留等で除去した後、残った濃縮混合液を冷却することによってビスフェノールAをフェノールとの付加物(アダクト)として晶析させ、この結晶(アダクト結晶)を反応副生物を含む母液から分離した後、フェノールを除去してビスフェノールAを回収する方法がある(例えば特許文献1および特許文献2参照)。
このアダクト結晶を分離した母液中には、2,4′−異性体、トリメチルインダン、ダイアニン化合物、トリスフェノール、ポリフェノール及び着色物質等の反応副生物の他に、多くのフェノール及びビスフェノールAが含まれているので、この母液を反応系に循環させることができる。しかしながら、これらの反応副生物を、そのまま循環させると系内に蓄積し、結晶ひいては製品の純度及び色相を悪化させる。
【0004】
このため母液を更に濃縮して結晶(回収結晶)を取り出し、その結晶を反応生成液の結晶化工程に供給する方法がある(例えば特許文献3参照)。しかし、この回収結晶を除いた母液は、なおビスフェノールAに転化し得る2,4′−異性体及びトリスフェノール等を多く含んでいるが、同時に工程のどの部分にも循環できないポリフェノール及び着色物質を多く含んでいるため、廃棄しなければならない。
一方、アダクト結晶を分離した母液中の2,4′−異性体を酸触媒でビスフェノールAに異性化して循環させる方法(例えば特許文献4参照)や、該母液の一部を異性化処理すると共に、残りの母液を更に濃縮して結晶(回収結晶)を取り出し、さらにその回収結晶を除いた母液(回収母液)からフェノールを回収する方法が知られている(例えば特許文献5参照)。
しかしながら、上記特許文献4記載の方法では、ポリフェノールや着色物質等の不純物はそのまま循環されるため、系内に蓄積し高純度の製品を得ることができない。また、不純物の蓄積防止のため、アダクト結晶を分離した母液の一部をパージする方法もあるが、このパージ母液の中に多く含まれているフェノール及びビスフェノールAが損失となる。
一方、前記特許文献5記載の方法では、アダクト結晶を分離した母液の一部をパージする際にビスフェノールAならびにフェノールを回収する方法であるが、該母液のビスフェノールA濃度が低く、不純物濃度が高いため、ビスフェノールAの回収率が低く、ビスフェノールAに転化できる異性体の多くを廃棄しなければならない。
【0005】
【特許文献1】
特開平2−28126号公報
【特許文献2】
特開昭63−132850号公報
【特許文献3】
特公昭52−46946号公報
【特許文献4】
米国特許第4,400,555号公報
【特許文献5】
特開平8−333290号公報
【0006】
【発明が解決しようとする課題】
このような状況下で、本発明の目的は、アダクト結晶を分離した母液からフェノール及びビスフェノールAを効率よく回収し、高品質のビスフェノールAを効率的に製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意研究を行った結果、フェノールとアセトンとの縮合反応によるビスフェノールAの製造方法において、反応混合物からビスフェノールAとフェノールとの付加物を晶析分離した後の母液の全量を異性化処理した後、縮合反応工程、濃縮工程ないし晶析・固液分離工程に再循環すると共に、系内に不純物の蓄積を防ぐためにブローする異性化処理した液の一部から更にビスフェノールAとフェノールを回収することにより、該母液からフェノール及びビスフェノールAを効率よく回収し、高品質のビスフェノールAを効率的に得られることを見出し、本発明を完成した。
【0008】
即ち本発明は、以下のビスフェノールAの製造方法を提供するものである。
1.(1)過剰量のフェノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反応工程、(2)縮合反応工程で得られた反応混合物を濃縮する濃縮工程、(3)濃縮工程で得られた濃縮液を冷却することによりビスフェノールAとフェノールとの付加物を晶析させ、該付加物と母液に分離する晶析・固液分離工程および(4)ビスフェノールAとフェノールとの付加物からフェノールを除去し、ビスフェノールAを回収するアダクト分解工程を有するビスフェノールAの製造方法において、前記(3)晶析・固液分離工程で得られた母液の全量を異性化触媒と接触させて異性化処理した後、該異性化処理液の一部を前記の(1)縮合反応工程、(2)濃縮工程および(3)晶析・固液分離工程の少なくともいずれかに再循環し、残りの異性化処理液を濃縮した後、冷却することによりビスフェノールAとフェノールとの付加物を晶析させ、固液分離後、付加物を濃縮工程および/または晶析・固液分離工程に再循環すると共に、液相部からフェノールを回収することを特徴とするビスフェノールAの製造方法。
【0009】
【発明の実施の形態】
本発明においては、アダクト結晶を分離した母液の全量を異性化処理することにより、母液中の不純物をできるだけビスフェノールAに転化してビスフェノールAの濃度を上げ、また不純物濃度を下げることができるので、ビスフェノールAの回収率を高くすることができると共に、系内に不純物が蓄積することを防止するためにその一部をパージする際に、パージされる高沸点成分を少なくすることができる。
この異性化処理以降の工程については、(5)異性化処理工程、(6)ブロー異性化処理液のアダクト回収工程および(7)アダクト回収母液のフェノール回収工程に分けることができる。
以下、各工程について詳細に説明する。
【0010】
(1)縮合反応工程
原料のフェノールとアセトンは、化学量論的にフェノール過剰で反応させる。フェノールとアセトンとのモル比は、フェノール/アセトン=3〜30、好ましくは、5〜20の範囲である。反応温度は、通常、50〜100℃、反応圧力は、通常、常圧〜1.5MPa、好ましくは常圧〜0.6MPaで行われる。触媒としては、通常、スルホン酸型等の強酸性陽イオン交換樹脂が用いられる。
更に、強酸性陽イオン交換樹脂触媒の一部をメルカプトアルキルアミン等の助触媒により中和された触媒を用いることもある。例えば、2−メルカプトエチルアミン、3−メルカプトプロピルアミン、N,N−ジメチル−3−メルカプトプロピルアミン、N,N−ジ−n−ブチル−4−メルカプトブチルアミン、2,2−ジメチルチアゾリジン等でスルホン酸基の5〜30モル%が中和されたものが挙げられる。
フェノールとアセトンとの縮合反応は、連続方式でしかも押し流れ方式である固定床流通方式、或いは懸濁床回分方式で行われる。固定床流通方式の場合、反応器に供給する原料液の液空間速度は、0.2〜50hr-1である。また、懸濁床回分方式で行う場合、反応温度、反応圧力によって異なるが、一般的に、該原料液に対して20〜100重量%の範囲の樹脂触媒量であり、処理時間は、0.5〜5時間程度である。
【0011】
(2)濃縮工程
縮合反応工程からの反応混合物は通常二段の工程で濃縮が行なわれる。第一濃縮工程において、減圧蒸留等の方法により未反応アセトン、反応生成水等が除かれる。減圧蒸留は、温度30〜180℃、圧力13〜67kPaで実施される。続いて、第二濃縮工程において、フェノールを留去し、ビスフェノールAの濃度を調整する。この際のビスフェノールAの濃度は20〜60重量%とすることが好ましい。ビスフェノールAの濃度が20重量%よりも小さい場合には収率が低くなり、また、60重量%より大きくなると固化温度が高くなり、輸送不可能になるという問題が起きる。従って、通常は第一濃縮工程において反応混合液を予め濃縮することにより前記濃度に調整する。この第二濃縮工程は、通常、圧力4〜40kPa,温度70〜140℃の条件下で実施することが好ましい。
【0012】
(3)晶析・固液分離工程
濃縮工程からの濃縮液は、通常、70〜140℃から35〜60℃まで冷却され、ビスフェノールAとフェノールとの付加物(アダクト)を晶析し、スラリー状になる。冷却は、外部熱交換器や、晶析器に加えられる水の蒸発による除熱によって行われる。
次にスラリー状の液は固液分離される。この晶析・固液分離工程で得られる母液の組成は、通常、フェノール:65〜85重量%、ビスフェノールA:10〜20重量%、2,4′−異性体等の副生物:5〜15重量%であり、2,4′−異性体等の不純物を多く含んでいる。
従来は不純物の蓄積防止のため母液の一部がパージされていた。しかし本発明では異性化処理工程において該母液の全量を処理して、該母液中に含まれているフェノールとビスフェノールAを回収する。
固液分離により回収されたアダクトは、次にアダクト分解工程に送られてフェノールを除去することによって高純度のビスフェノールAが得られる。
【0013】
固液分離機器のフィルター表面に濾過されて堆積されたアダクトを主成分とする固体成分は洗浄液による洗浄に付される。洗浄液としては、蒸発して回収したフェノール、原料フェノール、水、水−フェノール混合液の他、ビスフェノールAの飽和フェノール溶液と同じものも使用される。
使用される洗浄液の量は多い方が、洗浄効率の点で良いことは当然であるが、結晶の再溶解ロス、洗浄液の循環、回収、再使用の観点から自ずと上限があり、通常は、重量基準で結晶量の0.1〜10倍程度が最も効率的である。
なお、晶析・固液分離の後に結晶を再溶解し、再度晶析と固液分離を繰り返しても良い。この晶析と固液分離を多段で繰り返すことによりアダクト結晶内に取り込まれた不純物が順次減少して行く。
この場合、再溶解の溶解液ならびに固液分離で得られるアダクトを主成分とする固体成分の洗浄液としては、蒸発して回収したフェノール、原料フェノール、水、水−フェノール混合液の他、ビスフェノールAの飽和フェノール溶液と同じものを各段で使用できる。
固液分離において使用される固液分離機器としては通常使用されるものであれば特に制限されないが、ベルトフィルター、ドラムフィルター、トレイフィルター、遠心分離器等が使用される。
【0014】
(4)アダクト分解工程
上記の固液分離により回収されたビスフェノールAとフェノールとの付加物(アダクト)は、アダクト分解工程においてフェノールを除去して高純度ビスフェノールAとなる。例えば前記特許文献1および特許文献2に記載されているように、一般的には、該付加物を100〜160℃で加熱溶融することによりビスフェノールAとフェノールとに分解し、この溶融液から蒸発缶などによって大部分のフェノールを除去し、更に、スチームストリッピングにより残存するフェノールを除去することによって、ビスフェノールAを得る。
【0015】
(5)異性化処理工程
晶析・固液分離工程で得られる液相部分(母液)は、次に異性化処理工程に全量供給され、母液中の反応副生物を異性化処理する。この異性化処理液の一部は、縮合反応工程、濃縮工程および晶析・固液分離工程の少なくともいずれかに再循環する。特に、異性化処理液はフェノールを65〜85重量%含むことから、この一部を蒸発させ晶析操作に相応したビスフェノールAの濃度に調製するため前述の濃縮工程に供給することが好ましい。
異性化処理は、通常、スルホン酸型陽イオン交換樹脂が用いられ、反応温度50〜100℃で、連続式でしかも押し流れ方式である固定床流通方式の場合、液空間速度は0.2〜50hr-1で行われる。
この異性化処理工程は並列に複数あっても良い。たとえば、異性化処理液を縮合反応工程、濃縮工程又は晶析・固液分離工程に再循環するための異性化処理工程と、不純物の蓄積を防ぐためにブローする異性化処理液を処理するための異性化処理工程に分割して設置することも可能である。
【0016】
(6)ブロー異性化処理液のアダクト回収工程
不純物の蓄積を防ぐためにブローする異性化処理液は、濃縮した後、冷却することによりビスフェノールAとフェノールとの付加物(アダクト)を晶析させ、固液分離後、該アダクトは濃縮工程および/または晶析・固液分離工程に再循環する。
このブロー異性化処理液は、蒸発缶等によりフェノールの一部を除去することで濃縮される。濃縮後のビスフェノールAの濃度は、20〜50重量%程度であり、圧力5.3〜40kPa、温度70〜140℃の範囲で実施される。
こうして得られたブロー異性化処理液の濃縮液は、通常、70〜140℃から35〜60℃まで冷却され、アダクトを晶析させて、固液分離される。
この固液分離操作で得られた結晶(以下、回収結晶と云う)は、前述の濃縮工程(第二濃縮工程)又は晶析・固液分離工程に戻される。回収結晶は、晶析・固液分離工程で得られる固相部分(結晶)よりも多くの不純物を含んでいる。しかし、回収結晶中の不純物の濃度は縮合反応工程で得られる反応液中の濃度よりも低いので回収結晶を晶析・固液分離工程に供給した場合には、反応副生物の濃度は低くなり、回収結晶が供給されない場合よりも高純度の結晶が得られる。
【0017】
(7)アダクト回収母液のフェノール回収工程
一方、ブロー異性化処理液のアダクト回収工程で得られた液相部分(母液)の組成は、フェノール45〜70重量%、ビスフェノールA5〜15重量%、2,4′−異性体等の副生物20〜40重量%であり、反応副生物である2,4′−異性体等を多く含んでいるが、フェノールも多く含んでいる。
そこで、この液相部分から充填式蒸留塔等を使用する方法によりフェノールを回収し、残留物である副生物及び着色物質等を多く含んだ高沸点化合物は系外に排出することによって、系内への不純物の蓄積がなく、高品質のビスフェノールAが製品として得られる。系外に排出された高沸点化合物は焼却炉等によって処分される。前記フェノール回収処理は、通常、圧力4〜33kPa、温度120〜180℃で行われ、残留物中の残存フェノール量が20重量%以下、好ましくは5〜18重量%になるまで行う。ここで回収したフェノールは、例えば、晶析・固液分離工程での洗浄液或いは反応用原料としても再利用可能である。
【0018】
【実施例】
以下、本発明の方法を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
なお、以下の実施例において、%は、特に記載はない限り重量%とする。フェノール及びビスフェノールA等は、HPLC分析によって定量した。また、色相は、ビスフェノールA20gをエタノール20mlに溶解し、分光光度計で吸光度を測定し求めた。
【0019】
実施例1
内径40mm、高さ1,500mmの充填層式の反応器を3基直列に接続し、スルホン酸型イオン交換樹脂(三菱化学(株)製、ダイヤイオン−104H)を2−メルカプトエチルアミンにてスルホン酸基の20モル%を部分中和したものを5.5リットル充填した。フェノールとアセトンとの混合物(フェノール/アセトン=10/1(モル比)を触媒層の温度を80℃に保ちながら、液空間速度1hr-1にて連続的に100時間通液させた。
この反応器から得られた反応生成液のうち20kgを、減圧下で未反応アセトン、反応生成水及び少量のフェノールを除去した。得られた濃縮液は、ビスフェノールA30.5%、2,4′−異性体及びトリスフェノール3.8%、その他の不純物3.4%を含んでいた。この濃縮液を90℃から45℃に冷却して、結晶を析出させた後、遠心分離機により分離し、2830gの結晶と6170gの母液を得た。
次に、得られた結晶を溶融し、2kPa、170℃に操作された蒸留塔に送り、大部分のフェノールを留去回収した。塔底からビスフェノールAを抜き出し、更にスチームストリッピングにより残存フェノールを完全に除去して、ビスフェノールAの製品を1640g得た。得られたビスフェノールAは、2,4′−異性体0.04%、その他の不純物0.025%を含んでおり、その色相は、10APHAであった。
遠心分離機で分離された母液を、温度70℃、液空間速度1hr-1の条件下でスルホン酸型陽イオン交換樹脂(三菱化学(株)製、ダイヤイオン−104H)に接触させ、異性化処理を行った。この異性化処理液は、ビスフェノールA14.0%、2,4′−異性体及びトリスフェノール4.2%、その他の不純物4.9%含んでおり、6130g得ることができた。
異性化処理液490gを減圧下でフェノールの一部を留去し、フェノール50.8%、ビスフェノールA29.8%、不純物(2,4′−異性体を含む)19.4%を含む濃縮液を230g得た。この濃縮液を冷却し、回収結晶を晶析させて、遠心分離機で分離して105gの結晶と120gの母液を得た。この回収結晶は、フェノール45.6%、ビスフェノールA51.1%、不純物3.3%を含んでいた。回収結晶を分離した母液中には、フェノールが67.8%含まれており、温度165℃、圧力14kPaの条件下で蒸留を行い、フェノール70gを回収した。
【0020】
実施例2
実施例1と同様の方法で、反応生成液19.5kgを減圧蒸留して未反応アセトン、生成水及び少量のフェノールを除去した液に、実施例1で得た異性化処理液5640gと回収結晶105gを加えて溶解した。この溶液は、フェノール62.3%、ビスフェノールA30.6%、2,4′−異性体及びトリスフェノール3.8%、その他の不純物3.3%を含んでいた。この混合溶液を90℃から45℃に冷却して、結晶を析出させた後、遠心分離機により分離し、3650gの結晶と7930gの母液を得た。
この結晶は実施例1と同様に脱フェノール処理し、ビスフェノールAの製品を2120g得た。得られたビスフェノールAは、2,4′−異性体0.03%、その他の不純物0.023%を含んでおり、その色相は、回収結晶を再循環していない参考例1の場合と同等の10APHAであった。
【0021】
比較例1
反応から晶析・固液分離工程まで参考例1と同様の処理を行い、2830gの結晶と6170gの母液を得た。この母液のうち490gを減圧下で一部のフェノールを留去し、フェノール52.9%、ビスフェノールA26.1%、不純物(2,4′−異性体を含む)21.0%を含む濃縮液を230g得た。この濃縮液を冷却し、回収結晶を晶析させて、遠心分離機で分離して80gの結晶と145gの母液を得た。この回収結晶は、フェノール45.6%、ビスフェノールA50.1%、不純物4.3%を含んでいた。回収結晶を分離した母液中には、フェノールが63.4%含まれており、温度165℃、圧力14kPaの条件下で蒸留を行い、フェノール55gを回収した。
【0022】
比較例2
実施例1と同様の方法で、主反応生成物19.5kgを得た。これに比較例1で得た異性化処理液5660gを加え、減圧蒸留して未反応アセトン、生成水及び少量のフェノールを除去した。そこへ、比較例1で得た結晶80gを加えて溶解した。この溶液は、フェノール61.0%、ビスフェノールA30.6%、2,4′−異性体及びトリスフェノール4.1%、その他の不純物4.3%を含んでいた。この混合溶液を90℃から45℃に冷却して、結晶を析出させた後、遠心分離機により分離し、3570gの結晶と8010gの母液を得た。
この結晶は比較例1と同様に脱フェノール処理し、ビスフェノールAの製品を2100g得た。得られたビスフェノールAは、2,4′−異性体0.05%、その他の不純物0.03%を含んでおり、その色相は20APHAであった。
【0023】
以上の実施例1および比較例1から分かるように、パージされる母液が同量の条件において、実施例1において本発明によりパージされる母液を異性化処理した後、ビスフェノールAおよびフェノールを回収することにより、比較例に対してビスフェノールAで17%、フェノールで33%回収量が多くなり、しかも回収結晶における不純物の濃度が低下することから、製品ビスフェノールAの品質が悪化しないことが分かる。
【0024】
【発明の効果】
本発明の方法によれば、母液中の反応副生物を異性化処理し再循環する工程で、不純物の蓄積防止のためにパージしていた不純物を多く含む母液からフェノール及びビスフェノールAを効率良く回収することができ、更に、系内への不純物の蓄積が起こらず、無色で高品質のビスフェノールAが製品として得られる。
また、本発明の方法によれば、フェノール及びビスフェノールAを効率よく回収することができ、その結果、廃油処理の負荷を低減させることができ、経済的にも有利にビスフェノールAを製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing bisphenol A, and more particularly to a method for efficiently producing high-quality bisphenol A from phenol and acetone.
[0002]
[Prior art]
Bisphenol A is an important compound as a raw material for epoxy resin or polycarbonate resin, and its use and demand are increasing in recent years. In order to obtain a high-quality resin, colorless and high-purity bisphenol A is required.
Bisphenol A is usually produced by reacting phenol and acetone in the presence of an acidic catalyst. A typical example of the acidic catalyst is a strong acidic cation exchange resin. In addition to bisphenol A, the reaction product contains reaction by-products such as unreacted phenol, unreacted acetone, reaction product water, and coloring substances. Among the reaction by-products, the main one is 2- (2-hydroxyphenyl) -2- (4-hydroxyphenyl) propane (hereinafter sometimes referred to as 2,4'-isomer), Examples include indane, dianin's compound, trisphenol, polyphenol, and coloring substances. These substances are not preferable because they reduce the performance of a resin or the like produced using bisphenol A as a raw material.
[0003]
As one method for recovering high-purity bisphenol A from the reaction mixture, unreacted acetone, reaction product water and some unreacted phenol are removed from the reaction product solution by distillation, etc., and the remaining concentrated mixture By cooling the liquid, bisphenol A is crystallized as an adduct with phenol (adduct), and the crystals (adduct crystals) are separated from the mother liquor containing reaction by-products, and then phenol is removed to recover bisphenol A. There are methods (see, for example, Patent Document 1 and Patent Document 2).
The mother liquor from which the adduct crystals are separated contains a large amount of phenol and bisphenol A in addition to reaction by-products such as 2,4'-isomer, trimethylindane, dianine compound, trisphenol, polyphenol, and coloring substances. This mother liquor can be circulated in the reaction system. However, if these reaction by-products are circulated as they are, they accumulate in the system and deteriorate the crystal and thus the purity and hue of the product.
[0004]
For this reason, there is a method of further concentrating the mother liquor to take out crystals (recovered crystals) and supplying the crystals to the crystallization step of the reaction product liquid (for example, see Patent Document 3). However, the mother liquor excluding the recovered crystals still contains a large amount of 2,4'-isomer and trisphenol that can be converted to bisphenol A, but at the same time contains polyphenols and colored substances that cannot be circulated in any part of the process. It contains a lot and must be discarded.
On the other hand, the 2,4′-isomer in the mother liquor from which the adduct crystals have been separated is isomerized to bisphenol A with an acid catalyst and circulated (see, for example, Patent Document 4), or part of the mother liquor is isomerized. A method is known in which the remaining mother liquor is further concentrated to take out crystals (recovered crystals), and phenol is recovered from the mother liquor (recovered mother liquor) from which the recovered crystals have been removed (see, for example, Patent Document 5).
However, in the method described in Patent Document 4, since impurities such as polyphenols and coloring substances are circulated as they are, they cannot be accumulated in the system to obtain a high-purity product. In order to prevent the accumulation of impurities, there is a method of purging a part of the mother liquor from which the adduct crystals have been separated, but the phenol and bisphenol A contained in the purge mother liquor are lost.
On the other hand, in the method described in Patent Document 5, bisphenol A and phenol are recovered when purging a part of the mother liquor from which the adduct crystals have been separated. However, the bisphenol A concentration in the mother liquor is low and the impurity concentration is high. Therefore, the recovery rate of bisphenol A is low, and many of the isomers that can be converted to bisphenol A must be discarded.
[0005]
[Patent Document 1]
JP-A-2-28126 [Patent Document 2]
Japanese Patent Laid-Open No. 63-132850 [Patent Document 3]
Japanese Patent Publication No. 52-46946 [Patent Document 4]
US Patent No. 4,400,555 [Patent Document 5]
JP-A-8-333290 [0006]
[Problems to be solved by the invention]
Under such circumstances, an object of the present invention is to provide a method for efficiently recovering phenol and bisphenol A from a mother liquor from which an adduct crystal has been separated, and efficiently producing high-quality bisphenol A.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have crystallized and separated the adduct of bisphenol A and phenol from the reaction mixture in the method of producing bisphenol A by the condensation reaction of phenol and acetone. The whole amount of the mother liquor is isomerized and then recycled to the condensation reaction step, concentration step, crystallization / solid-liquid separation step, and blown to prevent the accumulation of impurities in the system. By further recovering bisphenol A and phenol from a part, it was found that phenol and bisphenol A were efficiently recovered from the mother liquor, and high-quality bisphenol A was efficiently obtained, and the present invention was completed.
[0008]
That is, the present invention provides the following method for producing bisphenol A.
1. (1) a condensation reaction step in which an excess amount of phenol and acetone is subjected to a condensation reaction in the presence of an acidic catalyst, (2) a concentration step in which the reaction mixture obtained in the condensation reaction step is concentrated, and (3) obtained in the concentration step. The concentrated liquid is cooled to crystallize the adduct of bisphenol A and phenol, and the crystallization and solid-liquid separation step separates the adduct into the mother liquor, and (4) phenol from the adduct of bisphenol A and phenol. In the method for producing bisphenol A, which has an adduct decomposition step of removing bisphenol A and recovering bisphenol A, the whole amount of the mother liquor obtained in the above (3) crystallization / solid-liquid separation step is brought into contact with an isomerization catalyst. after, the above (1) condensation reaction step part of the isomerization treatment liquid (2) is recycled to at least one concentration step and (3) crystallization and solid-liquid separation step, the remaining foreign After condensing the solution, the adduct of bisphenol A and phenol is crystallized by cooling, and after solid-liquid separation, the adduct is recycled to the concentration step and / or crystallization / solid-liquid separation step. A method for producing bisphenol A, wherein phenol is recovered from the liquid phase part .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, by isomerizing the total amount of the mother liquor from which the adduct crystals have been separated, the impurities in the mother liquor can be converted to bisphenol A as much as possible to increase the concentration of bisphenol A, and the impurity concentration can be lowered. The recovery rate of bisphenol A can be increased, and the high boiling point components to be purged can be reduced when purging a part of the system in order to prevent impurities from accumulating in the system.
The steps after this isomerization treatment can be divided into (5) isomerization treatment step, (6) adduct recovery step of blow isomerization treatment liquid, and (7) phenol recovery step of adduct recovery mother liquor.
Hereinafter, each step will be described in detail.
[0010]
(1) Condensation reaction step The raw material phenol and acetone are reacted stoichiometrically in excess of phenol. The molar ratio of phenol to acetone is in the range of phenol / acetone = 3-30, preferably 5-20. The reaction temperature is usually 50 to 100 ° C., and the reaction pressure is usually normal pressure to 1.5 MPa, preferably normal pressure to 0.6 MPa. As the catalyst, a strong acid cation exchange resin such as a sulfonic acid type is usually used.
Furthermore, a catalyst obtained by neutralizing a part of the strongly acidic cation exchange resin catalyst with a promoter such as mercaptoalkylamine may be used. For example, 2-mercaptoethylamine, 3-mercaptopropylamine, N, N-dimethyl-3-mercaptopropylamine, N, N-di-n-butyl-4-mercaptobutylamine, 2,2-dimethylthiazolidine, etc. What neutralized 5-30 mol% of group is mentioned.
The condensation reaction of phenol and acetone is performed by a continuous method and a fixed bed flow method which is a push flow method or a suspension bed batch method. In the case of a fixed bed flow system, the liquid space velocity of the raw material liquid supplied to the reactor is 0.2 to 50 hr −1 . In addition, when the suspension bed batch method is used, the amount of the resin catalyst is generally in the range of 20 to 100% by weight with respect to the raw material liquid, although it varies depending on the reaction temperature and the reaction pressure. About 5 to 5 hours.
[0011]
(2) Concentration step The reaction mixture from the condensation reaction step is usually concentrated in two steps. In the first concentration step, unreacted acetone, reaction product water, and the like are removed by a method such as vacuum distillation. The vacuum distillation is performed at a temperature of 30 to 180 ° C. and a pressure of 13 to 67 kPa. Subsequently, in the second concentration step, phenol is distilled off and the concentration of bisphenol A is adjusted. In this case, the concentration of bisphenol A is preferably 20 to 60% by weight. If the concentration of bisphenol A is less than 20% by weight, the yield is low, and if it is more than 60% by weight, the solidification temperature becomes high, which makes it impossible to transport. Accordingly, the concentration is usually adjusted by pre-concentrating the reaction mixture in the first concentration step. This second concentration step is usually preferably carried out under conditions of a pressure of 4 to 40 kPa and a temperature of 70 to 140 ° C.
[0012]
(3) Crystallization / Solid-Liquid Separation Step The concentrate from the concentration step is usually cooled from 70 to 140 ° C. to 35 to 60 ° C. to crystallize an adduct of bisphenol A and phenol, and slurry It becomes a shape. Cooling is performed by heat removal by evaporation of water applied to an external heat exchanger or a crystallizer.
Next, the slurry liquid is solid-liquid separated. The composition of the mother liquor obtained in this crystallization / solid-liquid separation step is usually: phenol: 65 to 85% by weight, bisphenol A: 10 to 20% by weight, by-products such as 2,4'-isomer: 5 to 15 It contains a large amount of impurities such as 2,4′-isomer.
Conventionally, part of the mother liquor has been purged to prevent accumulation of impurities. However, in the present invention, the whole amount of the mother liquor is treated in the isomerization treatment step to recover phenol and bisphenol A contained in the mother liquor.
The adduct recovered by the solid-liquid separation is then sent to an adduct decomposition process to remove phenol and to obtain high-purity bisphenol A.
[0013]
The solid component mainly composed of adducts filtered and deposited on the filter surface of the solid-liquid separation device is subjected to cleaning with a cleaning liquid. As the cleaning liquid, the same one as the saturated phenol solution of bisphenol A is used in addition to the phenol recovered by evaporation, raw material phenol, water, water-phenol mixed liquid.
Naturally, the larger the amount of cleaning solution used, the better the efficiency of cleaning, but there are naturally upper limits from the viewpoints of loss of crystal re-dissolution, circulation, recovery, and reuse of the cleaning solution. About 0.1 to 10 times the amount of crystal on the basis is the most efficient.
The crystal may be redissolved after crystallization and solid-liquid separation, and crystallization and solid-liquid separation may be repeated again. By repeating this crystallization and solid-liquid separation in multiple stages, impurities taken into the adduct crystal are sequentially reduced.
In this case, the re-dissolved solution and the washing solution of the solid component mainly composed of adduct obtained by solid-liquid separation include bisphenol A in addition to phenol recovered by evaporation, raw material phenol, water, water-phenol mixture. The same saturated phenol solution can be used at each stage.
The solid-liquid separation device used in the solid-liquid separation is not particularly limited as long as it is normally used, but a belt filter, a drum filter, a tray filter, a centrifuge, and the like are used.
[0014]
(4) Adduct decomposition process The adduct (adduct) of bisphenol A and phenol recovered by the above-described solid-liquid separation removes phenol in the adduct decomposition process to become high-purity bisphenol A. For example, as described in Patent Document 1 and Patent Document 2, generally, the adduct is decomposed into bisphenol A and phenol by heating and melting at 100 to 160 ° C., and evaporated from the melt. Bisphenol A is obtained by removing most of the phenol with a can or the like and further removing the remaining phenol by steam stripping.
[0015]
(5) Isomerization treatment step The liquid phase part (mother liquor) obtained in the crystallization / solid-liquid separation step is then supplied in its entirety to the isomerization treatment step to isomerize the reaction by-products in the mother liquor. A part of this isomerization treatment liquid is recycled to at least one of the condensation reaction step, the concentration step, and the crystallization / solid-liquid separation step. In particular, since the isomerization liquid contains 65 to 85% by weight of phenol, it is preferably supplied to the concentration step described above in order to prepare a concentration of bisphenol A corresponding to the crystallization operation by evaporating a part of this.
In the isomerization treatment, a sulfonic acid type cation exchange resin is usually used, and in the case of a fixed bed flow system which is a continuous and push-flow system at a reaction temperature of 50 to 100 ° C., the liquid space velocity is 0.2 to It is performed at 50 hr −1 .
There may be a plurality of isomerization processes in parallel. For example, an isomerization treatment step for recycling the isomerization treatment solution to a condensation reaction step, a concentration step or a crystallization / solid-liquid separation step, and an isomerization treatment solution blown to prevent accumulation of impurities. It is also possible to install by dividing into isomerization treatment steps.
[0016]
(6) Adduct recovery process of blow isomerization treatment liquid The isomerization treatment liquid blown to prevent accumulation of impurities is concentrated and then cooled to crystallize an adduct (adduct) of bisphenol A and phenol, After the solid-liquid separation, the adduct is recycled to the concentration step and / or the crystallization / solid-liquid separation step.
This blow isomerization treatment liquid is concentrated by removing a part of phenol with an evaporator or the like. The concentration of bisphenol A after concentration is about 20 to 50% by weight, and is carried out at a pressure of 5.3 to 40 kPa and a temperature of 70 to 140 ° C.
The blow isomerization treatment liquid concentrate thus obtained is usually cooled from 70 to 140 ° C. to 35 to 60 ° C., and adducts are crystallized for solid-liquid separation.
Crystals obtained by this solid-liquid separation operation (hereinafter referred to as recovered crystals) are returned to the above-described concentration step (second concentration step) or crystallization / solid-liquid separation step. The recovered crystal contains more impurities than the solid phase portion (crystal) obtained in the crystallization / solid-liquid separation step. However, since the concentration of impurities in the recovered crystals is lower than the concentration in the reaction solution obtained in the condensation reaction step, when the recovered crystals are supplied to the crystallization / solid-liquid separation step, the concentration of reaction by-products becomes low. As a result, a crystal having a higher purity can be obtained than when no recovered crystal is supplied.
[0017]
(7) Phenol recovery step of adduct recovery mother liquor On the other hand, the composition of the liquid phase part (mother liquor) obtained in the adduct recovery step of blow isomerization treatment liquid is 45 to 70% by weight of phenol, 5 to 15% by weight of bisphenol A, 2 , 4'-isomer and other by-products are 20 to 40% by weight and contain a large amount of 2,4'-isomer as a reaction by-product, but also contain a large amount of phenol.
Therefore, phenol is recovered from this liquid phase part by a method using a packed distillation column, etc., and high-boiling compounds containing a large amount of by-products and colored substances as residues are discharged out of the system. There is no accumulation of impurities, and high quality bisphenol A is obtained as a product. High boiling point compounds discharged out of the system are disposed of by an incinerator or the like. The phenol recovery treatment is usually performed at a pressure of 4 to 33 kPa and a temperature of 120 to 180 ° C. until the amount of residual phenol in the residue is 20% by weight or less, preferably 5 to 18% by weight. The phenol recovered here can be reused, for example, as a cleaning liquid or a reaction raw material in the crystallization / solid-liquid separation step.
[0018]
【Example】
Hereinafter, the method of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
In the following examples,% is% by weight unless otherwise specified. Phenol, bisphenol A and the like were quantified by HPLC analysis. The hue was determined by dissolving 20 g of bisphenol A in 20 ml of ethanol and measuring the absorbance with a spectrophotometer.
[0019]
Example 1
Three packed bed reactors with an inner diameter of 40 mm and a height of 1,500 mm were connected in series, and a sulfonic acid type ion exchange resin (manufactured by Mitsubishi Chemical Corporation, Diaion-104H) was sulfone with 2-mercaptoethylamine. A solution obtained by partially neutralizing 20 mol% of acid groups was charged with 5.5 liters. A mixture of phenol and acetone (phenol / acetone = 10/1 (molar ratio)) was continuously passed for 100 hours at a liquid space velocity of 1 hr −1 while maintaining the temperature of the catalyst layer at 80 ° C.
Of the reaction product obtained from this reactor, 20 kg of unreacted acetone, reaction product water and a small amount of phenol were removed under reduced pressure. The resulting concentrate contained 30.5% bisphenol A, 3.8% 2,4'-isomer and trisphenol, and 3.4% other impurities. The concentrated solution was cooled from 90 ° C. to 45 ° C. to precipitate crystals, and then separated by a centrifuge to obtain 2830 g of crystals and 6170 g of mother liquor.
Next, the obtained crystal was melted and sent to a distillation column operated at 2 kPa and 170 ° C., and most of phenol was collected by distillation. Bisphenol A was extracted from the bottom of the column, and residual phenol was completely removed by steam stripping to obtain 1640 g of bisphenol A product. The obtained bisphenol A contained 0.04% of the 2,4′-isomer and 0.025% of other impurities, and its hue was 10APHA.
The mother liquor separated by the centrifuge is brought into contact with a sulfonic acid type cation exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., Diaion-104H) under the conditions of a temperature of 70 ° C. and a liquid space velocity of 1 hr −1 for isomerization. Processed. This isomerization solution contained 14.0% bisphenol A, 4.2% 2,4′-isomer and 4.2% trisphenol, and 4.9% other impurities, and 6130 g could be obtained.
A portion of the phenol was distilled off under reduced pressure from 490 g of the isomerization solution, and a concentrated solution containing 50.8% phenol, 29.8% bisphenol A, and 19.4% impurities (including 2,4'-isomer). Of 230 g was obtained. The concentrated liquid was cooled, and the recovered crystals were crystallized and separated by a centrifugal separator to obtain 105 g of crystals and 120 g of mother liquor. The recovered crystals contained 45.6% phenol, 51.1% bisphenol A, and 3.3% impurities. The mother liquor from which the recovered crystals were separated contained 67.8% phenol, and distilled under conditions of a temperature of 165 ° C. and a pressure of 14 kPa to recover 70 g of phenol.
[0020]
Example 2
In the same manner as in Example 1, 19.5 kg of the reaction product solution was distilled under reduced pressure to remove unreacted acetone, product water and a small amount of phenol, and then 5640 g of the isomerization solution obtained in Example 1 and the recovered crystals. 105 g was added and dissolved. This solution contained 62.3% phenol, 30.6% bisphenol A, 3.8% 2,4'-isomer and trisphenol, and 3.3% other impurities. The mixed solution was cooled from 90 ° C. to 45 ° C. to precipitate crystals, and then separated by a centrifuge to obtain 3650 g of crystals and 7930 g of mother liquor.
The crystals were dephenol-treated in the same manner as in Example 1 to obtain 2120 g of bisphenol A product. The obtained bisphenol A contains 0.03% of the 2,4′-isomer and 0.023% of other impurities, and its hue is the same as in Reference Example 1 in which the recovered crystals are not recycled. Of 10 APHA.
[0021]
Comparative Example 1
From the reaction to the crystallization / solid-liquid separation step, the same treatment as in Reference Example 1 was performed to obtain 2830 g of crystals and 6170 g of mother liquor. 490 g of this mother liquor was distilled off part of the phenol under reduced pressure to give a concentrate containing 52.9% phenol, 26.1% bisphenol A, and 21.0% impurities (including 2,4'-isomer). Of 230 g was obtained. The concentrated liquid was cooled, and the recovered crystals were crystallized and separated by a centrifuge to obtain 80 g of crystals and 145 g of mother liquor. The recovered crystals contained 45.6% phenol, 50.1% bisphenol A, and 4.3% impurities. The mother liquor from which the recovered crystals were separated contained 63.4% phenol, and distilled under conditions of a temperature of 165 ° C. and a pressure of 14 kPa to recover 55 g of phenol.
[0022]
Comparative Example 2
In the same manner as in Example 1, 19.5 kg of the main reaction product was obtained. To this, 5660 g of the isomerization solution obtained in Comparative Example 1 was added and distilled under reduced pressure to remove unreacted acetone, produced water and a small amount of phenol. Thereto, 80 g of the crystal obtained in Comparative Example 1 was added and dissolved. This solution contained 61.0% phenol, 30.6% bisphenol A, 4.1% 2,4'-isomer and trisphenol, and 4.3% other impurities. The mixed solution was cooled from 90 ° C. to 45 ° C. to precipitate crystals, and then separated by a centrifuge to obtain 3570 g of crystals and 8010 g of mother liquor.
The crystals were dephenolized in the same manner as in Comparative Example 1 to obtain 2100 g of bisphenol A product. The obtained bisphenol A contained 0.05% of the 2,4′-isomer and 0.03% of other impurities, and its hue was 20 APHA.
[0023]
As can be seen from Example 1 and Comparative Example 1 above, bisphenol A and phenol are recovered after isomerizing the mother liquid to be purged according to the present invention in Example 1 under the same amount of the mother liquid to be purged. Thus, compared to the comparative example, the recovered amount of 17% for bisphenol A and 33% for phenol increases, and the concentration of impurities in the recovered crystals decreases, so that the quality of the product bisphenol A does not deteriorate.
[0024]
【The invention's effect】
According to the method of the present invention, phenol and bisphenol A are efficiently recovered from a mother liquor containing a large amount of impurities that have been purged in order to prevent accumulation of impurities in a process of isomerizing and recirculating reaction by-products in the mother liquor. Furthermore, no accumulation of impurities in the system occurs, and colorless and high-quality bisphenol A is obtained as a product.
Moreover, according to the method of the present invention, phenol and bisphenol A can be efficiently recovered, and as a result, the load of waste oil treatment can be reduced, and bisphenol A can be produced economically advantageously. it can.

Claims (1)

(1)過剰量のフェノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反応工程、(2)縮合反応工程で得られた反応混合物を濃縮する濃縮工程、(3)濃縮工程で得られた濃縮液を冷却することによりビスフェノールAとフェノールとの付加物を晶析させ、該付加物と母液に分離する晶析・固液分離工程および(4)ビスフェノールAとフェノールとの付加物からフェノールを除去し、ビスフェノールAを回収するアダクト分解工程を有するビスフェノールAの製造方法において、前記(3)晶析・固液分離工程で得られた母液の全量を異性化触媒と接触させて異性化処理した後、該異性化処理液の一部を前記の(1)縮合反応工程、(2)濃縮工程および(3)晶析・固液分離工程の少なくともいずれかに再循環し、残りの異性化処理液を濃縮した後、冷却することによりビスフェノールAとフェノールとの付加物を晶析させ、固液分離後、付加物を濃縮工程および/または晶析・固液分離工程に再循環すると共に、液相部からフェノールを回収することを特徴とするビスフェノールAの製造方法。(1) a condensation reaction step in which an excess amount of phenol and acetone is subjected to a condensation reaction in the presence of an acidic catalyst, (2) a concentration step in which the reaction mixture obtained in the condensation reaction step is concentrated, and (3) obtained in the concentration step. The concentrated liquid is cooled to crystallize the adduct of bisphenol A and phenol, and the crystallization and solid-liquid separation step separates the adduct into the mother liquor, and (4) phenol from the adduct of bisphenol A and phenol. In the method for producing bisphenol A, which has an adduct decomposition step of removing bisphenol A and recovering bisphenol A, the whole amount of the mother liquor obtained in the above (3) crystallization / solid-liquid separation step is brought into contact with an isomerization catalyst. after, the above (1) condensation reaction step part of the isomerization treatment liquid (2) is recycled to at least one concentration step and (3) crystallization and solid-liquid separation step, the remaining foreign After condensing the solution, the adduct of bisphenol A and phenol is crystallized by cooling, and after solid-liquid separation, the adduct is recycled to the concentration step and / or crystallization / solid-liquid separation step. A method for producing bisphenol A, wherein phenol is recovered from the liquid phase part .
JP2003159089A 2003-06-04 2003-06-04 Method for producing bisphenol A Expired - Fee Related JP4398674B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003159089A JP4398674B2 (en) 2003-06-04 2003-06-04 Method for producing bisphenol A
PCT/JP2004/007885 WO2004108643A1 (en) 2003-06-04 2004-06-01 Process for producing bisphenol a
CNB2004800143902A CN1331831C (en) 2003-06-04 2004-06-01 Process for producing bisphenol A
TW93116030A TWI353973B (en) 2003-06-04 2004-06-03 Process for producing bisphenol a

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159089A JP4398674B2 (en) 2003-06-04 2003-06-04 Method for producing bisphenol A

Publications (2)

Publication Number Publication Date
JP2004359594A JP2004359594A (en) 2004-12-24
JP4398674B2 true JP4398674B2 (en) 2010-01-13

Family

ID=33508500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159089A Expired - Fee Related JP4398674B2 (en) 2003-06-04 2003-06-04 Method for producing bisphenol A

Country Status (4)

Country Link
JP (1) JP4398674B2 (en)
CN (1) CN1331831C (en)
TW (1) TWI353973B (en)
WO (1) WO2004108643A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150086B2 (en) * 2006-01-27 2013-02-20 出光興産株式会社 Recovery method of bisphenol A
JP4918264B2 (en) * 2006-02-02 2012-04-18 出光興産株式会社 Bisphenol A recovery method and recovery facility
JP4904064B2 (en) 2006-02-14 2012-03-28 出光興産株式会社 Method for producing bisphenol A
JP5184751B2 (en) * 2006-03-16 2013-04-17 出光興産株式会社 Method for producing bisphenol A
WO2014002787A1 (en) * 2012-06-28 2014-01-03 出光興産株式会社 Bisphenol-a production method
CN112409138B (en) * 2019-08-23 2023-04-25 南通星辰合成材料有限公司 Bisphenol A production method and device
CN112409139B (en) * 2019-08-23 2023-04-25 南通星辰合成材料有限公司 Bisphenol A production method and device
CN116410061A (en) * 2021-12-31 2023-07-11 南通星辰合成材料有限公司 Method for inhibiting generation of impurity C3 phenol in bisphenol A synthesis process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400555A (en) * 1981-10-06 1983-08-23 General Electric Company Ion exchange catalyzed bisphenol synethesis
JPH03284641A (en) * 1990-03-30 1991-12-16 Mitsubishi Petrochem Co Ltd Production of bisphenol a
JP2885606B2 (en) * 1993-05-12 1999-04-26 出光石油化学株式会社 Method for producing 2,2-bis (4-hydroxyphenyl) propane
JPH08333290A (en) * 1995-06-12 1996-12-17 Mitsubishi Chem Corp Production of bisphenol a

Also Published As

Publication number Publication date
TW200504002A (en) 2005-02-01
WO2004108643A1 (en) 2004-12-16
TWI353973B (en) 2011-12-11
CN1331831C (en) 2007-08-15
CN1795155A (en) 2006-06-28
JP2004359594A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5265094B2 (en) Method for producing high purity bisphenol A
KR910004133B1 (en) Process for preparing high-purity bisphenola
JP6055472B2 (en) Method for producing bisphenol A
RU2422429C2 (en) Method of producing high-purity bisphenol a and production apparatus
JPH01146839A (en) Production of high-purity 2,2-bis(4-hydroxyphenyl)propane
KR910003866B1 (en) Process for washing and obtaining solids of slurry
JP4398674B2 (en) Method for producing bisphenol A
JP4904064B2 (en) Method for producing bisphenol A
JPH08333290A (en) Production of bisphenol a
JP6163487B2 (en) Method for producing bisphenol A
JP2009242316A (en) Method for producing bisphenol a
JPH0558611B2 (en)
TW200526565A (en) Method for producing bisphenol A
JP5446067B2 (en) Method for producing bisphenol A
JP2014037368A (en) Method for producing bisphenol a
JPH03284641A (en) Production of bisphenol a
JP5150086B2 (en) Recovery method of bisphenol A
JP4552418B2 (en) Method for producing bisphenol A
WO2007046434A1 (en) Process for producing bisphenol a with satisfactory hue
JP2010150249A (en) Method for producing high-purity bisphenol a by using direct crystallization method of bisphenol a (bpa)
KR20190060430A (en) Method for preparing bisphenol-a
JP2005220094A (en) Method for producing bisphenol a
JPH01238550A (en) Production of high-purity bisphenol a

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees