JP2683666B2 - Method for producing low thermal expansion cast iron with excellent wear resistance - Google Patents

Method for producing low thermal expansion cast iron with excellent wear resistance

Info

Publication number
JP2683666B2
JP2683666B2 JP62315888A JP31588887A JP2683666B2 JP 2683666 B2 JP2683666 B2 JP 2683666B2 JP 62315888 A JP62315888 A JP 62315888A JP 31588887 A JP31588887 A JP 31588887A JP 2683666 B2 JP2683666 B2 JP 2683666B2
Authority
JP
Japan
Prior art keywords
thermal expansion
cast iron
low thermal
graphite
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62315888A
Other languages
Japanese (ja)
Other versions
JPH01156450A (en
Inventor
保夫 近藤
雅之 江良
庄吾 森本
穣 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62315888A priority Critical patent/JP2683666B2/en
Publication of JPH01156450A publication Critical patent/JPH01156450A/en
Application granted granted Critical
Publication of JP2683666B2 publication Critical patent/JP2683666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低熱膨張鋳鉄、特に耐摩耗性に優れた低熱
膨張鋳鉄の製造法に関する。 〔従来の技術〕 最近の工業技術の進歩に伴い、超精密加工の必要性が
増大し、それに伴い、精度維持上、加工機械の熱変形の
防止が重要な問題となり、種々の対策がとられるように
なった。低熱膨張材料の適用もその一つの手段である。 低熱膨張材としては、Fe−Ni二元合金あるいはFe−Ni
−Co三元合金のインバーが知られているが欠点として加
工性、鋳造性等が極めて悪いことがあげられる。このよ
うな問題点を解決するために、例えば特公昭60−51547
号公報、特開昭62−63648号公報に記載のように、低熱
膨張鋳鉄が提案されている。この低熱膨張鋳鉄の組織を
第4図に示す。 〔発明が解決しようとする問題点〕 上記従来の低熱膨張鋳鉄は、第4図に示すように、マ
トリックス中に黒鉛が晶出しているため良好な加工性及
び鋳造性を有するが、マトリックスがオーステナイトで
あるため軟らかく、摺動面を有する精密機械部品に適用
した場合には耐摩耗性の点で問題があった。 本発明の目的は、加工性、鋳造性を保持しつつ耐摩耗
性に優れた低熱膨張鋳鉄およびその製造方法を提供する
ことにある。 上記目的を達成するための本発明の説明に入る前に本
発明を完成するに至った経緯について説明する。本発明
者等は、耐摩耗性を向上させるためにはマトリックス中
に炭化物を析出させることが有効であることに着目し
た。そこで、炭化物形成元素として形成能の大きいCrを
選び、Crを添加した低熱膨張鋳鉄について検討した。そ
の結果の一例について述べる。 第1表に試料の組成(重量%)を示す。第2表に各試
料の平均熱膨張係数を示す。 試料No.Aは従来の低熱膨張鋳鉄、試料No.B,No.Cは比
較例である。試料No.Dは後記のものである。第2表から
明らかなように、平均熱膨張係数はCr量の増加とともに
大きくなっていることがわかる。また、Crの添加は黒鉛
形状を悪くし、機械的性質に悪影響を及ぼすとともに加
工性も悪化させることがわかった。従って耐摩耗性の向
上の手段としてCrの添加は良くないことがわかった。な
お、V,Nb,W炭化物についても検討したが、同様の結果で
あった。 本発明者等は、上記結果にもとづいて、熱膨張係数の
増大、黒鉛形状の悪化による機械的性質の低下を来たす
ことなく耐摩耗性の向上を図るためには、鋳鉄中の黒鉛
をセメンタイト化させることが有効であるとの考えに至
り、黒鉛のセメタイト化について検討した。第2表中の
No.D試料は、No.Aの従来材と同じ組成の鋳鉄を共晶開始
及び終了温度区間内で加熱保持後、油冷して黒鉛のセメ
ンタイト化を図った試料である。熱膨張係数はセメンタ
イトの析出によりNo.Aの従来材よりも若干大きくなって
いるが、Crを添加したNo.B,No.Cの比較材に比べて小さ
な値を示している。 〔問題点を解決するための手段〕 本発明は、以上に述べた本発明者らの知見に基づいて
なされたもので、第1番目の発明は、FeおよびNi,もし
くはFeとNiおよびCoを主成分とする低熱膨張鋳鉄の表面
層を溶融後、急速凝固させることにより前記表面層のマ
トリックス中に黒鉛およびセメンタイトが分散した組織
を形成し、前記黒鉛およびセメンタイトを有する層の室
温から50℃における平均熱膨張係数が2.70×10-6/℃以
下である耐摩耗性に優れた低熱膨張鋳鉄の製造方法を特
徴とするものであり、第2番目の発明は、FeおよびNi,
もしくはFeとNiおよびCoを主成分とする低熱膨張鋳鉄の
表面層を溶融後、急速凝固させることにより前記表面層
のマトリックス中に黒鉛およびセメンタイトが分散した
組織を形成し、前記黒鉛およびセメンタイトを有する層
の室温から50℃における平均熱膨張係数が2.70×10-6/
℃以下である耐摩耗性に優れた低熱膨張鋳鉄の製造方法
を特徴とするものである。 〔作用〕 上記本発明の低熱膨張鋳鉄において、耐摩耗性の向上
はマトリックス中に析出した高度の高いセメンタイトの
存在によって達成される。NiはFe中への炭素溶解度を減
じで黒鉛化を助長する元素である。 本発明の製造方法では、鋳鉄中の黒鉛のセメンタイト
化の鋳鉄の表面層を溶融後、急速凝固させるか、もしく
は鋳鉄を共晶開始温度及び終了温度の間の温度で加温保
持して共振黒鉛を溶融後、急速凝固することによつて黒
鉛の生成を抑制し、非平衡相としてセメンタイトを生成
させることによりなされる。これにより、マトリックス
中に黒鉛およびセメンタイトが分散した組織が得られ
る。セメンタイト量の調整は鋳鉄中のC量の調整、ある
いは適当な温度で黒鉛化処理を施すことによつて行われ
る。 〔実施例〕 実施例1 Fe−1.7%C−2%Si−1%Mn−39%Niよりなる低熱
膨張鋳鉄材を1225℃のArガス雰囲気電気炉中で2時間加
熱保持した後に油冷した。組成は重量%を表す。実施例
2以降も同様である。 第1図にそのミクロ組織を示す。組織は球状黒鉛とネ
ットワーク状セメンタイトとがマトリックス中に分散し
たものとなつていることがわかる。次に、研磨式摩耗試
験により耐摩利性を調査した。試験は回転テーブル上に
#80のエメリーペーパーを固定し、800gの荷重で試験片
を3分間回転テーブル上を往復運動させて行い、試験前
後の重量差をもって摩耗量とした。第2図に試験結果を
示す。第2図において、比較材aは本発明実施例材と同
じ組成であるがマトリックス中に黒鉛のみが分散した組
織を有する鋳鉄、また比較材bはCrを2.5%添加したも
のである。本発明の実施例による試料は、同一組成でマ
トリックス中に黒鉛のみが分散した組織を有する比較材
aおよびCrを2.5%添加した比較材bに比べて摩耗量が
少なく、耐摩耗性が大きく向上していることがわかる。
また、黒鉛が存在しているため加工性の問題も特に生じ
なかった。 なお、本実施例では加熱保持温度を1225℃としたが、
加熱保持温度は適用材の共晶開始温度及び終了温度の間
の範囲で任意に選択される。また冷却手段として水冷あ
るいは衝風冷却等を採用してもよく、加熱保持時間は適
用材の大きさに応じて決定される。 実施例2 Fe−1.2%C−2%Si−1%Mn−39%Niよりなる低熱
膨張鋳鉄材料表面をTIG溶接機を用いて液相線温度以上
の温度で再溶融し、急速凝固させた。第3図に示すその
ミクロ組織から明らかなように、再溶融、急速凝固層は
微細な球状黒鉛とセメンタイト(いも虫状)とが分散し
た組織となつていることがわかる。摩耗試験の結果、耐
摩耗性が非常に優れていることを確認できた。耐摩耗性
が表面部分に要求される部品に対して本実施例は有効で
ある。 実施例3 Fe−1.7%C−2%Si−1%Mn−32%Ni−8%Coより
なる低熱膨張鋳鉄材料表面をTIG溶接機を用いて液相線
温度以上の温度で再溶融し、急速凝固させた。実施例2
で述べたと同様な組織および摩耗試験結果が得られた。 〔発明の効果〕 以上説明したように本発明によれば、FeおよびNi,あ
るいはFeとNiおよびCoを主成分とする低熱膨張鋳鉄の組
織をマトリックス中に黒鉛及びセメンタイトが分散した
ものとすることにより、低熱膨張性、加工性及び鋳造性
を損うことなく、耐摩耗性の向上を図ることができるの
で、熱変形を嫌い、高荷重のかかる摺動面を有する精密
機械部品、例えばプランジャー、カム、歯車、メカニカ
ルシール、工作機械等に広範囲に適用することができ
る。
TECHNICAL FIELD The present invention relates to a method for producing low thermal expansion cast iron, particularly low thermal expansion cast iron having excellent wear resistance. [Prior Art] With the recent progress in industrial technology, the need for ultra-precision machining has increased, and along with this, prevention of thermal deformation of processing machines has become an important issue in maintaining accuracy, and various measures have been taken. It became so. Application of a low thermal expansion material is one of the means. As the low thermal expansion material, Fe-Ni binary alloy or Fe-Ni
-Intern of a ternary alloy of Co is known, but a drawback is that workability and castability are extremely poor. In order to solve such a problem, for example, Japanese Patent Publication No. 60-51547.
As described in Japanese Patent Laid-Open No. 62-63648 and Japanese Patent Laid-Open No. 62-63648, low thermal expansion cast iron has been proposed. The structure of this low thermal expansion cast iron is shown in FIG. [Problems to be Solved by the Invention] The conventional low thermal expansion cast iron has good workability and castability because graphite crystallizes in the matrix as shown in FIG. 4, but the matrix is austenite. Therefore, it is soft and has a problem in wear resistance when applied to a precision machine part having a sliding surface. An object of the present invention is to provide a low thermal expansion cast iron excellent in wear resistance while maintaining workability and castability, and a method for producing the same. Before going into the description of the present invention for achieving the above object, the process of completing the present invention will be described. The present inventors have noted that it is effective to precipitate carbide in the matrix in order to improve wear resistance. Therefore, Cr having a large forming ability was selected as a carbide forming element, and low thermal expansion cast iron containing Cr was examined. An example of the result will be described. Table 1 shows the composition (% by weight) of the sample. Table 2 shows the average coefficient of thermal expansion of each sample. Sample No. A is a conventional low thermal expansion cast iron, and Samples No. B and No. C are comparative examples. Sample No. D is described later. As is clear from Table 2, the average coefficient of thermal expansion increases with the increase of Cr content. It was also found that the addition of Cr deteriorates the graphite shape, adversely affects the mechanical properties, and deteriorates the workability. Therefore, it was found that the addition of Cr was not good as a means for improving wear resistance. The V, Nb, and W carbides were also examined, but the same results were obtained. Based on the above results, the inventors of the present invention increase the coefficient of thermal expansion and improve the wear resistance without deteriorating the mechanical properties due to the deterioration of the graphite shape, in order to cementite the graphite in cast iron. The idea that it is effective to do so was investigated for making graphite into cermetite. In Table 2
The No. D sample is a sample in which cast iron having the same composition as that of the conventional material of No. A was heated and maintained within the eutectic start and end temperature sections, and then cooled with oil to make the graphite cementite. The coefficient of thermal expansion is slightly higher than that of the conventional material of No. A due to the precipitation of cementite, but it is smaller than that of the comparative materials of No. B and No. C containing Cr. [Means for Solving Problems] The present invention has been made on the basis of the findings of the present inventors described above. The first invention provides Fe and Ni, or Fe and Ni and Co. After melting the surface layer of low thermal expansion cast iron as the main component, to form a structure in which graphite and cementite are dispersed in the matrix of the surface layer by rapid solidification, from room temperature to 50 ° C. of the layer having the graphite and cementite. A second invention is characterized by a method for producing a low thermal expansion cast iron having an average thermal expansion coefficient of 2.70 × 10 −6 / ° C. or less and excellent in wear resistance. Fe and Ni,
Alternatively, after melting the surface layer of the low thermal expansion cast iron containing Fe, Ni and Co as the main components, it is rapidly solidified to form a structure in which graphite and cementite are dispersed in the matrix of the surface layer, and the graphite and cementite are included. The average coefficient of thermal expansion of the layer from room temperature to 50 ° C is 2.70 × 10 -6 /
It is characterized by a method for producing a low thermal expansion cast iron which is not more than 0 ° C and has excellent wear resistance. [Operation] In the low thermal expansion cast iron of the present invention described above, the improvement of wear resistance is achieved by the presence of high-grade cementite precipitated in the matrix. Ni is an element that promotes graphitization by reducing the solubility of carbon in Fe. In the manufacturing method of the present invention, after melting the surface layer of the cast iron for cementitizing the graphite in the cast iron, it is rapidly solidified, or the cast iron is heated and maintained at a temperature between the eutectic start temperature and the end temperature to obtain the resonance graphite. Is melted and then rapidly solidified to suppress the formation of graphite, thereby forming cementite as a non-equilibrium phase. This gives a structure in which graphite and cementite are dispersed in the matrix. The amount of cementite is adjusted by adjusting the amount of C in cast iron or by performing graphitization at an appropriate temperature. [Example] Example 1 A low thermal expansion cast iron material composed of Fe-1.7% C-2% Si-1% Mn-39% Ni was heated and held for 2 hours in an Ar gas atmosphere electric furnace at 1225 ° C, and then cooled with oil. . The composition represents% by weight. The same applies to the second and subsequent embodiments. The microstructure is shown in FIG. It can be seen that the structure is composed of spheroidal graphite and network-like cementite dispersed in the matrix. Next, the abrasion resistance was investigated by a polishing type abrasion test. The test was carried out by fixing # 80 emery paper on a rotary table and reciprocating the test piece on the rotary table for 3 minutes with a load of 800 g, and the difference in weight before and after the test was taken as the amount of wear. The test results are shown in FIG. In FIG. 2, a comparative material a has the same composition as the material of the example of the present invention, but has cast iron having a structure in which only graphite is dispersed in the matrix, and a comparative material b has Cr added by 2.5%. The samples according to the examples of the present invention have a smaller amount of wear than the comparative material a having the same composition and a structure in which only graphite is dispersed in the matrix and the comparative material b containing 2.5% of Cr, and the abrasion resistance is greatly improved. You can see that
Further, since graphite was present, no problem of workability occurred. Although the heating and holding temperature was 1225 ° C. in this example,
The heating and holding temperature is arbitrarily selected in the range between the eutectic start temperature and the end temperature of the applied material. Further, water cooling or air blast cooling may be adopted as the cooling means, and the heating and holding time is determined according to the size of the applied material. Example 2 The surface of a low thermal expansion cast iron material composed of Fe-1.2% C-2% Si-1% Mn-39% Ni was remelted at a temperature above the liquidus temperature using a TIG welding machine and rapidly solidified. . As is clear from the microstructure shown in FIG. 3, it can be seen that the remelted and rapidly solidified layer has a structure in which fine spheroidal graphite and cementite (worm-like) are dispersed. As a result of the abrasion test, it was confirmed that the abrasion resistance was very excellent. The present embodiment is effective for parts in which wear resistance is required on the surface portion. Example 3 A surface of a low thermal expansion cast iron material made of Fe-1.7% C-2% Si-1% Mn-32% Ni-8% Co was remelted at a temperature above the liquidus temperature using a TIG welding machine, It was solidified rapidly. Example 2
Similar structure and wear test results were obtained as described above. (Effects of the Invention) As described above, according to the present invention, the structure of low thermal expansion cast iron containing Fe and Ni, or Fe, Ni and Co as the main components, has graphite and cementite dispersed in a matrix. As a result, it is possible to improve wear resistance without impairing low thermal expansion, workability and castability. Therefore, precision machine parts that dislike thermal deformation and have a sliding surface to which a high load is applied, such as a plunger. It can be widely applied to cams, gears, mechanical seals, machine tools and the like.

【図面の簡単な説明】 第1図は本発明の実施例1の鋳鉄の金属組織を示す顕微
鏡写真、第2図は実施例1における摩耗試験結果を示す
特性図、第3図は本発明の実施例2の鋳鉄の金属組織を
示す顕微鏡写真、第4図は従来の低熱膨張鋳鉄の金属組
織を示す顕微鏡写真である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a micrograph showing the metallographic structure of cast iron of Example 1 of the present invention, FIG. 2 is a characteristic diagram showing the results of wear test in Example 1, and FIG. 3 is of the present invention. FIG. 4 is a photomicrograph showing the metallographic structure of the cast iron of Example 2, and FIG. 4 is a photomicrograph showing the metallographic structure of the conventional low thermal expansion cast iron.

Claims (1)

(57)【特許請求の範囲】 1.FeおよびNi,もしくはFeとNiおよびCoを主成分とす
る低熱膨張鋳鉄の表面層を溶融後、急速凝固させること
により前記表面層のマトリックス中に黒鉛およびセメン
タイトが分散した組織を形成し、前記黒鉛およびセメン
タイトを有する層の室温から50℃における平均熱膨張係
数が2.70×10-6/℃以下であることを特徴とする耐摩耗
性に優れた低熱膨張鋳鉄の製造方法。 2.FeおよびNi,もしくはFeとNiおよびCoを主成分とす
る低熱膨張鋳鉄を共晶開始温度および終了温度の間の温
度で加熱保持して共晶黒鉛を溶融後、急速冷却すること
によりマトリックス中に黒鉛およびセメンタイトが分散
した組織を形成し、室温から50℃における平均熱膨張係
数が2.70×10-6/℃以下であることを特徴とする耐摩耗
性に優れた低熱膨張鋳鉄の製造方法。
(57) [Claims] After melting the surface layer of low thermal expansion cast iron mainly composed of Fe and Ni, or Fe and Ni and Co, to form a structure in which graphite and cementite are dispersed in the matrix of the surface layer by rapid solidification, the graphite And a method for producing low thermal expansion cast iron with excellent wear resistance, characterized in that the layer having cementite has an average thermal expansion coefficient of 2.70 × 10 -6 / ° C or less from room temperature to 50 ° C. 2. The low thermal expansion cast iron containing Fe and Ni or Fe and Ni and Co as main components is heated and held at a temperature between the eutectic start temperature and the end temperature to melt the eutectic graphite and then rapidly cool it to form a matrix. A method for producing a low thermal expansion cast iron having excellent wear resistance, which is characterized by forming a structure in which graphite and cementite are dispersed and having an average thermal expansion coefficient of 2.70 × 10 -6 / ° C or less from room temperature to 50 ° C.
JP62315888A 1987-12-14 1987-12-14 Method for producing low thermal expansion cast iron with excellent wear resistance Expired - Fee Related JP2683666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315888A JP2683666B2 (en) 1987-12-14 1987-12-14 Method for producing low thermal expansion cast iron with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315888A JP2683666B2 (en) 1987-12-14 1987-12-14 Method for producing low thermal expansion cast iron with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH01156450A JPH01156450A (en) 1989-06-20
JP2683666B2 true JP2683666B2 (en) 1997-12-03

Family

ID=18070811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315888A Expired - Fee Related JP2683666B2 (en) 1987-12-14 1987-12-14 Method for producing low thermal expansion cast iron with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP2683666B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223958A (en) * 1985-07-24 1987-01-31 Kubota Ltd Tough sleeve for rolling
JPS62284039A (en) * 1986-06-03 1987-12-09 Nippon Chuzo Kk Low thermal expansion cast iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223958A (en) * 1985-07-24 1987-01-31 Kubota Ltd Tough sleeve for rolling
JPS62284039A (en) * 1986-06-03 1987-12-09 Nippon Chuzo Kk Low thermal expansion cast iron

Also Published As

Publication number Publication date
JPH01156450A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
CN107532261B (en) Austenitic heat-resistant cast steel
EP0343292A1 (en) Low thermal expansion casting alloy
US4385934A (en) Austenitic iron alloys having yttrium
JP2683666B2 (en) Method for producing low thermal expansion cast iron with excellent wear resistance
JP4488386B2 (en) Die for hot working and manufacturing method of mold material for hot working
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPH0128826B2 (en)
JPH09202938A (en) Chromium-molybdenum cast steel excellent in machinability
JPH0461057B2 (en)
JPH11335783A (en) Steel for glass-making mold and roll
JPH06190588A (en) Ni-base alloy for filling
JP6359241B2 (en) Corrosion-resistant plastic molding steel with excellent specularity
JPS627260B2 (en)
JP2568038B2 (en) Method of manufacturing material for polishing surface plate
JP2003183766A (en) Tool material for hot working
JPS634905B2 (en)
JP2642347B2 (en) Manufacturing method of high hardness member
JP2938311B2 (en) Heat- and wear-resistant cast slab support for continuous casting
JPS635464B2 (en)
JPH07179984A (en) Cast iron of high strength and low expansion and its production
JPS61177358A (en) Steel for knockout pin
CN110257713A (en) A kind of low-carbon aged steel and preparation method thereof
JP2615463B2 (en) Free-cutting graphite cast steel and method for manufacturing machine parts using the same
KR910000015B1 (en) Super heat resisting and wear resisting alloy
JP2580671B2 (en) Heat-resistant cast steel parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees