JP2683406B2 - Method of melting stainless steel - Google Patents

Method of melting stainless steel

Info

Publication number
JP2683406B2
JP2683406B2 JP5300789A JP5300789A JP2683406B2 JP 2683406 B2 JP2683406 B2 JP 2683406B2 JP 5300789 A JP5300789 A JP 5300789A JP 5300789 A JP5300789 A JP 5300789A JP 2683406 B2 JP2683406 B2 JP 2683406B2
Authority
JP
Japan
Prior art keywords
furnace
slag
decarburization
decarburizing
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5300789A
Other languages
Japanese (ja)
Other versions
JPH02232312A (en
Inventor
敏和 桜谷
幸雄 高橋
嘉英 加藤
徹也 藤井
啓造 田岡
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP5300789A priority Critical patent/JP2683406B2/en
Publication of JPH02232312A publication Critical patent/JPH02232312A/en
Application granted granted Critical
Publication of JP2683406B2 publication Critical patent/JP2683406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はステンレス鋼の溶製方法に関するものであり
効率的にステンレス鋼を溶製するプロセスを開示するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing stainless steel, and discloses a process for efficiently producing stainless steel.

〔従来の技術〕[Conventional technology]

ステンレス鋼の溶製方法として最も典型的なプロセス
は、スクラップやFeCr.FeNi等の合金鉄を主原料として
電気炉で溶解し、その後AODまたはVOD等で脱炭と還元精
錬を行い、出鋼後、受鋼鍋でAr吹込みを行って溶鋼の清
浄化および温度コントロールを行い、しかる後連続鋳造
機にかけるものである。すなわち、電気炉−AOD(VOD)
−Arバブリング−連続鋳造プロセスである。
The most typical process for smelting stainless steel is to use scrap or ferroalloy iron such as FeCr.FeNi as the main raw material to melt in an electric furnace, then decarburize and reduce refining with AOD or VOD, etc. In order to clean the molten steel and control the temperature by injecting Ar in a steel receiving pot, it is then placed in a continuous casting machine. That is, electric furnace-AOD (VOD)
-Ar bubbling-a continuous casting process.

しかし、この方法は原料ソースが全て固体で、溶銑の
使用を不可としているため、柔軟性のあるプロセスとは
いえない欠点があった。
However, this method has a drawback that it cannot be said to be a flexible process because the raw material source is all solid and the use of hot metal is prohibited.

原料ソースに柔軟性を持たせたステンレス鋼溶製プロセ
スには、文献(鉄と鋼(1985)、vo.71.180頁)にある
ように、電気炉を用いずに上底吹き転炉内に溶銑を装入
し、ステンレス鋼の成分となるように脱炭吹錬中また吹
錬前に、スクラップや合金鉄(FeCrやFeNi)を添加して
所定の成分とし、脱炭工程終了後FeSi等の合金鉄を投入
して還元工程に移行し、しかる後出鋼して連続鋳造する
プロセスがある。
As described in the literature (Iron and Steel (1985), vo.71.180), the stainless steel melting process in which the raw material source is made flexible is the hot metal in the upper and lower blowing converter without using an electric furnace. Is charged, and scrap or ferroalloy (FeCr or FeNi) is added to the specified components during decarburization blowing before and before blowing so that it becomes the component of stainless steel, and after the decarburization process, FeSi etc. There is a process in which ferroalloy is charged, a reduction step is performed, and then steel is tapped and continuously cast.

しかし、この方法でもスクラップや合金鉄を大量に投
入しなければならず、安価な原料による効率的なステン
レス鋼溶製という点で不十分といえる。
However, even with this method, a large amount of scrap or ferroalloy must be added, and it can be said that this is insufficient in terms of efficient melting of stainless steel using an inexpensive raw material.

ステンレス鋼溶製プロセスの一部に、Cr鉱石を用いた
プロセスが存在する。例えば文献(鉄と鋼(1985).vo
1.71.1072頁)では、AODに溶銑を装入し、しかる後Cr鉱
石とコークスを投入して、いわゆる溶融還元を行い、そ
の後スラグを除去して通常の脱炭精錬を行うものであ
る。
There is a process using Cr ore as part of the stainless steel melting process. For example, literature (Iron and Steel (1985) .vo.
In 1.71.1072), hot metal is charged into AOD, then Cr ore and coke are added, so-called smelting reduction is carried out, and then slag is removed and ordinary decarburization refining is carried out.

同様に特開昭61−29191には同一炉で鉱石の溶融還元
を行った後、スラグを除去し、その後脱炭精錬に移行す
る内容の技術が開示されている。
Similarly, Japanese Patent Application Laid-Open No. 61-29191 discloses a technique in which ore is melted and reduced in the same furnace, slag is removed, and then decarburization and refining are performed.

これらの方法では同一炉内で溶融還元と酸化精錬を行
うために、途中でスラグを除去するとしても十分な除去
が行われるとは限らず、不純物の硫黄が脱炭精錬後も大
量に残るという問題があり、製品の硫黄濃度を低下させ
るための最終的な還元期脱炭の負荷が著しく大きくな
る。すなわち、脱硫を効果的たらしめるためのスラグ中
のCr2O3の十分な還元の条件を満たすFeSi、Al等の還元
剤の多量使用、ならびに脱硫反応促進に必須のスラグの
流動性確保の前提から生ずる炉耐火物の著しい溶損とい
う欠点があった。
In these methods, since smelting reduction and oxidative refining are carried out in the same furnace, even if slag is removed in the middle, it is not always sufficient to remove it, and a large amount of impurity sulfur remains after decarburization refining. The problem is that the final reduction-stage decarburization load to reduce the sulfur content of the product is significantly higher. That is, a precondition for using a large amount of a reducing agent such as FeSi and Al that satisfy the conditions for sufficient reduction of Cr 2 O 3 in slag to effectively effect desulfurization, and ensuring the fluidity of slag that is essential for promoting desulfurization reaction. There was a drawback that the furnace refractory resulting from the melting was significantly melted.

また、特開昭60−9815、特開昭60−9814にはCr鉱石を
溶融還元してクロム含有合金を製造する方法が開示され
ているが、これらもまたステンレス鋼溶製の脱炭プロセ
スについて言及したものではなく、上記の問題に対する
新しい解を提示するものではない。
Further, JP-A-60-9815 and JP-A-60-9814 disclose a method for producing a chromium-containing alloy by smelting and reducing Cr ore, but these are also related to the decarburization process of melting stainless steel. It is not mentioned and does not present a new solution to the above problem.

以上のように安価なCr鉱石を用いる溶融還元プロセス
を使用したステンレス鋼の溶製法には未だ改良、改善す
べき局面が多々あることをうかがわせる。
As mentioned above, it can be seen that there are many aspects to be improved and improved in the melting process of stainless steel using the smelting reduction process using inexpensive Cr ore.

第2図は従来のプロセスのフローシートである。 FIG. 2 is a flow sheet of a conventional process.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明はこれら従来技術では十分に改善されてない問
題点を解消し、効果的なステンレス鋼溶製プロセスを提
供するものである。
The present invention solves the problems that have not been sufficiently improved by these prior arts, and provides an effective stainless steel melting process.

すなわち、ステンレス鋼の溶製の最終プロセスである
脱炭精錬後の還元期に存在する高価なFeSi等の還元剤の
多量使用、脱硫の不安定性、または還元処理中の流動性
に富むスラグに伴う著しい脱炭炉耐火物の溶損というよ
うな問題点をすべて解消することを目的とする。
That is, due to the large amount of expensive reducing agents such as FeSi existing in the reduction period after decarburization refining, which is the final process of stainless steel melting, instability of desulfurization, or slag with high fluidity during reduction treatment. The purpose is to solve all the problems such as significant melting loss of refractory furnace refractories.

このため、クロム鉱石の溶融還元法という、安価な原
料を利用するプロセスと有機的に結合したシステムによ
り、上記目的を実現する方法を提供するものである。
Therefore, the smelting reduction method of chromium ore, which is a system organically combined with a process using an inexpensive raw material, provides a method for achieving the above object.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上底吹き転炉に溶鉄を装入し上吹きランス
と底吹き羽口から送酸しつつCr鉱石と炭材を添加するこ
とにより、Cr鉱石の溶融還元を図り、所定のCr濃度で出
湯する際、CaOなどの脱硫剤を出湯鍋に投入して脱硫を
行い、この出湯鍋よりスラグを分離した後、溶湯を他の
上底吹き転炉である脱炭炉に装入し、脱炭精錬は適宜ス
クラップ等の冷材を投入しつつ含酸素ガスを送入して行
い、所定の脱炭目標に達したところで終了し、還元精錬
を行うことなく出鋼し脱ガスなどの次工程に送ることに
より達成される。
The present invention, by charging molten iron into the top-bottom blowing converter and adding Cr ore and carbonaceous material while feeding acid from the top-blowing lance and bottom-blowing tuyere, achieves the smelting reduction of Cr ore, and a predetermined Cr When tapping at a high concentration, a desulfurizing agent such as CaO is put into a tap pot to desulfurize, and after slag is separated from this tap pot, the molten metal is charged into a decarburizing furnace that is another upper-bottom blowing converter. , Decarburization refining is carried out by feeding in oxygen-containing gas while appropriately inputting cold materials such as scrap, and ends when the predetermined decarburization target is reached, and steel is degassed without performing reduction refining. It is achieved by sending to the next process.

すなわち本発明は、ステンレス鋼の溶製方法におい
て、 (i)溶鉄にクロム鉱石、酸化クロム、含酸化クロムス
ラグまたは含クロムスクラップ等のクロム含有物質およ
び炭材を添加し酸化性ガスを供給する溶融還元工程、 (ii)所定組成および温度に達した溶鉄を出湯しこれに
脱硫剤を添加する脱硫工程、 (iii)引き続きこの溶鉄を脱炭炉に装入し酸化性ガス
を供給する脱炭精錬工程 を順次行うことを特徴とする。
That is, the present invention relates to a method for producing stainless steel, in which (i) a molten iron is added with a chromium-containing substance such as chromium ore, chromium oxide, chromium oxide slag or chromium-containing scrap and a carbonaceous material, and an oxidizing gas is supplied. Reduction step, (ii) a desulfurization step in which molten iron having reached a predetermined composition and temperature is discharged and a desulfurizing agent is added to it, (iii) decarburization refining in which this molten iron is continuously charged into a decarburizing furnace and an oxidizing gas is supplied. The feature is that the steps are sequentially performed.

また、脱炭精錬時に不可避的に発生する含Cr2O3スラ
グを、脱炭炉より出鋼した後に、排出し溶融還元炉に装
入することにより、有価成分であるCrを炭材により還元
回収することができ、本発明はより大きな効果を発揮す
る。
In addition, Cr 2 O 3 slag, which is inevitably generated during decarburization refining, is discharged from the decarburization furnace, discharged, and then charged into the smelting reduction furnace to reduce the valuable component Cr with carbonaceous materials. It can be recovered and the present invention exerts a greater effect.

さらに脱炭炉から出鋼した後に脱炭炉のスラグを一部
炉内に残留し、この脱炭炉に、上記溶融還元工程および
脱硫工程を経た溶銑を装入して脱炭精錬を行うと脱炭精
錬初期の溶湯中のCがこのスラグを還元してCr分を回収
できる。
Furthermore, after tapping from the decarburizing furnace, part of the slag of the decarburizing furnace remains in the furnace, and this decarburizing furnace is charged with the hot metal that has undergone the smelting reduction process and the desulfurization process to perform decarburization refining. C in the molten metal at the initial stage of decarburization refining can reduce this slag and recover the Cr content.

〔作用〕[Action]

先ず、本発明の主眼とするところの脱炭炉における問
題点を解決するための具体的な方法について説明する。
First, a specific method for solving the problems in the decarburization furnace, which is the main object of the present invention, will be described.

従来脱炭炉で還元期を必要とする理由は有価金属であ
るCrの還元回収および脱硫の確保である。このために比
較的効果な(Crに比べては安価な)FeSiの多量使用、ス
ラグの流動性確保のためのCaO等の造滓材の多量使用、
またこれに伴う炉耐火物の著しい溶損といった問題が伴
っていたものである。これらの難点は還元期を省略する
ことによりことごとく解消されるはずである。この場
合、従来還元期の担っていた重要な役割をどこで担うか
は従来技術の中では全く不明であったものである。
The reason that the conventional decarburization furnace needs a reduction period is the reduction and recovery of valuable metal Cr and the securing of desulfurization. For this reason, a relatively large amount of FeSi (which is cheaper than Cr) is used, a large amount of slag material such as CaO is used to secure the fluidity of slag,
In addition, there was a problem of significant melting loss of the refractory material of the furnace. All these difficulties should be eliminated by omitting the return period. In this case, it is completely unknown in the prior art where to play the important role that the conventional reduction period played.

この点について本発明者らは検討を重ね、以下のシス
テム構成とすることにより理想的なステンレス鋼溶製プ
ロセスを実現するに至った。
With respect to this point, the inventors of the present invention have made extensive studies and have realized an ideal stainless steel melting process by using the following system configuration.

すなわち、好適な脱硫条件を備えている溶融還元終了
後の出湯流に脱硫剤を投入することにより、ステンレス
溶湯の徹底的な脱硫を実現し、さらに脱炭炉で不可避的
に生成する含Cr2O3スラグは還元処理を行うことなく溶
鋼出鋼後排出し、これを溶融還元炉に戻して安価な炭材
を還元剤として金属Crを回収することを骨子とするプロ
セスである。
That is, by introducing a desulfurizing agent into the effluent stream after completion of smelting reduction, which has suitable desulfurization conditions, thorough desulfurization of the molten stainless steel is realized, and further, Cr-containing Cr 2 unavoidably produced in a decarburization furnace. O 3 slag is a process in which the main idea is to discharge the molten steel without performing reduction treatment, discharge it, return it to the smelting reduction furnace, and recover metal Cr using inexpensive carbonaceous material as a reducing agent.

以下具体的に本発明を説明する。 The present invention will be specifically described below.

溶融還元炉に脱燐溶銑を装入し、所定の還元剤を投入
した後、先ず1500〜1600℃のCr鉱石の溶融還元に必要な
条件迄、送酸および炭材投入の併用により昇温する。昇
温後、炭材とCr鉱石および造滓剤を投入しつつ送酸を継
続し、CによるCr酸化物の還元を行う。この間、溶銑温
度は1500〜1650℃、溶銑炭素濃度は炭素飽和に近い値、
例えば5重量%程度を確保する。
After charging dephosphorized hot metal into a smelting reduction furnace and introducing a specified reducing agent, first, the temperature is raised by the combined use of acid feeding and carbonaceous material addition to the conditions necessary for the smelting reduction of Cr ore at 1500 to 1600 ° C. . After the temperature is raised, while feeding carbonaceous material, Cr ore and a slag forming agent, the acid transfer is continued to reduce Cr oxide by C. During this time, the hot metal temperature is 1500-1650 ℃, the hot metal carbon concentration is a value close to carbon saturation,
For example, about 5% by weight is secured.

この間スラグ塩基度CaO/SiO2を最大2.5程度に確保す
るようにCaO等の造滓剤も適宜投入する。所定のクロム
濃度に達した後、スラグを流出させないようにして溶湯
を出湯する。溶湯成分はこの時点でC〜5重量%、Cr〜
10〜20重量%、温度1500〜1600℃である。この溶湯の酸
素ポテンシャルはPo2〜10-15atmと著しく低く、脱硫剤
の流動性確保に必要な温度条件の好適さも手伝って脱硫
反応の実施に好適な条件にある。従って、この出湯流に
対して適当なサルファイドキャパシティーを有するCaO
を主体とする脱硫剤を投入することにより、十分な脱硫
を実現することができる。
During this time, a slag basicity CaO / SiO 2 is also added as appropriate so as to ensure a maximum of about 2.5. After reaching a predetermined chromium concentration, the molten metal is discharged while preventing the slag from flowing out. At this point, the molten metal content is C-5% by weight, Cr-
The temperature is 10 to 20% by weight and the temperature is 1500 to 1600 ° C. The oxygen potential of this molten metal is remarkably low at Po 2 to 10 -15 atm, and the temperature conditions necessary for ensuring the fluidity of the desulfurization agent are also suitable for the desulfurization reaction. Therefore, CaO with an appropriate sulfide capacity for this tap water
Sufficient desulfurization can be realized by adding a desulfurizing agent mainly containing

この際溶融還元炉スラグの共存が避けられていること
も安定した脱硫を実施するのに好都合である。出湯終了
後、取鍋内含Cr溶湯上の脱硫スラグは機械的に除去され
る。除去されたスラグは高塩基物であり溶融還元炉副原
料として利用することができる。
At this time, coexistence of smelting reduction furnace slag is also avoided, which is convenient for carrying out stable desulfurization. After the tapping is completed, the desulfurized slag on the Cr-containing molten metal in the ladle is mechanically removed. The removed slag is a highly basic substance and can be used as an auxiliary raw material for the smelting reduction furnace.

その後溶湯は脱炭用の転炉に装入され、含酸化性ガス
の吹き込み、吹き付けの下に脱炭される。
After that, the molten metal is charged into a decarburizing converter, and is decarburized while being blown with and sprayed with an oxidizing gas.

脱炭炉装入時点の溶湯はC〜5重量%、温度1450〜15
50℃であり、脱炭反応に伴う発熱を補うためにスクラッ
プ等の冷材を投入しつつ脱炭精錬を行う。尚、装入時点
でSは十分に低く、脱炭炉での脱硫操作は不要であり、
従ってCaO等の媒溶剤の投入は基本的には行わない。
The molten metal at the time of charging the decarburizing furnace is C to 5% by weight, and the temperature is 1450 to 15
The temperature is 50 ° C, and decarburization refining is performed while introducing cold materials such as scraps to supplement the heat generated by the decarburization reaction. At the time of charging, S is sufficiently low, and desulfurization operation in a decarburization furnace is unnecessary,
Therefore, basically no solvent such as CaO is added.

熱力学的に明らかなように、脱炭の進行に伴いCr酸化
反応が進行しやすい条件に入る。そこで、熱力学に従っ
て、炉内のCOガス分圧を低下させるように、酸素に対す
るAr等の不活性ガス比を増加させていく周知の送酸パタ
ーンにより、例えばC〜0.05重量%といった製品炭素レ
ベルまでの脱炭反応を進行させる。脱炭終了後の溶鋼成
分は若干のCr成分の低下はあるものの、S濃度の上昇は
なく、製品規格を満たしているので、従来あった還元処
理を経ずして溶鋼鍋に出鋼される。
As is clear from the thermodynamics, as the decarburization progresses, the Cr oxidation reaction is more likely to proceed. Therefore, in accordance with thermodynamics, a known carbon-feeding pattern in which the ratio of inert gas such as Ar to oxygen is increased so as to reduce the partial pressure of CO gas in the furnace, the product carbon level such as C to 0.05% by weight is obtained. To proceed with the decarburization reaction. Although the Cr content of the molten steel after decarburization is slightly reduced, it does not increase the S concentration and meets the product specifications, so it is tapped in a molten steel ladle without the conventional reduction treatment. .

炉内に残された脱炭反応時に生成したスラグはCr2O3
を主成分とする流動性に乏しいものであり、従来見られ
たスラグによる炉耐火物の溶損を生ずることはない。こ
のスラグは貴重なCr分を含むものであり、金属として回
収することが極めて好ましく、出鋼後、炉の傾転によっ
て排出されたスラグは、溶融還元炉の溶銑装入前の装入
物として溶融還元炉に戻し溶融還元処理によりCr分を回
収する。
The slag generated in the decarburization reaction left in the furnace is Cr 2 O 3
It has a low fluidity and contains no major components, and does not cause melting loss of the furnace refractory due to the slag that has been found in the past. This slag contains valuable Cr content, and it is extremely preferable to recover it as metal, and the slag discharged by tilting the furnace after tapping is used as a charge before the hot metal charging of the smelting reduction furnace. It is returned to the smelting reduction furnace and the Cr content is recovered by smelting reduction treatment.

また脱炭炉から排出され切らずに残留した含Cr2O3
ラグは、次チャージの脱炭用溶湯の装入に引き続く脱炭
精錬初期の間に、溶湯中のCが還元剤となってCr分を還
元回収する。装入溶湯がC〜5重量%、温度1500℃程度
というCr2O3の還元に十分な条件を備えているが故に成
立するプロセスである。これにより、従来、Si、Alとい
った高価な金属を還元剤として回収していたCrを、溶融
還元炉の投入炭材あるいは脱炭炉装入溶湯中のCという
安価な還元剤を用いて、回収することが可能となり、こ
の点での経済的効果は大きなものとなる。
The Cr 2 O 3 slag contained in the decarburizing furnace, which remained without being cut off, was replaced by C in the molten metal during the initial stage of decarburizing and refining following the charging of the next charge of the decarburizing molten metal. Cr content is reduced and recovered. This is a process established because the charged molten metal has C to 5% by weight and a temperature of about 1500 ° C., which is sufficient for the reduction of Cr 2 O 3 . As a result, Cr, which has been used to recover expensive metals such as Si and Al as a reducing agent, is recovered by using an inexpensive reducing agent such as carbon in the molten reducing furnace or carbon in the decarburizing furnace charging melt. The economic effect in this respect will be great.

以上のように本発明に従ってクロム鉱石溶融還元炉と
脱炭炉を有機的に結合することにより、クロム原料を安
価なクロム鉱石に求め得るという従来から知られていた
溶融還元炉プロセスの利点に加えて、脱炭炉において未
解決のままに残されていた諸問題、すなわち、 イ).高価なSi、Alの多量使用、 ロ).脱硫用のCaO等の副原料の多量使用、 ハ).脱炭炉耐火物の著しい溶損 などの問題が一挙に解決されることとなった。
As described above, in addition to the advantage of the conventionally known smelting reduction furnace process that the chromium raw material can be obtained as an inexpensive chrome ore by organically connecting the chrome ore smelting reduction furnace and the decarburizing furnace according to the present invention. Then, various problems left unsolved in the decarburization furnace, namely, a). Use of large amounts of expensive Si and Al, b). Use a large amount of auxiliary materials such as CaO for desulfurization, c). Problems such as significant melting damage of decarburizing refractories were resolved at once.

〔実施例〕〔Example〕

本発明の実施例のフローを第1図に示した。第2図は
比較例であり溶融還元終了後同一炉もしくは別の脱炭炉
で脱炭および還元処理を行う従来のフローである。
The flow of the embodiment of the present invention is shown in FIG. FIG. 2 is a comparative example, which is a conventional flow in which decarburization and reduction treatment are performed in the same furnace or another decarburization furnace after completion of smelting reduction.

比較例、実施例ともに溶融還元炉、脱炭炉は、100ト
ン溶鋼規模の上底吹き転炉である。
In both the comparative example and the example, the smelting reduction furnace and the decarburization furnace are 100-ton molten steel scale top and bottom blowing converters.

溶銑脱燐工程1は両者に共通であり通常のトピードカ
ー脱燐である。脱燐後の溶銑の成分、温度は次の通りで
ある。
Hot metal dephosphorization step 1 is common to both and is a normal tope car dephosphorization. The components and temperatures of the hot metal after dephosphorization are as follows.

C/4.3重量%、 Si/<0.01重量%、 Mn/0.012重量%、 S/0.026重量%、 温度〜1270℃ 以下本発明の実施例の詳細をまず示す。C / 4.3% by weight, Si / <0.01% by weight, Mn / 0.012% by weight, S / 0.026% by weight, temperature to 1270 ° C. Hereinafter, the details of the embodiment of the present invention will be described first.

上記溶銑1を溶融還元炉2に59トン装入する。脱炭炉
スラグ3を2.5トン及び脱硫スラグ4を0.8トン装入す
る。
59 tons of the hot metal 1 is charged into the smelting reduction furnace 2. 2.5 tons of the decarburizing furnace slag 3 and 0.8 tons of the desulfurization slag 4 are charged.

ここで、それらの成分は、次の通りである。 Here, those components are as follows.

脱炭炉スラグ: CaO/20%、MgO/18%、 SiO2/5%、Cr2O3/55% 脱硫スラグ: CaO/60%、Al2O3/15%、 MgO/15%、CaF2/4%、 SiO2/6% 炭材7としてコークスを投入しつつ送酸を行い、溶銑
炭素5重量%、温度1550℃に達した後、Cr鉱石とコーク
スを連投しつつ温度を1550〜1600℃に保って溶融還元を
行う。
Decarburization slag: CaO / 20%, MgO / 18%, SiO 2/5%, Cr 2 O 3/55% desulfurization slag: CaO / 60%, Al 2 O 3/15%, MgO / 15%, CaF 2 /4%, SiO 2 /6% Carbide 7 was fed with coke while sending acid, and after reaching 5 wt% of hot metal and temperature of 1550 ° C, temperature was increased from 1550 to 1550 while continuously casting Cr ore and coke. Melt reduction is performed by keeping at 1600 ℃.

この間の投入量は クロム鉱石:42トン コークス:54トン O2:31.200Nm3 副原料として CaO:9.3トン ドロマイト:2.7トン である。During this period, the input amount of chromium ore: 42 tons Coke: 54 tons O 2 : 31.200Nm 3 CaO: 9.3 tons Dolomite: 2.7 tons as an auxiliary material.

溶融還元終了後の溶湯成分は C/5.6重量%、 Si/<0.01重量%、 Mu/0.21重量%、 P/0.033重量%、 S/0.012重量%、 Cr/16.8重量%、 出湯量:82.2トン 出湯温度:1574℃ 出湯時に90%CaO−10%CaF2の脱硫剤10を600kg出湯流
に投入し、炉から一部排出されたスラグを合わせた約10
00kgのスラグをノロかき機により除去する。
After the completion of smelting reduction, the molten metal content was C / 5.6% by weight, Si / <0.01% by weight, Mu / 0.21% by weight, P / 0.033% by weight, S / 0.012% by weight, Cr / 16.8% by weight, tapping amount: 82.2 tons Hot water discharge temperature: 1574 ℃ At the time of hot water discharge, 600 kg of 90% CaO-10% CaF 2 desulfurization agent was added to the hot water flow, and the total amount of slag discharged from the furnace was approximately 10
Remove 00kg of slag with a scraper.

この時溶湯成分はSのみ0.012重量%から0.003重量%
に低下し、他は変化せず、温度は1545℃となる。
At this time, the molten metal content of S is 0.012% by weight to 0.003% by weight
The other temperature remains unchanged and the temperature reaches 1545 ° C.

この溶湯は脱炭炉に装入する。脱炭炉には前チャージ
のスラグが排出され切らずに1.9トン残留していた。
This molten metal is charged into a decarburizing furnace. Pre-charged slag was not discharged to the decarburization furnace and remained 1.9 tons.

装入終了後に溶湯温度は1518℃に低下、成分は変化せ
ず、上吹ランス及び底吹き羽口より酸素ガスを送入し、
C〜0.6重量%、C〜0.25重量%をステップとして、O2/
Ar比2/1、1/3の混合ガス吹き込みに切り替え、C〜0.05
重量%で脱炭終了とする。
After the charging was completed, the temperature of the molten metal dropped to 1518 ° C, the components did not change, and oxygen gas was fed from the top blowing lance and bottom blowing tuyere,
C ~ 0.6 wt%, C ~ 0.25 wt% as a step, O 2 /
Switched to mixed gas injection with Ar ratio 2/1, 1/3, C ~ 0.05
Decarburization is completed at the weight percentage.

この間、冷却用にSUS430スクラップ25トンを投入し、
精錬終了時の温度は1665℃、溶鋼成分は次の通りであっ
た。
During this period, 25 tons of SUS430 scrap was added for cooling,
The temperature at the end of refining was 1665 ° C, and the molten steel components were as follows.

C/0.05重量% Si/<0.01重量%、 Mn/0.14重量%、 P/0.031重量%、 S/0.003重量%、 Cr/15.9重量% 直ちに出鋼し、出鋼流にFeMn:300kg、FeSi:200kg、HC
FeCr:100kgを投入し、二次精錬設備に送り込む。
C / 0.05% by weight Si / <0.01% by weight, Mn / 0.14% by weight, P / 0.031% by weight, S / 0.003% by weight, Cr / 15.9% by weight Immediately tapping, FeMn: 300kg, FeSi: 200kg, HC
Input FeCr: 100kg and send to secondary refining equipment.

脱炭炉内には4.5トンのスラグが残留しており、傾転
後その約半量が流出したのでそれを回収し、溶融還元炉
内前装入材としてリターンする。
4.5 tonnes of slag remained in the decarburization furnace, and about half of the slag flowed out after tilting, so it is recovered and returned as a pre-charge material in the smelting reduction furnace.

〔発明の効果〕〔The invention's effect〕

以上のプロセスの中で脱炭炉プロセスで使用された還
元剤、副原料は出鋼時のFeMn、FeSi、HCFeCr各々百kgの
みであり、本発明で付加的に使用される脱硫フラックス
も600kgの極少量に留まる。
In the above process, the reducing agent and the auxiliary material used in the decarburizing furnace process are only 100 kg each of FeMn, FeSi, and HCFeCr at the time of tapping, and the desulfurization flux additionally used in the present invention is 600 kg. It stays in a very small amount.

これに対して比較例の場合、脱炭炉で使用する材料
は、CaO:5トン、MgO:1トン、FeSi:1.66トンの多きにわ
たり、本発明の約10倍の量を必要とする。
On the other hand, in the case of the comparative example, the materials used in the decarburization furnace are as large as CaO: 5 tons, MgO: 1 ton, FeSi: 1.66 tons, and the amount required is about 10 times the amount of the present invention.

また、比較例の場合、還元スラグはCrを含有せず、塩
基度も低いため、リターンするに値せず、系外へ廃棄さ
れることになる。これに対して本発明例では系外廃棄ス
ラグは比較例と共通の溶融還元炉スラグのみとなり、資
源の有効活用の点からも望ましいプロセスといえる。
Further, in the case of the comparative example, the reducing slag does not contain Cr and has a low basicity, so it is not worth returning and is discarded outside the system. On the other hand, in the example of the present invention, the waste slag outside the system is only the smelting reduction furnace slag that is common to the comparative example, which can be said to be a desirable process from the viewpoint of effective utilization of resources.

また、脱炭炉耐火物の寿命も本発明では著しく向上し
従来600チャージ毎に必要とした炉修を1500チャージ毎
に延期する大きな成果を得た。
Further, the life of the decarburizing refractory of the present invention was remarkably improved in the present invention, and the great effect of postponing the furnace repair required every 600 charges for every 1500 charges was obtained.

これは脱炭炉スラグ組成が炉耐火物、例えばマグネシ
アクロムレンガの成分に近似していることからも理解で
きる効果である。
This is an effect that can be understood from the fact that the composition of the decarburizing furnace slag is similar to that of a furnace refractory, for example, magnesia chrome brick.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例のフローシート、 第2図は従来のプロセスのフローシートである。 1…溶銑脱燐 2…溶融還元工程 3…スラグ装入 4…脱硫スラグ 5…炭材 6…Cr鉱石 10…脱硫フラックス 11…脱炭工程 FIG. 1 is a flow sheet of an embodiment of the present invention, and FIG. 2 is a flow sheet of a conventional process. 1 ... Hot metal dephosphorization 2 ... Melt reduction process 3 ... Slag charging 4 ... Desulfurization slag 5 ... Carbon material 6 ... Cr ore 10 ... Desulfurization flux 11 ... Decarburization process

フロントページの続き (72)発明者 藤井 徹也 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (72)発明者 田岡 啓造 千葉県千葉市川崎町1番地 川崎製鉄株 式会社千葉製鉄所内 (56)参考文献 特開 昭62−60813(JP,A) 特開 昭62−60814(JP,A) 特開 昭61−166910(JP,A) 特開 平1−215913(JP,A)Front Page Continuation (72) Inventor Tetsuya Fujii 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Keizo Taoka 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Chiba Steel In-house (56) References JP 62-60813 (JP, A) JP 62-60814 (JP, A) JP 61-166910 (JP, A) JP 1-215913 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステンレス鋼の溶製方法において、 (i)溶鉄に炭材およびクロム含有物質を添加し酸化性
ガスを供給する溶融還元工程、 (ii)所定組成および所定温度に達した溶鉄を出湯し、
これに脱硫剤を添加する脱硫工程、 および (iii)引き続きこの溶鉄を脱炭炉に装入し酸化性ガス
を供給して脱炭精錬する脱炭精錬工程、 を順次行うことを特徴とするステンレス鋼の溶製方法。
1. A method for producing stainless steel, comprising: (i) a smelting reduction step in which a carbonaceous material and a chromium-containing substance are added to molten iron to supply an oxidizing gas; (ii) molten iron having a predetermined composition and a predetermined temperature. Take a bath
A stainless steel characterized by sequentially performing a desulfurization step of adding a desulfurizing agent thereto, and (iii) a decarburization refining step of charging the molten iron into a decarburization furnace and supplying an oxidizing gas to perform decarburization refining. Steel melting method.
【請求項2】脱炭炉から出鋼後、脱炭炉のスラグを取り
出し、これを溶融還元工程に用いることを特徴とする請
求項1記載の方法。
2. The method according to claim 1, wherein after tapping the steel from the decarburizing furnace, the slag of the decarburizing furnace is taken out and used in the smelting reduction step.
【請求項3】脱炭炉から出鋼後、脱炭炉のスラグを該炉
中に一部残留し、該脱炭炉を用いて次回の脱炭精錬を行
うことを特徴とする請求項1または2記載の方法。
3. The method according to claim 1, wherein after tapping from the decarburizing furnace, a part of the slag of the decarburizing furnace remains in the furnace, and the next decarburizing refining is performed using the decarburizing furnace. Or the method described in 2.
JP5300789A 1989-03-07 1989-03-07 Method of melting stainless steel Expired - Fee Related JP2683406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300789A JP2683406B2 (en) 1989-03-07 1989-03-07 Method of melting stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300789A JP2683406B2 (en) 1989-03-07 1989-03-07 Method of melting stainless steel

Publications (2)

Publication Number Publication Date
JPH02232312A JPH02232312A (en) 1990-09-14
JP2683406B2 true JP2683406B2 (en) 1997-11-26

Family

ID=12930854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300789A Expired - Fee Related JP2683406B2 (en) 1989-03-07 1989-03-07 Method of melting stainless steel

Country Status (1)

Country Link
JP (1) JP2683406B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686204B2 (en) * 1992-03-05 1997-12-08 川崎製鉄株式会社 Smelting reduction method for chromium ore
AU755341B2 (en) 1997-12-26 2002-12-12 Nkk Corporation Refining method of molten iron and reduction smelting method for producing the molten iron
JP4736466B2 (en) * 2005-02-24 2011-07-27 Jfeスチール株式会社 Method for producing high chromium molten steel
GB0511883D0 (en) * 2005-06-10 2005-07-20 Boc Group Plc Manufacture of ferroalloys
JP5642008B2 (en) * 2011-03-31 2014-12-17 日新製鋼株式会社 Stainless steel manufacturing method
JP5928329B2 (en) * 2011-12-27 2016-06-01 Jfeスチール株式会社 Smelting reduction smelting method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166910A (en) * 1985-01-18 1986-07-28 Nippon Steel Corp Production of chromium-containing alloy
JPS6260813A (en) * 1985-09-11 1987-03-17 Nippon Kokan Kk <Nkk> Continuous refining method
JPS6260814A (en) * 1985-09-11 1987-03-17 Nippon Kokan Kk <Nkk> Continuous refining device

Also Published As

Publication number Publication date
JPH02232312A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
US7641713B2 (en) Method for reducing Cr in metallurgical slags containing Cr
JP2004190101A (en) Method for pre-treating molten iron
JP2683406B2 (en) Method of melting stainless steel
JP4311097B2 (en) Method for preventing slag flow in converter
JP2947063B2 (en) Stainless steel manufacturing method
JP3460595B2 (en) Melting method for extremely low sulfur steel
JP3158912B2 (en) Stainless steel refining method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP3458890B2 (en) Hot metal refining method
JP3924059B2 (en) Steelmaking method using multiple converters
JP3486886B2 (en) Steelmaking method using two or more converters
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
KR100411288B1 (en) Method for recovering chromium from electric furnace slag
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH0967608A (en) Production of stainless steel
JPH116006A (en) Sub raw material charging method into converter
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2000212623A (en) Dephosphorization of molten iron low in lime
JP2856103B2 (en) Hot metal dephosphorization method
JPH066731B2 (en) Method of melting stainless steel
JPH0762413A (en) Production of stainless steel
JPH0892627A (en) Production of stainless steel
JP2004156146A (en) Method for refining molten iron
JPH11193411A (en) Refining method of molten low carbon iron
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees