JP2680642B2 - アルカリ蓄電池用亜鉛極の製造方法 - Google Patents

アルカリ蓄電池用亜鉛極の製造方法

Info

Publication number
JP2680642B2
JP2680642B2 JP63292865A JP29286588A JP2680642B2 JP 2680642 B2 JP2680642 B2 JP 2680642B2 JP 63292865 A JP63292865 A JP 63292865A JP 29286588 A JP29286588 A JP 29286588A JP 2680642 B2 JP2680642 B2 JP 2680642B2
Authority
JP
Japan
Prior art keywords
zinc electrode
zinc
electrode
current collector
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63292865A
Other languages
English (en)
Other versions
JPH02139855A (ja
Inventor
修弘 古川
幹朗 田所
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63292865A priority Critical patent/JP2680642B2/ja
Publication of JPH02139855A publication Critical patent/JPH02139855A/ja
Application granted granted Critical
Publication of JP2680642B2 publication Critical patent/JP2680642B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、ニッケル−亜鉛蓄電池、銀−亜鉛蓄電池な
どのアルカリ蓄電池の負極として用いられる亜鉛極の製
造方法に関するものである。
(ロ) 従来の技術 負極活物質としての亜鉛は、単位重量当りのエネルギ
ー密度が大きく、安価であり、かつ無公害であるという
特徴があるので亜鉛極を用いて、アルカリ蓄電池を作製
すると、高エネルギー密度で高作動電圧の電池が得られ
るが、実用化には至っていない。これは活物質である亜
鉛が充放電サイクルの進行に伴い亜鉛酸イオンとして溶
出したり、変化したりする。その結果、電池内において
内部短絡等を生じ、遂にはサイクル寿命となってしまう
からである。
この点に着目し、亜鉛極の空隙率を小さくすると、前
記亜鉛酸イオンの溶出を抑制することが可能となるが、
集電体を有する亜鉛極においては種々の制約がある。
従来より、よく知られたパチングメタルを集電体とし
て用い、この集電体に亜鉛活物質を含んだペーストを圧
着する方法がある。この方法では、前記ペーストの集電
体への十分な接着強度を得るべく、ペースト中に多量の
ポリビニルアルコール(PVA)、カルボキシメチルセル
ロース(CMC)等の結着剤を混入する必要があった。こ
の結着剤自身は絶縁性物質であるので、亜鉛極中に多量
に存在すると、電極反応を阻害し、電池特性を低下させ
るという問題がある。
そこで特開昭57−191959号公報に記載された如く、パ
ンチングメタルの表面に、導電性粉末と結着剤との混合
物を塗布し、その両面に亜鉛活物質を配置し、加圧する
ものがある。
このようにパンチングメタルの表面を処理することに
よって、亜鉛活物質と集電体との物理的結着力を大きく
することができ、加圧時の圧力を高く設定することが可
能となる。しかしながら、加圧時の圧力を増加させ空隙
率が45%程度以下になってくると、加圧時に、活物質の
集電体からの横ずれが生じ、亜鉛活物質が集電体から剥
離して、電極を作製できないという問題がある。
(ハ) 発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、
亜鉛極の空隙率を45%以下とした場合であっても製造工
程上何ら支障のない、サイクル特性に優れた亜鉛極を提
供しようとするものである。
(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛極の製造方法は、立体
形状を有する集電体に、亜鉛活物質と結着剤とからなる
ペーストを充填し、空隙率が35〜45%となる迄加圧する
ことを特徴とするものである。
前記集電体としては、ラス板、発泡メタル、金属網等
を用いることが可能である。
そして前記集電体の厚みとしては、亜鉛極の厚みの40
〜80%とするのが好ましい。
(ホ) 作用 本発明によれば、空隙率が35〜45%の亜鉛極が得ら
れ、亜鉛極のサイクル寿命を向上させることが可能とな
る。これは加圧することにより亜鉛極において空隙率が
減少し、単位体積当りの電解液量が減少する。このこと
は、亜鉛酸イオンの溶出を抑制し亜鉛極の形状変形を抑
えることとなり、かかる亜鉛極を用いた電池のサイクル
特性を大幅に向上させることができる。
また、本発明において、集電体の厚みを亜鉛極の厚み
の40〜80%としたのは、40%以下では電極中の集電が不
十分になることと、加圧時に集電体の横ずれが生じる場
合があるからである。一方、80%以上では加圧時に電極
表面に集電体の一部が露出し、デンドライト発生の原因
となったり、水素発生の原因となるからである。
ここで立体形状を有する集電体としては、ラス板、発
泡メタル、金属網等が好適である。
尚、本発明において空隙率は、次式に基づき算出した
ものである。
前式において6.16g/cm3は、亜鉛(密度7.13g/cm3)と
酸化亜鉛(密度5.67g/cm3)とが、35:60の重量比率で、
空隙率0%として充填された値である。但し、亜鉛極中
において、結着剤の体積及び重量は、考慮しないものと
した。
(ヘ) 実施例 以下に、本発明の実施例と比較例とを列記し、詳述す
る。
〔実施例1〕 亜鉛活物質としての亜鉛粉末35重量%及び酸化亜鉛粉
末60重量%と、結着剤としてのフッ素樹脂粉末5重量%
とからなる混合粉末に水を加え、混練してペーストを得
た。このペーストをニッケルのラス板からなる集電体の
両面に配して亜鉛活物質層とし、加圧することにより空
隙率35%の本発明亜鉛極A1を得た。この亜鉛極は、0.6m
mの厚みであって、この亜鉛極で用いたラス板は、亜鉛
極に対して60%に相当する厚みを有している。
このようにして得た亜鉛極A1と公知の焼結式ニッケル
極とを組み合わせ、セパレータを介して捲回することに
より渦巻電極体を作製し、電池缶に挿入し、アルカリ電
解液を注液した。これを密閉することにより、公称容量
500mAhの円筒密閉型ニッケル−亜鉛蓄電池を得、本発明
電池A2とした。
〔実施例2〕 前記実施例1において空隙率を40%とした以外は同様
にして亜鉛極を作製し、本発明亜鉛極B1とし、本発明電
池B2を得た。
〔実施例3〕 前記実施例1において空隙率を45%とした以外は同様
にして亜鉛極を作製し、本発明亜鉛極C1とし、本発明電
池C2を得た。
〔比較例1〕 前記実施例1において空隙率を30%とした以外は同様
にして亜鉛極を作製し、比較亜鉛極a1とし、比較電池a2
を得た。
〔比較例2〕 前記実施例1において空隙率を50%とした以外は同様
にして亜鉛極を作製し、比較亜鉛極b1とし、比較電池b2
を得た。
〔比較例3〕 前記実施例1において空隙率を60%とした以外は同様
にして亜鉛極を作製し、比較亜鉛極c1とし、比較電池c2
を得た。
〔比較例4〕 前記実施例1においてラス板の代わりにパンチングメ
タルを集電体として用いて空隙率50%の比較亜鉛極d1
作製しようとしたが、ペーストを集電体に圧着すること
ができず、亜鉛極が得られなかった。
〔比較例5〕 前記実施例1においてラス板の代わりにパンチングメ
タルを集電体として用い、空隙率55%の亜鉛極を作製
し、比較亜鉛極e1とし、比較電池e2を得た。
〔比較例6〕 前記実施例1においてラス板の代わりにパンチングメ
タルを集電体として用い、空隙率60%の亜鉛極を作製
し、比較亜鉛極f1とし、比較電池f2を得た。
このようにして得た本発明電池A2、B2、C2と、比較電
池a2、b2、c2、e2、f2とを用いて電池のサイクル寿命を
比較した。このときのサイクル条件は、電池を充電電流
500mAで1時間充電した後、放電電流500mAで放電終止電
圧を1.4Vとして放電するものであり、電池の容量が350m
Ahになるまで繰り返し充放電を行い、そのサイクル数を
サイクル寿命とした。この結果を第1図に示す。第1図
は、亜鉛極の空隙率と、電池のサイクル寿命との関係を
示す図である。
第1図より、本発明電池A2,B2,C2は、比較電池a2
b2、C2、e2、f2に比して、サイクル寿命において優れた
ものであることが理解される。これは亜鉛極の空隙率が
35〜45%に保持されているので、亜鉛極の溶出、変形が
抑制されることに基づく。
次に、用いた集電体の厚みを、亜鉛極に対して20%、
30%、40%、50%、60%、70%、80%、90%、100%と
種々変化させた以外は、前記実施例1と同様にして電池
を作製した。そして前記同様のサイクル寿命比較試験を
行った。この結果を、第2図に示す。第2図は、横軸に
亜鉛極厚みに対する集電体厚みの割合をとり、縦軸にサ
イクル寿命をプロットしたものである。これより、亜鉛
極厚みに対する集電体厚みの割合を、40〜80%とするの
が好ましいことがわかる。
(ト) 発明の効果 本発明によれば、空隙率35〜45%の亜鉛極が得られ、
かかる亜鉛極を用いたアルカリ蓄電池のサイクル寿命を
向上させることが可能となるので、その工業的価値は極
めて大きい。
【図面の簡単な説明】
第1図は亜鉛極の空隙率と電池のサイクル寿命との関係
を示す図、第2図は亜鉛極厚みに対する集電体厚みの割
合と電池のサイクル寿命との関係を示す図である。 A2、B2、C2……本発明電池、 a2、b2、c2、e2、f2……比較電池。

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】立体形状を有する集電体に、亜鉛活物質と
    結着剤とからなるペーストを充填し、空隙率が35〜45%
    となる迄加圧することを特徴とするアルカリ蓄電池用亜
    鉛極の製造方法。
  2. 【請求項2】前記集電体が、ラス板、発泡メタル、金属
    網のうちから選ばれたものであることを特徴とする請求
    項(1)記載のアルカリ蓄電池用亜鉛極の製造方法。
  3. 【請求項3】前記集電体の厚みは、前記亜鉛極の厚みの
    40〜80%であることを特徴とする請求項(1)記載のア
    ルカリ蓄電池用亜鉛極の製造方法。
JP63292865A 1988-11-18 1988-11-18 アルカリ蓄電池用亜鉛極の製造方法 Expired - Fee Related JP2680642B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292865A JP2680642B2 (ja) 1988-11-18 1988-11-18 アルカリ蓄電池用亜鉛極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292865A JP2680642B2 (ja) 1988-11-18 1988-11-18 アルカリ蓄電池用亜鉛極の製造方法

Publications (2)

Publication Number Publication Date
JPH02139855A JPH02139855A (ja) 1990-05-29
JP2680642B2 true JP2680642B2 (ja) 1997-11-19

Family

ID=17787376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292865A Expired - Fee Related JP2680642B2 (ja) 1988-11-18 1988-11-18 アルカリ蓄電池用亜鉛極の製造方法

Country Status (1)

Country Link
JP (1) JP2680642B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788887B1 (fr) * 1999-01-27 2001-04-20 Conseil Et De Prospective Scie Generateurs electrochimiques secondaires alcalins a anode de zinc

Also Published As

Publication number Publication date
JPH02139855A (ja) 1990-05-29

Similar Documents

Publication Publication Date Title
JP3387158B2 (ja) 亜鉛極板
JP2680642B2 (ja) アルカリ蓄電池用亜鉛極の製造方法
JPH117952A (ja) ペースト式ニッケル電極
JPS5931177B2 (ja) アルカリ蓄電池用亜鉛極
JP3182790B2 (ja) 水素吸蔵合金電極およびその製造法
US20220238891A1 (en) Electrode and electricity storage device
JP3851022B2 (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JPH097591A (ja) 水素吸蔵合金及びその製造方法並びにそれを用いた水素吸蔵合金電極
JP2689598B2 (ja) 円筒形密閉式ニッケル・カドミウム蓄電池およびその製造法
JP2001283902A (ja) アルカリ蓄電池
JP4497797B2 (ja) 水素吸蔵合金電極及びその製造方法並びにアルカリ蓄電池
JP4567990B2 (ja) 二次電池
JP2589750B2 (ja) ニッケルカドミウム蓄電池
JPH0251874A (ja) アルカリ亜鉛蓄電池
JP4458749B2 (ja) アルカリ蓄電池
JP3316687B2 (ja) ニッケル−金属水素化物蓄電池
JP3742149B2 (ja) アルカリ二次電池
JPS6355186B2 (ja)
JP2005183339A (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JPH11219721A (ja) アルカリ蓄電池
JP2000228189A (ja) アルカリ蓄電池用負極およびこれを用いたアルカリ蓄電池
JPH06168719A (ja) ニッケル・水素電池用負極板、その製造法並びにニッケル・水素電池
JPS60225373A (ja) アルカリ亜鉛蓄電池
JPH08227721A (ja) アルカリ乾電池
JPS63259963A (ja) 密閉形アルカリ蓄電池

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees