JP2678214B2 - Large diamond synthesis method - Google Patents

Large diamond synthesis method

Info

Publication number
JP2678214B2
JP2678214B2 JP16991588A JP16991588A JP2678214B2 JP 2678214 B2 JP2678214 B2 JP 2678214B2 JP 16991588 A JP16991588 A JP 16991588A JP 16991588 A JP16991588 A JP 16991588A JP 2678214 B2 JP2678214 B2 JP 2678214B2
Authority
JP
Japan
Prior art keywords
solvent
seed crystal
growth
carbon
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16991588A
Other languages
Japanese (ja)
Other versions
JPH0217934A (en
Inventor
周一 佐藤
一夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16991588A priority Critical patent/JP2678214B2/en
Publication of JPH0217934A publication Critical patent/JPH0217934A/en
Application granted granted Critical
Publication of JP2678214B2 publication Critical patent/JP2678214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度差法を用いた一辺の長さが8mm以上の大
型ダイヤモンドの単結晶合成方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for synthesizing a single crystal of a large diamond having a side length of 8 mm or more using a temperature difference method.

(従来の技術) 温度差法によるダイヤモンドの合成は、米国GE社(US
P−4,034,066)が最初に完成した。その後、例えば特開
昭59−152214号公報、特開昭60−210512号公報にみられ
るように量産化技術が進み、現在はヒートシンク超精密
バイト等の加工製品として市販されている。
(Prior Art) Synthesis of diamond by the temperature difference method is performed by GE (US)
P-4,034,066) was first completed. After that, mass production technology has been advanced, as shown in, for example, Japanese Patent Laid-Open Nos. 59-152214 and 60-210512, and it is currently marketed as a processed product such as a heat sink ultra-precision bite.

4 第1図は温度差法によるダイヤモンドの合成方法の
一例の説明図である。図面に示すように、超高圧発生装
置内に、炭素源(11)と、溶媒(12)、種結晶(13)、
種結晶溶解防止(14)を配置し、ヒーター(15)にて加
熱し、炭素源(11)と種結晶(13)の間に生ずる温度差
ΔTにより、種結晶(13)上にエピタキシャルに単結晶
を成長させる方法である。
4 FIG. 1 is an explanatory view of an example of a diamond synthesizing method by the temperature difference method. As shown in the drawing, the carbon source (11), the solvent (12), the seed crystal (13),
A seed crystal dissolution preventive (14) is placed and heated by a heater (15), and the temperature difference ΔT generated between the carbon source (11) and the seed crystal (13) causes the seed crystal (13) to grow epitaxially on a single surface. This is a method of growing crystals.

(解決しようとする課題) 上述した従来のダイヤモンドの合成方法によれば、2
カラット以上の結晶サイズになると、急速に溶媒の巻き
込みが生じ、良質な単結晶が得られない。又小さな種結
晶から徐々に成長させるため2カラットの原石を合成す
るには2週間以上を要し、コスト的にも割高となり、実
用には適さない。この場合、大きな種結晶(3mm以上)
から大きな単結晶を合成することは結晶成長期間の短縮
に効果はあるが、集合晶となり、良質な単結晶が出来な
いという問題点がある。
(Problems to be Solved) According to the conventional diamond synthesizing method described above, 2
When the crystal size is larger than carat, the solvent is rapidly entrained and a good single crystal cannot be obtained. Further, since it gradually grows from a small seed crystal, it takes 2 weeks or more to synthesize a 2-carat rough stone, which is expensive in terms of cost and is not suitable for practical use. In this case, a large seed crystal (3 mm or more)
Although synthesizing a large single crystal is effective in shortening the crystal growth period, there is a problem in that a single crystal of high quality cannot be obtained because it becomes an aggregated crystal.

このため、合成出来る単結晶が最大2カラット(直径
6mm)程度で、8mm以上の大きさを必要とするCO2レーザ
ー窓材、赤外線窓材、医療用メス、ICボンダー等の用途
には使用出来なかった。
Therefore, the maximum single crystal that can be synthesized is 2 carats (diameter
6 mm) and could not be used for applications such as CO 2 laser window materials, infrared window materials, medical scalpels, and IC bonders that require a size of 8 mm or more.

(課題を解決するための手段) 本発明は上述の問題点を解消し、大きな種結晶から良
質な単結晶を成長させる大型ダイヤモンドの合成方法を
提供するもので、その特徴は、直径3mm以上の種結晶の
(100)面を成長面として用い、該成長面をダイヤモン
ドの安定圧力下で、かつ溶媒と炭素の共晶点より20〜60
℃高い温度雰囲気において、全表面を一度溶解した後結
晶成長させ、さらに合成時の炭素源と接触する側の溶媒
形状が平面もしくは曲面で構成される凸形状を有する溶
媒を用い、(100)面を支配的な圧力温度条件下で成長
させることにある。
(Means for Solving the Problems) The present invention solves the above-mentioned problems and provides a method for synthesizing a large diamond that grows a good quality single crystal from a large seed crystal, the characteristic of which is a diameter of 3 mm or more. The (100) face of the seed crystal is used as the growth face, and the growth face is kept at a stable pressure of diamond and at 20-60% from the eutectic point of the solvent and carbon.
In a high temperature atmosphere, the entire surface is once dissolved and then crystal is grown, and the solvent on the side that comes into contact with the carbon source during synthesis has a convex shape composed of a flat surface or a curved surface. To grow under the predominant pressure and temperature conditions.

(作用) 上述したように、第1図に示す従来の合成方法で直径
8mm以上の大型単結晶を合成しようとすると、次の2点
が問題となった。
(Operation) As described above, the diameter is changed by the conventional synthesizing method shown in FIG.
There were two problems when trying to synthesize a large single crystal of 8 mm or more.

(イ)成長時間が極めて長く、2週間以上を必要とす
る。
(A) The growth time is extremely long and requires 2 weeks or more.

(ロ)直径6〜7mm(2カラッット)以上の大きさから
急速に金属溶媒の巻き込みが生じ、良質な単結晶が得ら
れない。
(B) From a size of 6 to 7 mm (2 carats) or more, the metal solvent is rapidly entrained, and a good single crystal cannot be obtained.

上記(イ)の問題を解決するためには、大きな種結晶
を用いることが効果的である。それは、成長速度が結晶
の表面積に比例するため、表面積の小さい初期の成長速
度が著しく遅いことに起因する。例えば直径1mmの種結
晶を用いると、単結晶が3mmになるのに1週間、6mmにな
るのに10日間、8mmに達するのに2週間を要する。従っ
て当初から3mm以上の種結晶を用いれば、成長時間は1/2
以下に低減される。
In order to solve the above problem (a), it is effective to use a large seed crystal. This is because the growth rate is proportional to the surface area of the crystal, and the initial growth rate with a small surface area is extremely slow. For example, when a seed crystal with a diameter of 1 mm is used, it takes 1 week for the single crystal to reach 3 mm, 10 days for reaching 6 mm, and 2 weeks for reaching 8 mm. Therefore, if a seed crystal of 3 mm or more is used from the beginning, the growth time will be 1/2.
It is reduced below.

ところが、従来方式では直径3mm以上の種結晶を用
い、いきなり大きな単結晶を成長させようとすると、種
結晶上で複数の小さな単結晶が成長する。このため、複
数の成長基点を有する集合晶で、かつ溶媒の巻き込みが
多い結晶しか合成できなかった。この原因は従来の合成
方法が第1図に示すように、溶媒(12)と種結晶(13)
の間に、種結晶溶解防止層(14)を介在せしめ、溶媒
(12)の炭素濃度が過飽和になるまで、溶解防止層(1
4)が消失せず、種結晶(13)の溶解を防止していた点
にある。
However, in the conventional method, when a seed crystal having a diameter of 3 mm or more is used and a large single crystal is suddenly grown, a plurality of small single crystals grow on the seed crystal. For this reason, only aggregated crystals having a plurality of growth base points and involving many solvent inclusions could be synthesized. The cause of this is that the solvent (12) and seed crystal (13) were
A seed crystal dissolution preventing layer (14) is interposed between the two layers until the carbon concentration of the solvent (12) becomes supersaturated.
The point is that 4) did not disappear and the dissolution of the seed crystal (13) was prevented.

即ち、 大きな種結晶を用いる時、広い溶解防止層を用いるた
めに、溶解防止層の消失が一様ではなく、いくつかの部
分で溶媒と種結晶が接触する。そして、その各部分か
ら、それぞれ結晶成長が起こるため、集合晶の結晶しか
得られない。
That is, when a large seed crystal is used, the dissolution prevention layer is wide, so that the dissolution prevention layer disappears unevenly, and the solvent and the seed crystal contact at some portions. Then, since crystal growth occurs from each of the portions, only aggregate crystals can be obtained.

溶媒が過飽和の状態で種結晶と接触するため、結晶成
長がすぐ起こる。このため、種結晶上のステップや欠
陥、ゴミが含有され、それを起因として、溶媒の巻き込
みが生じ易い。
Crystal growth occurs immediately because the solvent contacts the seed crystal in a supersaturated state. For this reason, steps, defects, and dusts are contained on the seed crystal, and as a result, entrainment of the solvent easily occurs.

本発明者等は上記の問題点を解消するため、次の方法
が有効であることを見出した。
The present inventors have found that the following method is effective in order to solve the above problems.

即ち、種結晶の表面を一度溶解させることにより、種
結晶上のステップや欠陥、ゴミ等を消失させ、清浄な成
長面を得る。さらに、徐々に未飽和→飽和→過飽和と炭
素濃度を上げて行くことにより、溶解した種結晶表面全
体から一様に結晶成長させる方法である。
That is, by once dissolving the surface of the seed crystal, steps, defects, dust, etc. on the seed crystal are eliminated, and a clean growth surface is obtained. Further, it is a method of uniformly growing crystals from the entire surface of the dissolved seed crystal by gradually increasing the carbon concentration such as unsaturated → saturated → supersaturated.

そして、上記方法を実施する手段としては、下記の2
の方法が有効であること見出した。
And, as means for carrying out the above method, the following 2
It was found that the above method is effective.

その一つは、溶解防止層を用いず、あらかじめ溶媒中
に飽和濃度以下の炭素を含有させておき、溶媒が溶ける
のと同時に種結晶の表面を溶解させ、炭素源(第1図11
参照)から炭素が拡散してくるのを利用して徐々に炭素
濃度を上げ、単結晶を成長させる方法である。
One of them is that the dissolution preventing layer is not used and carbon having a saturation concentration or less is contained in the solvent in advance, and at the same time as the solvent is dissolved, the surface of the seed crystal is dissolved and the carbon source (see FIG.
This is a method of gradually increasing the carbon concentration by utilizing the diffusion of carbon from (see) and growing a single crystal.

この場合、あらかじめ溶媒中に含有させておく炭素濃
度が極めて重要で、上限は結晶成長させる条件下の飽和
濃度の95重量%で、下限は30重量%であることがわかつ
た。上限値より高い濃度では種結晶表面の溶解が実質的
に生じない。又下限値より低い濃度では、種結晶が完全
に溶解消失するという問題が生じた。さらに、安定して
結晶成長させるのに好ましい濃度は50〜90重量%の範囲
であることが判明した。
In this case, it was found that the concentration of carbon contained in the solvent in advance was extremely important, the upper limit was 95% by weight of the saturated concentration under the conditions for crystal growth, and the lower limit was 30% by weight. At a concentration higher than the upper limit, dissolution of the seed crystal surface does not substantially occur. On the other hand, if the concentration is lower than the lower limit, the problem that the seed crystal is completely dissolved and disappeared occurs. Further, it has been found that the preferable concentration for stable crystal growth is in the range of 50 to 90% by weight.

第2の方法は、溶解防止層の代りに溶解調節層を用い
ることである。溶解調節層としては、Pd、Pt、Rb、Ir、
Ru、Osの中の一元素又は複数の元素よりなる金属に、5
〜30重量%のNi又はCoを加えた金属層を用いた。前者の
金属は高融点金属で、かつ炭化物を作らない点におい
て、本発明の目的に適している。高融点金属である必要
は、溶媒が溶ける温度以下で溶解しないためである。又
溶解調節層が炭化物を作る場合には、種結晶表面に炭化
物が生成され、核発生することがあるので本発明の目的
には適していない。
The second method is to use a dissolution control layer instead of the dissolution prevention layer. As the dissolution control layer, Pd, Pt, Rb, Ir,
5 for metals consisting of one or more elements in Ru and Os
A metal layer with ~ 30 wt% Ni or Co was used. The former metal is a refractory metal and is suitable for the purpose of the present invention in that it does not form a carbide. The high melting point metal is necessary because it does not dissolve below the temperature at which the solvent dissolves. Further, when the dissolution adjusting layer forms carbides, carbides may be generated on the surface of the seed crystal and nucleation may occur, which is not suitable for the purpose of the present invention.

前者の金属だけであると、溶媒中の炭素が過飽和とな
るまで溶解しないので、従来方法と同様の欠点が生じ
る。従って、本発明では、前者の金属にNi、Coの1種又
は2種の元素を加えることにより、溶媒中の炭素が過飽
和になる前に、溶解調節層が一様に溶け、前述の目的を
達成することを見出した。同時に、Ni、Coの濃度が5〜
30重量%の範囲にあることが好ましいことも見出した。
当該値より小さい場合には集合晶の結晶が成長し、大き
い場合には種結晶が溶けるという問題がある。又Ni、Co
の代りに、Feも同様の効果があるが、合成条件下で炭化
物を生成する場合がある。
The former metal alone does not dissolve until the carbon in the solvent becomes supersaturated, and thus has the same drawbacks as the conventional method. Therefore, in the present invention, by adding one or two elements of Ni and Co to the former metal, the dissolution control layer is uniformly dissolved before the carbon in the solvent becomes supersaturated, and the above-mentioned object is achieved. Found to achieve. At the same time, the concentration of Ni and Co is 5 to
It has also been found that it is preferably in the range of 30% by weight.
If it is smaller than the value, aggregate crystals grow, and if it is larger, the seed crystal melts. Also Ni, Co
Instead of, Fe also has a similar effect, but may form carbides under synthetic conditions.

次に、前述の(ロ)の問題を解決するための本発明に
おける手段について説明する。
Next, means in the present invention for solving the above-mentioned problem (b) will be described.

第1図に示す従来の合成方法では、単結晶の成長に伴
ない、下記のような問題点が生ずるため、2カラット以
上で金属溶媒を含まない良質な単結晶を得ることが難し
かった。
According to the conventional synthesis method shown in FIG. 1, the following problems occur with the growth of the single crystal, so that it is difficult to obtain a good quality single crystal of 2 carats or more and containing no metal solvent.

即ち、 結晶成長に伴なって成長表面の温度が高温に移行する
ため、成長面が低次の面から高次の面へ変化する。成長
面が変化すると、金属溶媒の巻き込みを生じ易い。
That is, since the temperature of the growth surface shifts to a high temperature as the crystal grows, the growth surface changes from a low-order surface to a high-order surface. When the growth surface changes, the inclusion of the metal solvent is likely to occur.

従来方法の溶媒形状では、結晶表面の炭素濃度が均一
でなく、過飽和度に分布が生じ、成長し易い部分と、し
難い部分が生ずる。成長し難い部分は金属溶媒がとり込
まれ易い。
In the solvent shape of the conventional method, the carbon concentration on the crystal surface is not uniform, the distribution of supersaturation occurs, and there are a portion that easily grows and a portion that does not easily grow. The metal solvent is easy to be taken into the part where it is difficult to grow.

本発明者等は上記の問題点を解決するために、次
の2つの方法が有効であること見出した。
The present inventors have found that the following two methods are effective for solving the above problems.

その第1は、種結晶面を(100)面とし、最大成長面
が(100)面で、かつ炭素の拡散方向と垂直になるよ
う、溶媒と炭素の共晶点より20〜60℃高い温度範囲で結
晶成長させる。
The first is a temperature of 20 to 60 ° C higher than the eutectic point of the solvent and carbon so that the seed crystal plane is the (100) plane and the maximum growth plane is the (100) plane and is perpendicular to the carbon diffusion direction. The crystal is grown within the range.

単結晶合成の圧力、温度条件による成長面の相違を第
2図に示す。同図に示すように、種結晶上の圧力、温度
条件、即ち点A、点Bから成長を開始すると、成長面は
次第に高温側に移行し、点A′、点B′となる。前者は
成長面が(100)面→(111)面へ、後者は(111)面→
(110)面へ移行し、溶媒の巻き込みが生じ易くなる。
このため、最大成長面が常に(100)面となるように結
晶成長に合せて合成温度を下げる方法が有効である。
FIG. 2 shows the difference in the growth surface depending on the pressure and temperature conditions for single crystal synthesis. As shown in the figure, when the growth is started from the pressure and temperature conditions on the seed crystal, that is, from the points A and B, the growth surface gradually shifts to the high temperature side and becomes points A ′ and B ′. The growth surface of the former is (100) surface → (111) surface, and that of the latter is (111) surface →
It shifts to the (110) plane, and the inclusion of the solvent easily occurs.
Therefore, it is effective to lower the synthesis temperature according to the crystal growth so that the maximum growth plane is always the (100) plane.

その第2は、結晶成長面の炭素濃度を均一にするた
め、中央部が外周部に対して20〜200%高いか、又は高
温側の一部を球状にした溶媒を用いる。
Secondly, in order to make the carbon concentration on the crystal growth surface uniform, a solvent in which the central portion is 20 to 200% higher than the outer peripheral portion or a portion of the high temperature side is spherical is used.

従来の合成法では、第1図の形状の溶媒(12)を用い
ていた。このため、第3図に示すように、炭素濃度(等
濃度線が同一濃度部分を示している)は中央部(A)で
は低く、外周部(B)では高いという現象が現われる。
このため、この中で(100)面を種結晶面として結晶成
長させると、中央部(A)では外周部(B)に比較して
過飽和度が低く、成長速度が遅くなって中央部(A)に
溶媒の巻き込みが生じ易くなるという欠点がある。結晶
が大きくなればなる程、中央部(A)と外周部(B)の
濃度差が大きくなって、成長速度にますます大きな差が
生じてくる。このため、2カラット(直径6〜7mm)以
上になると、急速に金属溶媒の巻き込みが生ずるものと
考えられる。
In the conventional synthesis method, the solvent (12) having the shape shown in FIG. 1 was used. Therefore, as shown in FIG. 3, the carbon concentration (the isoconcentration lines indicate the same concentration portion) is low in the central portion (A) and high in the outer peripheral portion (B).
For this reason, when the crystal is grown with the (100) plane as the seed crystal plane, the degree of supersaturation in the central portion (A) is lower than that in the outer peripheral portion (B), and the growth rate becomes slower. ) Has a drawback that the solvent is likely to be involved. The larger the crystal, the larger the difference in concentration between the central portion (A) and the outer peripheral portion (B), resulting in an even greater difference in the growth rate. Therefore, it is considered that the entrainment of the metal solvent occurs rapidly when the thickness is 2 carats (diameter 6 to 7 mm) or more.

本発明ではかかる欠点を解消するため、第4図に示す
ように、溶媒中央部(A)の溶媒高さ(H0)に比較し
て、外周部(B)の溶媒高さ(H1)が小さい溶媒を用い
た。
To eliminate such drawbacks the present invention, as shown in FIG. 4, the solvent central solvent height (A) compared to (H 0), the solvent height of the outer peripheral portion (B) (H 1) A solvent having a small value was used.

なお、第3図及び第4図は有限要素法で計算した炭素
濃度分布である。又軸対称であるため、右側半分の断面
図のみ記載してある。
Note that FIG. 3 and FIG. 4 are carbon concentration distributions calculated by the finite element method. Since it is axisymmetric, only the right half cross-sectional view is shown.

第4図より判るように、本発明によって、中心部
(A)と外周部(B)の濃度差は殆んどなくなってお
り、この方法で合成した単結晶は直径8mm以上の大型の
ものでも、不純物の巻き込みが生じなかった。
As can be seen from FIG. 4, according to the present invention, the difference in concentration between the central portion (A) and the outer peripheral portion (B) is almost eliminated, and the single crystal synthesized by this method is large even with a diameter of 8 mm or more. However, the inclusion of impurities did not occur.

本発明の効果は、特に前述の溶媒高さの比H0/H1が1.2
〜3の間で効果を発揮することが判明した。1.2以下で
は前述の効果はなく、3以上では逆に中央部(A)が高
く、外周部(B)が低くなるという結果となる。
The effect of the present invention is that the above-mentioned solvent height ratio H 0 / H 1 is 1.2.
It was found that the effect was exhibited between ~ 3. If it is 1.2 or less, the above effect is not obtained, and if it is 3 or more, the central portion (A) is high and the outer peripheral portion (B) is low.

又第4図の形状以外に、溶媒と炭素源が接触している
部分を球面にしたものでも同様の効果が得られた。さら
に、球面の一部又は曲面によって構成される場合も同様
の効果が得られた。この場合重要なのは結晶成長時のH0
/H1の比であり、合成前のセット時の形状ではない。
In addition to the shape shown in FIG. 4, the same effect can be obtained by using a spherical surface in the portion where the solvent and the carbon source are in contact with each other. Further, the same effect was obtained when it was formed by a part of spherical surface or a curved surface. In this case, the important factor is H 0 during crystal growth.
/ H 1 ratio, not the shape when set before composition.

本発明を最も効果的に活用する方法として、下記の改
良を加えることにより、溶媒と同一形状の断面を持った
直径8mm以上の大型単結晶の合成が可能となった。
As a most effective use of the present invention, the following improvements have been made possible to synthesize a large single crystal having a cross section of the same shape as the solvent and having a diameter of 8 mm or more.

種結晶の対角線長を溶媒直径の1/4以上とする。The diagonal length of the seed crystal is 1/4 or more of the solvent diameter.

溶媒の種結晶側の形状を円錐台とし、該円錐台の小さ
い面積の方の円形表面に種結晶を配置する。さらに、該
円錐面と円形表面のなす角を5゜〜45゜以内にする。
The shape of the solvent on the seed crystal side is a truncated cone, and the seed crystal is arranged on the circular surface of the truncated cone having a smaller area. Further, the angle between the conical surface and the circular surface is within 5 ° to 45 °.

上記を実施した溶媒を第5図に示す。種結晶(5
4)の対角線長(R0)を溶媒直径(R1)の1/4以上にする
ことにより、結晶直径がR1に達するまでに巻き込まれる
金属溶媒が減少した。これは、炭素と溶媒の共晶点より
も20〜60℃高い温度範囲の条件で合成していても(11
3)等の高次の面が時折り成長することがある。これは
当該面の成長及び消失によって金属溶媒が巻き込まれ易
くなるためである。しかるに、上述の第5図のR0/R1を1
/4以上にすると、R1に達するまで高次の面が出る確立が
減少した。
The solvent which carried out the above is shown in FIG. Seed crystal (5
By making the diagonal length (R 0 ) of 4) 1/4 or more of the solvent diameter (R 1 ), the amount of metal solvent involved before the crystal diameter reaches R 1 was reduced. Even if it was synthesized in the temperature range of 20 to 60 ° C higher than the eutectic point of carbon and solvent (11
3) etc. Higher surface may grow occasionally. This is because the growth and disappearance of the surface facilitates the inclusion of the metal solvent. Therefore, R 0 / R 1 in FIG.
Above / 4, the probability of higher order planes reaching R 1 was reduced.

又円錐面の角度も、単結晶対角線長(R0)が溶媒直径
(R1)に達するまでの金属溶媒の巻き込みを減少させ
る。特にR0R1付近で多量に溶媒を巻き込むことに対し
て効果がある。
The angle of the conical surface also reduces the entrainment of the metallic solvent until the single crystal diagonal length (R 0 ) reaches the solvent diameter (R 1 ). In particular, it is effective for involving a large amount of solvent near R 0 R 1 .

(実施例1) 第6図に示すように本発明における溶媒を用いて、5.
6GPa、1340℃の圧力温度条件下で、溶媒中の炭素添加量
を加え、単結晶合成を実施した。
Example 1 As shown in FIG. 6, using the solvent of the present invention, 5.
Under the pressure temperature condition of 6GPa and 1340 ° C., the amount of carbon added in the solvent was added to carry out single crystal synthesis.

溶媒金属は、Fe−50Niを用い、炭素との共晶温度は13
00℃であった。(100)面の1辺の長さが3mmの種結晶を
用い、(100)面が常に支配的に成長するように成長さ
せた。合成に要した時間は140時間であった。
Fe-50Ni was used as the solvent metal, and the eutectic temperature with carbon was 13
It was 00 ° C. A seed crystal in which one side of the (100) plane had a length of 3 mm was grown so that the (100) plane was always dominantly grown. The time required for the synthesis was 140 hours.

結果は第1表の通りである。 The results are shown in Table 1.

(実施例2) 第7図に示すような本発明における溶媒調節層を用い
て、(100)面が支配的なダイヤモンド安定領域、溶解
調節層(Pd−Co合金)のCo量を変化させ、単結晶の合成
を実施した。使用した溶媒はFe−70Niを用い、当該溶媒
と炭素の共晶温度は1250℃であった。
(Example 2) By using the solvent control layer in the present invention as shown in FIG. 7, the diamond stable region in which the (100) plane is dominant and the Co content of the dissolution control layer (Pd-Co alloy) are changed, Single crystal synthesis was performed. The solvent used was Fe-70Ni, and the eutectic temperature of the solvent and carbon was 1250 ° C.

合成温度は1280℃で行ない、合成圧力は5.6GPaであっ
た。合成に要した時間は98時間であった。
The synthesis temperature was 1280 ° C, and the synthesis pressure was 5.6 GPa. The time required for the synthesis was 98 hours.

結果は第2表の通りである。 The results are shown in Table 2.

第2表のように、Co添加量が5〜30重量%の時に、1
辺の長さが8mm以上の良質な結果が得られた。
As shown in Table 2, when the amount of Co added is 5 to 30% by weight, 1
Good results were obtained with a side length of 8 mm or more.

又Pdの代りに、Pt、Ph、Ir、Ru、Osの中の一元素又は
複数の元素及びCo、Ni、Co−Ni合金を添加しても同様な
結晶が得られた。
Similar crystals were also obtained by adding one or more elements of Pt, Ph, Ir, Ru, Os and Co, Ni, Co-Ni alloy instead of Pd.

(実施例3) 第6図に示すような本発明における溶媒を用い、溶媒
の中央高さ(H0)と外周高さ(H1)の比を変化させ、合
成した単結晶に及ぼす影響を調査した。
Example 3 Using a solvent according to the present invention as shown in FIG. 6, the ratio of the central height (H 0 ) to the outer peripheral height (H 1 ) of the solvent was changed to show the influence on the synthesized single crystal. investigated.

結果は第3表の通りである。 The results are shown in Table 3.

使用した溶媒はFe−50Niを用い、溶媒中にあらかじめ
飽和濃度の90重量%の炭素を含有させたものを用いた。
合成条件は5.5GPa、1330℃の圧力、温度条件下で、98時
間かけて成長させた。
The solvent used was Fe-50Ni, and the solvent contained 90% by weight of saturated concentration of carbon in advance.
The growth conditions were 5.5 GPa, pressure and temperature of 1330 ° C., and the growth was performed for 98 hours.

(実施例4) 第5図に示すような本発明における溶媒を用い、溶媒
外径(R1)と種結晶の対角線長(R0)の比を変化させて
その影響を調査した。
Example 4 Using a solvent according to the present invention as shown in FIG. 5, the influence was investigated by changing the ratio of the solvent outer diameter (R 1 ) and the diagonal length (R 0 ) of the seed crystal.

溶媒はFe−50Niを用い、溶媒中にあらかじめ飽和濃度
の90重量%の炭素を含有させたおいた。合成条件は5.6G
Pa、1340℃で144時間成長させた。
Fe-50Ni was used as the solvent, and 90% by weight of the saturated concentration of carbon was previously contained in the solvent. Synthesis condition is 5.6G
It was grown at Pa and 1340 ° C. for 144 hours.

結果は第4表の通りである。なお、実験No.32〜34で
合成した単結晶は溶媒の断面と同一の形状となった。
The results are as shown in Table 4. The single crystals synthesized in Experiment Nos. 32 to 34 had the same shape as the cross section of the solvent.

(実施例5) 第6図に示すような本発明における溶媒を用いて、5.
6GPa圧力下、1280〜1380℃まで温度条件を変化させて単
結晶を合成した。
Example 5 Using the solvent of the present invention as shown in FIG. 6, 5.
The single crystal was synthesized under the pressure of 6 GPa by changing the temperature condition from 1280 to 1380 ℃.

溶媒はFe−50Niを用い、あらかじめ炭素飽和濃度の80
重量%(添加重量4.4重量%)を含有させたものを用い
た。種結晶は、1辺の長さが3mmの(100)面を用いた。
合成に要した時間は98時間であった。
Fe-50Ni was used as the solvent, and the carbon saturation concentration was adjusted to 80
The thing containing the weight% (addition weight 4.4 weight%) was used. As the seed crystal, a (100) plane having a side length of 3 mm was used.
The time required for the synthesis was 98 hours.

結果は第5表の通りである。 The results are shown in Table 5.

(発明の効果) 以上説明したように、本発明の合成方法によれば、種
結晶を一度溶解させることにより、大きな種結晶から良
質な単結晶を成長させることが可能となり、成長時間を
著しく短縮することが可能となった。
(Effects of the Invention) As described above, according to the synthesis method of the present invention, by dissolving a seed crystal once, it becomes possible to grow a good quality single crystal from a large seed crystal, and the growth time is significantly shortened. It became possible to do.

又(100)面の種結晶面を用い、溶媒と炭素源の共晶
点より20〜60℃高い温度条件で合成することにより、さ
らに中央部が外周部より高い溶媒を用いることにより、
良質な直径8mm以上の単結晶合成が実現出来る。
Further, by using a seed crystal plane of (100) plane, by synthesizing at a temperature condition 20 to 60 ° C. higher than the eutectic point of the solvent and the carbon source, by using a solvent in which the central portion is higher than the outer peripheral portion,
Realizes high quality single crystal synthesis with a diameter of 8 mm or more.

従って、従来使用出来なかった8mm以上の大きさを必
要とするCO2レーザー窓材、赤外線窓材、医療用メス、I
Cボンダー等の用途として極めて効果的である。
Therefore, CO 2 laser window material, infrared window material, medical scalpel, I
It is extremely effective for applications such as C bonders.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来の温度差法によるダイヤモンドの合成方法
の一例の説明図である。 第2図はダイヤモンドの各面の成長圧力温度領域図であ
る。 第3図及び第4図はそれぞれ有限要素法で計算した従来
方法及び本発明方法の炭素濃度図である。 第5図、第6図及び第7図はいずれも本発明の合成方法
の説明図である。
FIG. 1 is an explanatory view of an example of a conventional diamond synthesis method by a temperature difference method. FIG. 2 is a growth pressure temperature region diagram of each surface of diamond. FIG. 3 and FIG. 4 are carbon concentration diagrams of the conventional method and the method of the present invention calculated by the finite element method. 5, 6 and 7 are all explanatory views of the synthesis method of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温度差法を用いてダイヤモンドを合成する
方法において、直径3mm以上の種結晶の(100)面を成長
面として用い、該成長面をダイヤモンドの安定圧力下
で、かつ溶媒と炭素の共晶点より20〜60℃高い温度雰囲
気において全表面を一度溶解した後結晶成長させ、さら
に合成時の炭素源と接触する側の溶媒形状が平面もしく
は曲面で構成される凸形状を有する溶媒を用い、(10
0)面を支配的な圧力温度条件下で成長させることを特
徴とする大型ダイヤモンドの合成方法。
1. A method for synthesizing diamond using a temperature difference method, wherein a (100) face of a seed crystal having a diameter of 3 mm or more is used as a growth face, the growth face is under a stable pressure of diamond, and a solvent and carbon are used. Solvent which has a convex shape in which the solvent shape on the side in contact with the carbon source during synthesis is flat or curved after the entire surface is once dissolved in an atmosphere at a temperature 20 to 60 ° C. higher than the eutectic point of And use (10
A method for synthesizing large diamond, characterized in that 0) planes are grown under the predominant pressure and temperature conditions.
【請求項2】種結晶面を溶かすのに、該成長条件におけ
る炭素飽和濃度の50〜90重量%の炭素をあらかじめ含有
した溶媒を用いることを特徴とする請求項(1)記載の
大型ダイヤモンドの合成方法。
2. A large diamond according to claim 1, wherein a solvent containing carbon in an amount of 50 to 90% by weight of the saturated carbon concentration under the growth conditions is used to dissolve the seed crystal plane. Synthesis method.
【請求項3】凸形状を有する溶媒の中央部が外周部より
20〜200%厚いか、又は炭素源との接触部が球形をなし
ていることを特徴とする請求項(1)記載の大型ダイヤ
モンドの合成方法。
3. The central portion of the solvent having a convex shape is closer to the outer peripheral portion.
The method for synthesizing a large diamond according to claim (1), which is 20 to 200% thick or has a spherical shape in a contact portion with a carbon source.
【請求項4】種結晶として溶媒直径の1/4以上の対角線
を有する種結晶を用い、種結晶側が円錐台である溶媒の
小さい方の円形表面に種結晶を配置し、上記円錐台の円
錐面と前記円形表面のなす角度が5〜45゜である溶媒を
用いることにより、ダイヤモンド断面形状と溶媒断面形
状を同一にすることを特徴とする請求項(1)記載の大
型ダイヤモンドの合成方法。
4. A seed crystal having a diagonal line of 1/4 or more of the solvent diameter is used as the seed crystal, and the seed crystal is arranged on the smaller circular surface of the solvent having a truncated cone on the side of the seed crystal. The method for synthesizing a large diamond according to claim (1), wherein the diamond cross-sectional shape and the solvent cross-sectional shape are made the same by using a solvent having an angle between a plane and the circular surface of 5 to 45 °.
JP16991588A 1988-07-06 1988-07-06 Large diamond synthesis method Expired - Lifetime JP2678214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16991588A JP2678214B2 (en) 1988-07-06 1988-07-06 Large diamond synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16991588A JP2678214B2 (en) 1988-07-06 1988-07-06 Large diamond synthesis method

Publications (2)

Publication Number Publication Date
JPH0217934A JPH0217934A (en) 1990-01-22
JP2678214B2 true JP2678214B2 (en) 1997-11-17

Family

ID=15895315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16991588A Expired - Lifetime JP2678214B2 (en) 1988-07-06 1988-07-06 Large diamond synthesis method

Country Status (1)

Country Link
JP (1) JP2678214B2 (en)

Also Published As

Publication number Publication date
JPH0217934A (en) 1990-01-22

Similar Documents

Publication Publication Date Title
JPH0779958B2 (en) Large diamond synthesis method
KR100216619B1 (en) Diamond synthesis
Wentorf Jr Diamond growth rates
JPH06182184A (en) Synthesis of single crystal diamond
JP2678214B2 (en) Large diamond synthesis method
JPH07165494A (en) Method of improving toughness of manufactured diamond
JPH01266840A (en) Production of diamond crystal
JPS58161995A (en) Method for synthesizing diamond
JPS5926992A (en) Preparation of single crystal ferrite
EP0603995A1 (en) Process for the synthesising diamond single crystals
KR100394971B1 (en) process for producing nitrogen-doped semiconductor wafers
JPH06165929A (en) Method for synthesizing diamond single crystal
JPH05329356A (en) Method for synthesizing diamond single crystal
JP3282249B2 (en) Method of synthesizing diamond single crystal
JP3855177B2 (en) Method for producing diamond single crystal by recrystallization
JPS58181800A (en) Crucible
JPS60145958A (en) Synthesis of boron nitride
JPH01197382A (en) Quartz crucible for pulling-up silicon single crystal
JPS6317492B2 (en)
JPS5921594A (en) Crucible
JPH05138000A (en) Method for synthesizing diamond single crystal
JPS5964598A (en) Growth of lanthanum hexaboride single crystal
JP2003277184A (en) Method for synthesizing diamond
JPH05156384A (en) Manufacture of titanium-tungsten target material
JPS5826017A (en) Synthesizing method for diamond

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

EXPY Cancellation because of completion of term