JP2674087B2 - Curved glass substrate for solar cell, method for manufacturing the same, and solar cell - Google Patents

Curved glass substrate for solar cell, method for manufacturing the same, and solar cell

Info

Publication number
JP2674087B2
JP2674087B2 JP63124890A JP12489088A JP2674087B2 JP 2674087 B2 JP2674087 B2 JP 2674087B2 JP 63124890 A JP63124890 A JP 63124890A JP 12489088 A JP12489088 A JP 12489088A JP 2674087 B2 JP2674087 B2 JP 2674087B2
Authority
JP
Japan
Prior art keywords
glass substrate
solar cell
transparent conductive
conductive film
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63124890A
Other languages
Japanese (ja)
Other versions
JPH01295467A (en
Inventor
進 八馬
具也 滝川
信也 菊川
幸一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63124890A priority Critical patent/JP2674087B2/en
Priority to DE68911201T priority patent/DE68911201T2/en
Priority to AU35106/89A priority patent/AU631354B2/en
Priority to US07/356,234 priority patent/US5059254A/en
Priority to EP89109383A priority patent/EP0343628B1/en
Publication of JPH01295467A publication Critical patent/JPH01295467A/en
Priority to US07/733,874 priority patent/US5149351A/en
Application granted granted Critical
Publication of JP2674087B2 publication Critical patent/JP2674087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J7/00Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs
    • B60J7/02Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs of sliding type, e.g. comprising guide shoes
    • B60J7/04Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs of sliding type, e.g. comprising guide shoes with rigid plate-like element or elements, e.g. open roofs with harmonica-type folding rigid panels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3482Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising silicon, hydrogenated silicon or a silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/002Windows; Windscreens; Accessories therefor with means for clear vision, e.g. anti-frost or defog panes, rain shields
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、曲面形状を有する太陽電池に適したガラス
基板及びその製造法並びに太陽電池に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a glass substrate suitable for a solar cell having a curved surface shape, a method for manufacturing the same, and a solar cell.

[従来の技術] 太陽電池は、石油、石炭、天然ガスなどと比べ無限な
エネルギー源である太陽光を利用し、公害を生むことな
くクリーンな方法で電力を得られる光電変換装置として
注目されている。かかる太陽電池の中では、光電変換機
能を司る半導体層にアモルファスシリコン(a−Si)を
用いた太陽電池が、製造コストが低く、ある程度良好な
変換効率が得られるので広く使用されている。アモルフ
ァスシリコン(a−Si)太陽電池の代表的な例として、
第4図に示したような、透明絶縁基板41上に形成された
透明電導膜42の上にp型a−Si層43、i型a−Si層44、
及びn型a−Si層45からなるa−Si半導体層46と、アル
ミニウム電極47を順次積層したa−Si太陽電池48が挙げ
られる。かかるa−Si太陽電池48においては、光49が透
明絶縁基板41側から入射し、a−Si層46内で吸収され、
透明電導膜42とアルミニウム電極47との間に起電力を生
じ、導線50を通して電力が取り出される。
[Prior Art] Solar cells are attracting attention as photoelectric conversion devices that use sunlight, which is an infinite energy source compared to petroleum, coal, natural gas, etc., and can generate electric power in a clean method without causing pollution. There is. Among such solar cells, a solar cell using amorphous silicon (a-Si) for a semiconductor layer having a photoelectric conversion function is widely used because of its low manufacturing cost and good conversion efficiency. As a typical example of an amorphous silicon (a-Si) solar cell,
As shown in FIG. 4, on the transparent conductive film 42 formed on the transparent insulating substrate 41, the p-type a-Si layer 43, the i-type a-Si layer 44,
And an a-Si semiconductor layer 46 including an n-type a-Si layer 45 and an a-Si solar cell 48 in which an aluminum electrode 47 is sequentially laminated. In the a-Si solar cell 48, the light 49 enters from the transparent insulating substrate 41 side and is absorbed in the a-Si layer 46,
An electromotive force is generated between the transparent conductive film 42 and the aluminum electrode 47, and the electric power is taken out through the conducting wire 50.

かかるa−Si太陽電池は、既に小サイズのものが電卓
用、時計用などの電池として使用されているが、将来、
光電変換効率の向上、大面積化、低コストにより、発電
用の太陽電池や、自動車用、船舶用などの太陽電池とし
ての用途が期待されている。自動車用太陽電池は、これ
を自動車に搭載することにより駐車時の車内換気やその
他エレクトロニクス機器の駆動用の電源として利用が期
待される。
Although such a-Si solar cells have already been used as batteries for calculators, watches, etc. in a small size, in the future,
Due to improvement in photoelectric conversion efficiency, increase in area, and cost reduction, it is expected to be used as a solar cell for power generation, a solar cell for automobiles, ships, and the like. The solar cell for automobiles is expected to be used as a power source for ventilation in the vehicle during parking and for driving other electronic devices by mounting the solar cell on the automobile.

[発明の解決しようとする課題] a−Si太陽電池の用途としては上述のような分野が期
待されるが、具体的な用途によっては曲面形状を有する
太陽電池が望まれる。例えば、自動車の場合は、自動車
車体の空気力学的性能の向上、意匠上のデザインの点か
らも曲面形状の太陽電池が求められる。
[Problems to be Solved by the Invention] Although the fields as described above are expected as applications of a-Si solar cells, solar cells having a curved shape are desired depending on specific applications. For example, in the case of an automobile, a curved surface solar cell is required in terms of improvement of aerodynamic performance of an automobile body and design.

今までに、平板状の小さなシリコンウエハーからなる
太陽電池を2枚のガラスの間に埋め込んだ合わせガラス
タイプのものをサンルーフなどに用いることは知られて
いるが、このシリコンウエハー自体は曲げ加工ができな
いため、平板状でしか使用できない制約や、コスト高、
生産性の面で劣るものであり、意匠性や生産性の面から
は、太陽電池自体が曲面形状を有することが望まれる。
Up to now, it has been known to use a laminated glass type in which a solar cell composed of a flat small silicon wafer is embedded between two pieces of glass for a sunroof, etc., but this silicon wafer itself is not bendable. Because it can not be done, restrictions that can only be used in the form of a plate, high cost
It is inferior in terms of productivity, and it is desired that the solar cell itself has a curved shape in terms of designability and productivity.

曲面形状を有する太陽電池の構成としては、可撓性を
有するプラスチックフィルムを透明絶縁基体としたもの
が考えられるが、プラスチックフィルムでは耐候性が不
十分であり、又、自動車用など空間に露出した状態で使
用される場合、耐衝撃性、耐擦傷性などの面でも問題を
有しており、かつ太陽電池のa−Si半導体膜を形成する
時の高温に耐えられないなどの問題もあるので、プラス
チックフィルムは太陽電池の透明絶縁基体としては不適
切である。
As a constitution of a solar cell having a curved shape, it is possible to use a flexible plastic film as a transparent insulating substrate, but the plastic film has insufficient weather resistance and is exposed to a space such as an automobile. When used in the state, it has problems in terms of impact resistance, scratch resistance, etc., and there is also a problem that it cannot withstand high temperatures when forming an a-Si semiconductor film of a solar cell. , Plastic films are unsuitable as transparent insulating substrates for solar cells.

[課題を解決するための手段] 本発明は上述のような問題点を有しない、曲面形状の
太陽電池に適した基体を提供することを目的として成さ
れたものであり、ガラス基板を加熱した後、該ガラス基
板面上に透明電導膜を形成し、次いで該ガラス基板の透
明電導膜の形成された面が凹面となるように曲げ加工を
施すことを特徴とする曲面形状を有する太陽電池用ガラ
ス基板の製造方法、及びその製造方法により得られる曲
面形状を有する太陽電池用ガラス基板を提供するもので
ある。
[Means for Solving the Problems] The present invention has been made for the purpose of providing a substrate suitable for a solar cell having a curved surface shape, which does not have the above-mentioned problems, and a glass substrate is heated. After that, a transparent conductive film is formed on the surface of the glass substrate, and then a bending process is performed so that the surface of the glass substrate on which the transparent conductive film is formed is a concave surface. It is intended to provide a glass substrate manufacturing method and a glass substrate for a solar cell having a curved surface shape obtained by the manufacturing method.

更に、上記曲面形状を有する太陽電池用ガラス基板の
凹面側表面に形成された透明導電膜の上に、a−Si半導
体層、背面電極を順次形成したことを特徴とする太陽電
池を提供するものである。
Further, the present invention provides a solar cell in which an a-Si semiconductor layer and a back electrode are sequentially formed on a transparent conductive film formed on the concave surface of a glass substrate for a solar cell having the above curved surface shape. Is.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

第1図aないしcは本発明の曲面形状を有する太陽電
池用ガラス基板の具体例の断面図である。
1A to 1C are cross-sectional views of specific examples of the glass substrate for a solar cell having the curved shape of the present invention.

本発明において使用されるガラス基体1としては、35
0〜800nmの波長域において、高い透過率、例えば85%以
上の透過率を有し、絶縁性かつ化学的、物理的耐久性が
高く、かつ光学的特性の良好な透明性ガラス板、例え
ば、ソーダライムシリケートガラス、アルミノシリケー
トガラス、硼珪酸ガラス、リチウムアルミノシリケート
ガラスその他各種ガラスが使用できる。
As the glass substrate 1 used in the present invention, 35
In the wavelength range of 0 ~ 800 nm, high transparency, for example, having a transmittance of 85% or more, insulating and chemical, high physical durability, and a transparent glass plate having good optical properties, for example, Soda lime silicate glass, aluminosilicate glass, borosilicate glass, lithium aluminosilicate glass and various other glasses can be used.

ガラス基板1の厚さは特に限定されないが、曲げ加工
が容易であり、かつ光の透過率の低下、重量の極端な上
昇、強度低下、取扱の不便さが起こらないように、1.0
〜5.0mm程度が適当である。
The thickness of the glass substrate 1 is not particularly limited, but it is 1.0 or less so that it can be bent easily, and the transmittance of light is not lowered, the weight is extremely increased, the strength is lowered, and inconvenience of handling does not occur.
About 5.0 mm is suitable.

本発明の曲面形状を有する太陽電池用ガラス基板の曲
率としては、特に限定されるものではないが、透明電導
膜付ガラス基板をあまり小さな曲率半径で曲げ加工する
と該透明電導膜の劣化の原因となるような著しい歪が生
じてしまうこと、又、あまり曲率の小さな透明電導膜付
ガラス基板上にはa−Si膜を均一に形成するのが難しい
ことなどの問題点があるため、曲率半径Rは80mm以上、
特に好ましくは500mm以上であることが望ましい。
The curvature of the glass substrate for a solar cell having a curved surface shape of the present invention is not particularly limited, but bending the glass substrate with a transparent conductive film with a too small radius of curvature causes the deterioration of the transparent conductive film. Since there is a problem that such a remarkable distortion occurs and it is difficult to uniformly form the a-Si film on the glass substrate with a transparent conductive film having a very small curvature, the radius of curvature R Is 80 mm or more,
It is particularly desirable that the thickness is 500 mm or more.

ガラス基板上に形成される透明電導膜としては、フッ
素が酸化錫に対し、0.1〜5重量%ドープされた酸化
錫、アンチモンが酸化錫に対し0.1〜30重量%ドープさ
れた酸化錫、錫が酸化インジウムに対し0.5〜30重量%
ドープされた酸化インジウムなどの電気伝導性の良好な
透明性金属酸化物からなるものが適当である。中でもフ
ッ素がドープされた酸化錫からなる透明電導膜は、シー
ト抵抗10Ω/□以下の低抵抗が容易に得られ、又プラズ
マCVD法によりa−Siを形成するときにさらされる還元
性の高い水素プラズマに対して高い耐性を有するので、
太陽電池用基板の透明電導膜として最適である。透明電
導膜の膜厚としては300〜10000Åが適当である。
As the transparent conductive film formed on the glass substrate, tin oxide doped with 0.1 to 5% by weight of fluorine with respect to tin oxide, tin oxide doped with 0.1 to 30% by weight of antimony with respect to tin oxide, and tin are used. 0.5-30% by weight with respect to indium oxide
Suitable are those composed of transparent metal oxides with good electrical conductivity, such as doped indium oxide. Among them, a transparent conductive film made of fluorine-doped tin oxide can easily obtain a low sheet resistance of 10 Ω / □ or less, and has a high reducibility of hydrogen exposed when forming a-Si by the plasma CVD method. Since it has high resistance to plasma,
It is most suitable as a transparent conductive film for solar cell substrates. A suitable film thickness of the transparent conductive film is 300 to 10000Å.

本発明の透明電導膜は、従来から利用されているコー
ティング法、例えばCVD法、スプレー法、スパッタリン
グ法、真空蒸着法、イオンプレーティング法、ディップ
法など各種方法により作成できる。中でも、均一性よ
く、低抵抗な電導膜が得られるCVD法、スパッタリング
法が最適である。
The transparent conductive film of the present invention can be prepared by various conventionally used coating methods such as a CVD method, a spray method, a sputtering method, a vacuum deposition method, an ion plating method and a dip method. Among them, the CVD method and the sputtering method, which can obtain a conductive film with good uniformity and low resistance, are most suitable.

本発明の曲面形状を有する太陽電池用ガラス基板にお
いて、該ガラス基板は曲面形状を有し、第1図aないし
cに示すように該ガラス基板1の凹面側表面上に透明電
導膜2が形成されている。これは、透明電導膜が形成さ
れた平板状ガラス基板を、ガラス基板の曲げ加工温度ま
で加熱して、透明電導膜が形成された面が凸となるよう
に曲げると、透明電導膜に亀裂が生じたり、ガラス基板
から剥離したりして、透明電導膜が著しく劣化する可能
性が大きいからである。しかも、実際には、光電変換層
をガラス基板の凹側表面に形成して太陽電池として使用
することが多いので、この点からも、ガラス基板の凹面
側表面に透明電導膜が形成されていることが好ましい。
例えば、具体的には、第2図に示すように、自動車のサ
ンルーフ用太陽電池としては、ガラス基板21の凸面側が
外気に露出し、ガラス基板21の凹面側、即ち車内側に透
明電導膜23、a−Si半導体層25、及び裏面電極26を形成
した太陽電池が求められているからである。
In the glass substrate for a solar cell having a curved surface of the present invention, the glass substrate has a curved surface, and the transparent conductive film 2 is formed on the concave surface of the glass substrate 1 as shown in FIGS. Has been done. This is because the flat glass substrate on which the transparent conductive film is formed is heated to the bending temperature of the glass substrate and bent so that the surface on which the transparent conductive film is formed is convex, and the transparent conductive film is cracked. This is because there is a high possibility that the transparent conductive film is significantly deteriorated due to the occurrence or peeling from the glass substrate. Moreover, in practice, the photoelectric conversion layer is often formed on the concave surface of the glass substrate to be used as a solar cell. From this point as well, the transparent conductive film is formed on the concave surface of the glass substrate. It is preferable.
For example, specifically, as shown in FIG. 2, in a solar cell for a sunroof of an automobile, the glass substrate 21 has a convex surface exposed to the outside air, and the glass substrate 21 has a concave surface, that is, a transparent conductive film 23 on the inside of the vehicle. , A-Si semiconductor layer 25 and a back electrode 26 are required for the solar cell.

なお、ガラス基板1が、ソーダライムシリケートガラ
スなどのアルカリ金属を含有するガラスからなる場合に
は、第1図bおよびcに示したように、ガラス表面から
アルカリが溶出してその上面に形成される透明電導膜2
に悪影響を及ぼさないように、酸化ケイ素膜、酸化アル
ミニウム膜、酸化ジルコニウム膜などのアルカリバリヤ
ーコート3をガラス基板1上に施してもよい。かかるア
ルカリバリヤーコートの膜厚としては、500〜800Åが適
当である。
When the glass substrate 1 is made of glass containing an alkali metal such as soda lime silicate glass, as shown in FIGS. 1B and 1C, alkali is eluted from the glass surface to form on the upper surface thereof. Transparent conductive film 2
An alkali barrier coat 3 such as a silicon oxide film, an aluminum oxide film or a zirconium oxide film may be applied on the glass substrate 1 so as not to adversely affect the above. A suitable film thickness of the alkali barrier coat is 500 to 800Å.

本発明の曲面形状を有する太陽電池用ガラス基板にお
いて、第1図cに示すように、透明電導膜2やアルカリ
バリヤーコート3の下層に、太陽電池周辺部の遮光を目
的として、セラミックカラーインク層4が周辺部に形成
されていてもよい。かかるセラミックカラーインクとし
ては、通常所望の色を発色させるための顔料、ガラス板
に密着させ塗膜を形成させるための低融点ガラスフリッ
ト、および各種耐火物フィラー、スクリーンプリント用
オイルなどから構成されているものが一般的であるが、
特に限定されるものではない。かかるセラミックカラー
インクは、該インク層上に形成されるアルカリバリヤー
コート3や透明電導膜2の成膜段階で劣化することがな
く、又、該インク層と接している上層に悪影響を及ぼさ
ないものが好ましい。
In the glass substrate for a solar cell having a curved shape of the present invention, as shown in FIG. 1c, a ceramic color ink layer is provided under the transparent conductive film 2 and the alkali barrier coat 3 for the purpose of shielding the periphery of the solar cell. 4 may be formed in the peripheral portion. Such a ceramic color ink is usually composed of a pigment for developing a desired color, a low-melting glass frit for forming a coating film by adhering to a glass plate, various refractory fillers, screen printing oil, and the like. It is common that there are
There is no particular limitation. Such a ceramic color ink does not deteriorate in the step of forming the alkali barrier coat 3 and the transparent conductive film 2 formed on the ink layer, and does not adversely affect the upper layer in contact with the ink layer. Is preferred.

第1図cに示したような曲面形状を有する太陽電池用
ガラス基板を製造する場合の最適な方法としては、ま
ず、ガラス基板の周辺部にセラミックカラーインクをス
クリーン印刷し、乾燥した後、該ガラス基板をCVD炉の
アルカリバリヤーコートのコーティングゾーンへ入れて
該ガラス基板のセラミックカラーインク層の形成された
面上にアルカリバリヤーコートを形成し、次にCVD炉の
透明電導膜コーティングゾーンに入れて、アルカリバリ
ヤーコート面上に透明電導膜を形成した後、曲げ加工を
施す方法が挙げられる。
As an optimal method for producing a glass substrate for a solar cell having a curved surface shape as shown in FIG. 1c, first, a ceramic color ink is screen-printed on the peripheral portion of the glass substrate and dried, The glass substrate is placed in the coating zone of the alkali barrier coat of the CVD furnace to form the alkali barrier coat on the surface of the glass substrate on which the ceramic color ink layer is formed, and then placed in the transparent conductive film coating zone of the CVD furnace. A method may be mentioned in which a transparent conductive film is formed on the surface of an alkali barrier coat and then bent.

本発明においては、透明電導膜が形成された太陽電池
用ガラス基板には、曲げ加工が施されている。
In the present invention, the glass substrate for a solar cell on which the transparent conductive film is formed is bent.

かかる曲げ加工方法としては、ガラス基板の曲げ加工
温度、例えばソーダライムシリケートガラスの場合に
は、570℃〜700℃の温度まで加熱したガラス基板を、プ
レス型により成形するプレス曲げ法、ガラス基板の自重
変形を利用した重力曲げ法、ガラス基板を吸着成形型に
吸着させて成形するエアフォーム曲げ法、さらにガスブ
ローによるブロー曲げ法等一般に用いられる曲げ加工方
法を採用することができる。
As such a bending method, the bending temperature of the glass substrate, for example, in the case of soda lime silicate glass, the glass substrate heated to a temperature of 570 ℃ ~ 700 ℃, press bending method to form a press mold, the glass substrate A commonly used bending method such as a gravity bending method utilizing self-weight deformation, an air foam bending method of adsorbing a glass substrate to an adsorption molding die to form it, and a blow bending method by gas blowing can be adopted.

また、これらの曲げ加工を施した後、その冷却過程
で、冷却空気を吹き付けることにより急冷強化を行なう
こともできる。強化方法については、この急冷強化法以
外にも、イオン交換による化学強化法を利用することも
できる。
Further, after these bending processes are performed, quenching can be strengthened by blowing cooling air in the cooling process. As the strengthening method, besides the quenching strengthening method, a chemical strengthening method by ion exchange can be used.

本発明の太陽電池用ガラス基板を製造するに当たって
は、透明電導膜をガラス基板上に形成した後に曲げ加工
を施す。例えば、CVD法により膜形成を行なう場合に
は、平板状のガラス基板に透明電導膜を形成した後、曲
げ加工を施す。又、透明電導膜を形成する際に、ガラス
基板温度を、実質的にガラスが変形する温度以上に加熱
する必要のある場合、例えばCVD法により膜形成を行な
う場合も、透明電導膜形成後曲げ加工を施す。なぜなら
ば、曲げ加工した後に透明電導膜の形成のために高温度
に加熱すると曲げ加工の精度が悪化し、所定の曲面形状
が得られないためである。
In manufacturing the glass substrate for a solar cell of the present invention, the transparent conductive film is formed on the glass substrate and then bent. For example, when forming a film by the CVD method, a transparent conductive film is formed on a flat glass substrate and then bent. Further, when forming a transparent conductive film, when it is necessary to heat the glass substrate temperature to a temperature at which glass is substantially deformed or higher, for example, when the film is formed by the CVD method, it is bent after the transparent conductive film is formed. Apply processing. The reason for this is that if bending is followed by heating to a high temperature to form a transparent conductive film, the accuracy of bending will deteriorate and a prescribed curved surface shape cannot be obtained.

透明電導膜の被覆後、曲げ加工のためのガラス基板の
加熱を行なうに当たっては、その加熱温度を十分に注意
する必要がある。即ち、あまり高温に加熱すると透明電
導膜がガラスとの熱膨張差や、酸化等により劣化し、透
明電導膜の抵抗値が上昇してしまったり、透過率が低下
するという危険性があるためである。
When heating the glass substrate for bending after coating the transparent conductive film, it is necessary to pay sufficient attention to the heating temperature. That is, if the transparent conductive film is heated to an excessively high temperature, the transparent conductive film deteriorates due to thermal expansion difference with glass, oxidation, etc., and there is a risk that the resistance value of the transparent conductive film may increase or the transmittance may decrease. is there.

本発明者は、透明電導膜付ガラス基板を曲げ加工する
時の好ましい条件を求めるために実験したところ、第3
図のような結果を得た。即ち、第3図は、フッ素がドー
プされた酸化錫膜付ガラス基板を空気雰囲気の加熱炉に
おいて加熱した時の加熱温度及び加熱時間と、抵抗値の
上昇割合RS/RO(ROは加熱前の透明電導膜の抵抗値、RS
は加熱後の抵抗値)との関係を表わしたグラフである。
かかる結果よりわかるように、ガラス基板の加熱を650
℃以下に、かつ加熱時間を2分以内とすれば、透明電導
膜の抵抗値の上昇を最小限に抑えることができるので、
本発明の透明電導膜付ガラス基板の曲げ加工時の条件と
して大変好ましい。
The present inventor conducted an experiment to find preferable conditions for bending a glass substrate with a transparent conductive film, and found that
The result is as shown in the figure. That is, FIG. 3 shows the heating temperature and the heating time when the fluorine-doped glass substrate with a tin oxide film is heated in a heating furnace in an air atmosphere, and the resistance increase rate R S / R O (R O is Resistance of transparent conductive film before heating, R S
Is a graph showing the relationship with (resistance value after heating).
As can be seen from these results, heating the glass substrate is 650
If the heating temperature is 2 ° C. or less and the heating time is 2 minutes or less, the increase in the resistance value of the transparent conductive film can be minimized.
It is very preferable as a condition for bending the glass substrate with a transparent conductive film of the present invention.

本発明の曲げ加工が施された太陽電池用ガラス基板を
製造するのに最適な方法としては、ガラス基板を500〜6
00℃に加熱した後、CVD法により上記ガラス基板の一面
に透明電導膜を被覆し、次いでガラス基板を580〜650℃
の曲げ加工温度まで加熱して曲げ加工を施す方法が挙げ
られる。この方法によれば、量産性が高く、低コスト
で、しかも安定した性能が得られる。さらに、この方法
に付加的に強化処理を行なうことにより、室外暴露時の
外的な衝撃、即ち、ひょうが降って来たり、石が飛来し
た場合による破損等を防止することができる。この強化
処理は、曲げ加工後の冷却過程で、冷却空気を吹き付け
て急冷強化する方法やその他イオン交換による化学強化
法が採用できる。
The most suitable method for producing the glass substrate for a solar cell subjected to the bending process of the present invention, the glass substrate is 500 ~ 6
After heating to 00 ℃, CVD method is used to coat one surface of the glass substrate with a transparent conductive film, and then the glass substrate is heated to 580 to 650 ℃.
The method of performing bending by heating to the bending temperature of is mentioned. According to this method, mass productivity is high, cost is low, and stable performance is obtained. Furthermore, by performing a strengthening treatment in addition to this method, it is possible to prevent an external impact at the time of outdoor exposure, that is, damage caused by falling hail or flying stone. As the strengthening treatment, in the cooling process after bending, a method of blowing cooling air to quench and strengthen, or other chemical strengthening method by ion exchange can be adopted.

本発明のガラス基板を使った曲面形状を有する太陽電
池は、意匠性の求められる用途に好適であり、特に、自
動車のサンルーフ部に設けられる太陽電池として最適で
ある。
The curved surface-shaped solar cell using the glass substrate of the present invention is suitable for applications requiring designability, and is particularly suitable as a solar cell provided in a sunroof portion of an automobile.

本発明のガラス基板を用いて形成した自動車用サンル
ーフ部に設けられる太陽電池の構成の一例として第2図
のようなものが挙げられる。即ち、曲面形状を有するガ
ラス基板21の凹面の周辺部にセラミックカラーインク層
24が設けられ、その上に、アルカリバリヤーコート23、
透明電導膜22、アモルファスシリコン光電変換層25、裏
面電極26が順次形成されたものと、ガラス基板21とほぼ
同一の曲面を有するガラス板28とを中間膜27によって接
着し、合わせガラス化したものである。かかる、太陽電
池においては、光29がガラス基板21側から入射し、a−
Si層25内で吸収され、透明電導膜23と裏面電極26との間
に起電力を生じ、第2図には図示していないが、導線そ
の他の手段によって、かかる起電力が取り出される。
As an example of the configuration of the solar cell provided on the sunroof portion for an automobile formed using the glass substrate of the present invention, the one as shown in FIG. 2 can be cited. That is, the ceramic color ink layer is formed around the concave surface of the glass substrate 21 having a curved shape.
24 is provided, on which an alkaline barrier coat 23,
A transparent conductive film 22, an amorphous silicon photoelectric conversion layer 25, a back surface electrode 26 sequentially formed, and a glass plate 28 having a curved surface substantially the same as the glass substrate 21 are bonded together by an intermediate film 27 to form a laminated glass. Is. In such a solar cell, light 29 is incident from the glass substrate 21 side, and a-
The electromotive force is generated between the transparent conductive film 23 and the back electrode 26 by being absorbed in the Si layer 25, and the electromotive force is taken out by a conductor or other means, which is not shown in FIG.

以下、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

実施例1 870×285×2(mm)のソーダライムシリケートガラス
基板を充分に洗浄し、乾燥した後、ベルトコンベア搬送
型式のCVD炉に入れた。まず、SiH4ガスとO2ガスをSiH4:
O2の比が約1:10の割合で導入し、ガラス基板表面温度約
450℃で、アルカリバリヤーコートとして酸化珪素膜(7
00Å)をCVD法により形成した。次にガラス基板を580℃
に加熱した後、該ガラス基板の酸化珪素膜上に四塩化錫
1×10-2/分を1として水蒸気(10)、メチルアルコ
ール(0.5)およびフッ酸(0.5)を含む窒素ガス(25
0)を吹き付け、1.0wt%の弗素を含む酸化錫からなる透
明電導膜(6000Å)をCVD法により形成した。アルカリ
バリヤーコート及び酸化錫膜のコーティングゾーン内で
の基板の搬送速度は0.60m/分であった。このようにして
得られた透明電導基板(以下TCO基板という)の表面抵
抗は8.0Ω/□であった。次いで、所望の成形面形状し
た自重曲げ用フレーム上にTCO基板を酸化錫膜面が上と
なるように載置し、基板温度を590℃まで昇温し、酸化
錫膜面側が凹面となるように自重曲げを施した。得られ
た曲面形状のTCO基板の諸特性を表1に示す。表1にお
いて、透過率は*1は光源(JIS Z8720)を光源とし
て、積分球を用いて測定したものであり、曲がりA*2
は長辺の最大変位、曲がりB*2は短辺の最大変位を示
す。曲げ前後で物性の変化はほとんど見られず、所定の
形状の曲面TCO基板が得られた。
Example 1 A 870 × 285 × 2 (mm) soda lime silicate glass substrate was thoroughly washed, dried, and then placed in a belt conveyor type CVD furnace. First, SiH 4 gas and O 2 gas are replaced with SiH 4 :
O 2 ratio was introduced at a ratio of about 1:10, and the glass substrate surface temperature was about
At 450 ° C, a silicon oxide film (7
00Å) was formed by the CVD method. Then glass substrate at 580 ℃
After heating to 0.degree. C., tin tetrachloride (1.times.10.sup.- 2 / min.) Is set to 1 on the silicon oxide film of the glass substrate, and nitrogen gas (25) containing water vapor (10), methyl alcohol (0.5) and hydrofluoric acid (0.5) is used.
0) was sprayed and a transparent conductive film (6000Å) made of tin oxide containing 1.0 wt% of fluorine was formed by the CVD method. The transport speed of the substrate in the coating zone of the alkali barrier coat and the tin oxide film was 0.60 m / min. The surface resistance of the transparent conductive substrate (hereinafter referred to as TCO substrate) thus obtained was 8.0 Ω / □. Next, place the TCO substrate on the frame for self-weight bending with the desired molding surface shape so that the tin oxide film surface faces upward, raise the substrate temperature to 590 ° C, and make the tin oxide film surface side concave. It was bent by its own weight. Table 1 shows various characteristics of the obtained curved TCO substrate. In Table 1, the transmittance * 1 is measured by using an integrating sphere with a light source (JIS Z8720) as the light source, and the curve A * 2
Indicates the maximum displacement on the long side, and the bend B * 2 indicates the maximum displacement on the short side. Almost no change in the physical properties was observed before and after bending, and a curved TCO substrate of the prescribed shape was obtained.

実施例2 1013×445×3(mm)のソーダライムシリケートガラ
ス基板を充分に洗浄し、実施例1と同様のCVD炉に入
れ、基板の搬送速度を0.45m/分にした他は実施例1と同
じ条件で、酸化珪素膜(700Å)と、その上に1.0wt%の
弗素を含む酸化錫からなる透明電導膜(7000Å)をCVD
法により形成した。得られたTCO基板の表面抵抗は6.0Ω
/□であった。次いで、このTCO基板を吊り具により吊
下げながら、基板温度を630℃まで昇温し、酸化錫膜面
側が凹面となるようにプレス曲げ加工した後、風冷強化
加工を施した。得られた曲面形状のTCO基板の諸物性を
表1に示す。曲げ前後で物性の変化はほとんど見られ
ず、所定の形状の曲面TCO基板が得られた。なお、表面
圧縮応力は400kgf/cm2であった。
Example 2 Example 1 was repeated except that a 1013 × 445 × 3 (mm) soda lime silicate glass substrate was thoroughly washed and placed in the same CVD furnace as in Example 1 and the substrate transfer speed was 0.45 m / min. Under the same conditions as above, a silicon oxide film (700 Å) and a transparent conductive film (7000 Å) consisting of tin oxide containing 1.0 wt% of fluorine on it
It was formed by a method. The surface resistance of the obtained TCO substrate is 6.0Ω.
/ □. Next, while suspending this TCO substrate with a suspender, the substrate temperature was raised to 630 ° C., press-bending was performed so that the tin oxide film surface side became a concave surface, and then air-cooling strengthening processing was performed. Table 1 shows the physical properties of the obtained curved TCO substrate. Almost no change in the physical properties was observed before and after bending, and a curved TCO substrate of the prescribed shape was obtained. The surface compressive stress was 400 kgf / cm 2 .

[発明の効果] 本発明によれば、曲面形状を有する太陽電池に適した
透明電導膜付ガラス基板を提供することができ、プラス
チックフィルムを基体とした場合に比べて優れた耐候
性、耐擦傷性を有し、様々な曲面形状の太陽電池の製造
が可能となる。
[Effects of the Invention] According to the present invention, it is possible to provide a glass substrate with a transparent conductive film suitable for a solar cell having a curved shape, which is superior in weather resistance and scratch resistance as compared with the case where a plastic film is used as a base. Therefore, it is possible to manufacture solar cells having various curved surfaces.

また、本発明のガラス基板の製造方法によれば、ガラ
ス基板上に透明電導膜を形成した後、透明電導膜をほと
んど劣化させることなく透明電導膜付ガラス基板を曲げ
加工することができ、良質の透明導電膜付曲面形状ガラ
ス基板を低コストで製造することができる。
Further, according to the method for manufacturing a glass substrate of the present invention, after forming the transparent conductive film on the glass substrate, it is possible to bend the transparent conductive film-coated glass substrate without substantially degrading the transparent conductive film. The curved glass substrate with a transparent conductive film can be manufactured at low cost.

また、本発明のサンルーフ用太陽電池は、車体の空気
力学的性能を損なわず、車体のサンルーフ部にあたる光
を有効に利用することを可能とし、さらに意匠上のデザ
インの点でも優れた効果を有している。
Further, the solar cell for a sunroof of the present invention makes it possible to effectively utilize the light hitting the sunroof portion of the vehicle body without impairing the aerodynamic performance of the vehicle body, and further has an excellent effect in terms of design design. doing.

【図面の簡単な説明】[Brief description of the drawings]

第1図aないしcは本発明の曲面形状を有する太陽電池
用ガラス基板の例を示す断面図、第2図は本発明のガラ
ス基板を用いた曲面形状を有するサンルーフ用太陽電池
の一例を示す断面図、第3図は透明電導膜付ガラス基板
の加熱温度及び時間と抵抗値の上昇割合を示すグラフ、
第4図は従来のアモルファスシリコン太陽電池の一例を
示す断面図である。 1,21:ガラス基板 2,22:透明電導膜 3,23:アルカリバリヤーコート 4,24:セラミックカラーインク層 25:アモルファスシリコン層 26:裏面電極 27:中間膜 28:ガラス板 29:入射光 41:透明絶縁基板 42:透明電導膜 43:p型a−Si層 44:i型a−Si層 45:n型a−Si層 46:a−Si半導体層 47:アルミニウム電極 48:a−Si太陽電池 49:入射光 50:導線 RO:加熱処理前の透明電導膜の抵抗値 RS:加熱処理後の透明電導膜の抵抗値
1A to 1C are cross-sectional views showing an example of a glass substrate for a solar cell having a curved surface shape of the present invention, and FIG. 2 shows an example of a solar cell for a sunroof having a curved surface shape using the glass substrate of the present invention. A cross-sectional view and FIG. 3 are graphs showing the heating temperature and time of the glass substrate with a transparent conductive film and the rate of increase in resistance value,
FIG. 4 is a sectional view showing an example of a conventional amorphous silicon solar cell. 1, 21: Glass substrate 2, 22: Transparent conductive film 3, 23: Alkali barrier coat 4, 24: Ceramic color ink layer 25: Amorphous silicon layer 26: Back electrode 27: Intermediate film 28: Glass plate 29: Incident light 41 : Transparent insulating substrate 42: Transparent conductive film 43: p-type a-Si layer 44: i-type a-Si layer 45: n-type a-Si layer 46: a-Si semiconductor layer 47: aluminum electrode 48: a-Si solar Battery 49: Incident light 50: Conductor R O : Resistance value of transparent conductive film before heat treatment R S : Resistance value of transparent conductive film after heat treatment

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−295468(JP,A) 実開 昭62−186447(JP,U) 実開 昭63−178357(JP,U) 「太陽電池とその応用」 (昭55−6 −25) パワー社 P.8 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 62-295468 (JP, A) actual open Sho 62-186447 (JP, U) actual open Sho 63-178357 (JP, U) "Solar cell and its Application ”(Sho 55-6-25) Power Company P. 8

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス基板を加熱した後該ガラス基板面上
に透明電導膜を形成し、次いで該ガラス基板の透明電導
膜の形成された面が凹面となるように曲げ加工を施すこ
とを特徴とする曲面形状を有する太陽電池用ガラス基板
の製造方法。
1. A method of heating a glass substrate, forming a transparent conductive film on the surface of the glass substrate, and then bending the glass substrate so that the surface of the glass substrate on which the transparent conductive film is formed is concave. And a method for manufacturing a glass substrate for a solar cell having a curved surface shape.
【請求項2】曲げ加工後、強化処理を施すことを特徴と
する請求項1記載の曲面形状を有する太陽電池用ガラス
基板の製造方法。
2. The method for manufacturing a glass substrate for a solar cell having a curved surface according to claim 1, wherein a strengthening treatment is applied after the bending.
【請求項3】請求項1または2記載の曲面形状を有する
太陽電池用ガラス基板の製造方法により得られることを
特徴とする曲面形状を有する太陽電池用ガラス基板。
3. A glass substrate for a solar cell having a curved surface, which is obtained by the method for producing a glass substrate for a solar battery having a curved surface according to claim 1 or 2.
【請求項4】請求項3記載の曲面形状を有する太陽電池
用ガラス基板の凹面側表面に形成された透明導電膜の上
に、a−Si半導体層、背面電極を順次形成したことを特
徴とする太陽電池。
4. An a-Si semiconductor layer and a back electrode are sequentially formed on a transparent conductive film formed on the concave surface of the glass substrate for a solar cell having the curved surface shape according to claim 3. Solar cells to do.
JP63124890A 1988-05-24 1988-05-24 Curved glass substrate for solar cell, method for manufacturing the same, and solar cell Expired - Fee Related JP2674087B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63124890A JP2674087B2 (en) 1988-05-24 1988-05-24 Curved glass substrate for solar cell, method for manufacturing the same, and solar cell
DE68911201T DE68911201T2 (en) 1988-05-24 1989-05-24 Method for the production of a solar cell glass substrate.
AU35106/89A AU631354B2 (en) 1988-05-24 1989-05-24 Solar cell substrate and solar panel for automobile
US07/356,234 US5059254A (en) 1988-05-24 1989-05-24 Solar cell substrate and solar panel for automobile
EP89109383A EP0343628B1 (en) 1988-05-24 1989-05-24 Method for producing a glass substrate for a solar cell
US07/733,874 US5149351A (en) 1988-05-24 1991-07-22 Method for making a curved solar panel for an automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124890A JP2674087B2 (en) 1988-05-24 1988-05-24 Curved glass substrate for solar cell, method for manufacturing the same, and solar cell

Publications (2)

Publication Number Publication Date
JPH01295467A JPH01295467A (en) 1989-11-29
JP2674087B2 true JP2674087B2 (en) 1997-11-05

Family

ID=14896634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124890A Expired - Fee Related JP2674087B2 (en) 1988-05-24 1988-05-24 Curved glass substrate for solar cell, method for manufacturing the same, and solar cell

Country Status (1)

Country Link
JP (1) JP2674087B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141253A (en) * 2000-10-31 2002-05-17 Disco Abrasive Syst Ltd Semiconductor device
JP2004172460A (en) * 2002-11-21 2004-06-17 National Institute Of Advanced Industrial & Technology Solar cell device
US20120037229A1 (en) * 2008-05-30 2012-02-16 David Francis Dawson-Elli Photovoltaic glass laminated articles and layered articles
JP5334895B2 (en) * 2009-06-16 2013-11-06 三菱電機株式会社 Manufacturing method of solar cell module
CN103258881B (en) * 2013-05-07 2015-11-11 宁波山迪光能技术有限公司 Thin-film solar cell panel and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270011A (en) * 1985-09-24 1987-03-31 Matsushita Electric Works Ltd Lead frame feeding-unloading device
JPS62186447U (en) * 1986-05-19 1987-11-27
JPS63178357U (en) * 1987-05-11 1988-11-18
JPS62295468A (en) * 1987-05-29 1987-12-22 Semiconductor Energy Lab Co Ltd Photoelectric convertor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「太陽電池とその応用」 (昭55−6−25) パワー社 P.8

Also Published As

Publication number Publication date
JPH01295467A (en) 1989-11-29

Similar Documents

Publication Publication Date Title
EP0343628B1 (en) Method for producing a glass substrate for a solar cell
US5149351A (en) Method for making a curved solar panel for an automobile
US8450600B2 (en) Photovoltaic device with scratch-resistant coating
EP2156477B1 (en) Method of making a FRONT ELECTRODE INCLUDING PYROLYTIC TRANSPARENT CONDUCTIVE COATING ON TEXTURED GLASS SUBSTRATE FOR USE IN PHOTOVOLTAIC DEVICE
US20150083200A1 (en) Glass substrates for high temperature applications
EP2458643B1 (en) Glass substrate with conductive film for solar cell
EP1061586A2 (en) Transparent layered product and glass article using the same
JPS63313874A (en) Solar battery substrate
JP2001114533A (en) Glass pane with transparent conductive film and glass article using the same glass pane
CN110922054A (en) Production process of dustproof anti-reflection photovoltaic glass
JP2013520391A (en) Glass substrate coated with a layer of improved mechanical strength
EP1230188A1 (en) Glass sheet with metal oxide film, method of manufacturing the same, and double-glazing unit using the same
JP2013522147A (en) Method for manufacturing structured TCO protective coating
EP1686595B1 (en) Method for producing a transparent base with transparent conductive film,
JP2674087B2 (en) Curved glass substrate for solar cell, method for manufacturing the same, and solar cell
WO2012053569A1 (en) Method for producing transparent conductive substrates with surface electrodes, and method for producing thin-film solar cells
JP2615147B2 (en) Method of manufacturing glass substrate for solar cell
JPH11145495A (en) Glass substrate for solar cells and manufacture thereof
JP2001036117A (en) Photoelectric conversion device board
JP5602828B2 (en) Solar reflector having protective coating and method of manufacturing the same
JP4485642B2 (en) Method for producing transparent substrate with transparent conductive film, and photoelectric conversion device using the same
JP4338159B2 (en) Thin film solar cell module
JP3382141B2 (en) Photoelectric conversion element
JPH1111980A (en) Transparent conductive glass substrate and its production
CN117855338B (en) Curved surface thin film solar cell and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees