JP2674041B2 - Manufacturing method of low nitrogen stainless steel - Google Patents

Manufacturing method of low nitrogen stainless steel

Info

Publication number
JP2674041B2
JP2674041B2 JP62285444A JP28544487A JP2674041B2 JP 2674041 B2 JP2674041 B2 JP 2674041B2 JP 62285444 A JP62285444 A JP 62285444A JP 28544487 A JP28544487 A JP 28544487A JP 2674041 B2 JP2674041 B2 JP 2674041B2
Authority
JP
Japan
Prior art keywords
blowing
decarburization
gas
steel
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62285444A
Other languages
Japanese (ja)
Other versions
JPH01159310A (en
Inventor
治良 田辺
正弘 川上
謙治 高橋
克博 岩崎
茂 井上
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP62285444A priority Critical patent/JP2674041B2/en
Priority to CA000576818A priority patent/CA1333663C/en
Priority to DE3850394T priority patent/DE3850394T2/en
Priority to US07/362,418 priority patent/US4944799A/en
Priority to PCT/JP1988/000909 priority patent/WO1989002479A1/en
Priority to PCT/JP1988/000910 priority patent/WO1989002478A1/en
Priority to CN88107053A priority patent/CN1013280B/en
Priority to AU23058/88A priority patent/AU619488B2/en
Priority to US07/320,270 priority patent/US5047081A/en
Priority to EP88907783A priority patent/EP0355163B1/en
Priority to AU23057/88A priority patent/AU604974B2/en
Priority to BR888807195A priority patent/BR8807195A/en
Priority to AT88907783T priority patent/ATE107706T1/en
Priority to EP88907784A priority patent/EP0331751B1/en
Priority to BR888807201A priority patent/BR8807201A/en
Priority to AT88907784T priority patent/ATE103006T1/en
Priority to DE3888518T priority patent/DE3888518T2/en
Publication of JPH01159310A publication Critical patent/JPH01159310A/en
Application granted granted Critical
Publication of JP2674041B2 publication Critical patent/JP2674041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低窒素ステンレス鋼の製造方法に関する。 〔従来の技術及びその問題点〕 ステンレス鋼の製造において高Cr銃を大気圧下で脱炭
吹錬する場合、溶銑中に大量の不活性ガスを撹拌ガスと
して吹き込む必要がある。通常使用し得るこの種のガス
としてはN2及びArがあるが、製造対象が低窒素ステンレ
ス鋼である場合、N2は鋼中N濃度を高めるため使用でき
ず、このため高価なArを使用せざるを得ない。しかし、
Arを大量に使用するため実際にはコスト的に問題があ
る。このようなことから、低窒素ステンレス鋼の製造
は、脱窒が容易な真空吹錬によるのが通常である。 本発明はこのような従来の問題に鑑みなされたもの
で、大気圧下において、大量のArガスを用いることなく
低コストで低窒素ステンレス鋼を製造することができる
方法を提供しようとするものである。 〔問題を解決するための手段〕 本発明者等は、転炉型容器による高Cr溶銑の脱炭をCr
酸化ロスを抑えしかも短時間で行うことができる方法と
して、容器内の高Cr溶銑に対し、上吹きランスから、不
活性ガスで希釈した脱炭用O2を上吹きするとともに、底
吹き羽口から不活性ガスを吹き込んで溶銑を強撹拌する
ようにした新たな方法を開発した。 ところが、この脱炭吹錬技術を利用して低窒素ステン
レス鋼を製造する場合においても、不活性ガスとしてAr
を終始用いたのでは依然として製造コストがかさむ問題
は何ら解決できない一方、廉価なN2ガスを単純に用いれ
ば低窒素化が達成できない。そこで、この脱炭吹錬技術
を基にし、脱炭時の鋼中Nの変化に着目して検討を行っ
た結果、少なくとも脱炭速度が低下する以降にのみArガ
スを用いれば、それ以前はN2ガスを用いても鋼中の窒素
が高濃度とならないことを見い出した。さらに、脱炭終
了後、Fe−Si、Al等の脱酸剤を投入して大量のAr底吹き
によるリンス処理を行うことが脱窒に非常に有効である
ことも見い出した。 本発明はこのような知見に基づいてなされたもので、
その特徴は、底吹き羽口と上吹きランスとを備えた容器
内の含Cr溶銑に対し、上吹きランスから、N2で希釈した
脱炭用O2を上吹きするとともに、底吹き羽口からN2を吹
き込んで溶銑を強撹拌することにより脱炭吹錬を開始
し、脱炭途中であって、鋼中Cが、脱炭速度が低下する
濃度に達するまでに、溶湯撹拌用底吹きガス及び脱炭用
O2を希釈ガスをN2からArに切換え、該吹錬終了後、Fe−
SiまたはAl等の脱酸剤を投入し、溶鋼をArにより底吹き
撹拌するようにしたことにある。 ところで一般に、Fe−SiやAl等は脱炭終了後のスラグ
中のCr還元及び脱酸の目的で溶鋼中に投入されるが、本
発明はこのような脱酸剤投入とともに、Arによる底吹き
撹拌を実施するものであり、これによりCr還元及び脱酸
に加え、鋼中Nが効果的に除去される。これは、Fe−Si
等の脱酸剤の投入により溶鋼が脱酸(70〜150ppm→50pp
m)されることに伴い、Nが抜け易い状態になり、これ
をArで撹拌することによりNが溶鋼中から容易に抜け、
鋼の脱窒がなされることによるものである。このAr底吹
きは、通常0.5〜5Nm3/分・溶鋼ton、5〜10分間程度行
われる。 一方上述したように本発明者等は、大気圧下において
Cr酸化ロスを抑え、しかも短時間で脱炭を行うことがで
きる方法として、底吹き羽口と上吹きランスとを備えた
容器内の高Cr溶銑に対し、上吹きランスから、不活性ガ
スで希釈した脱炭用O2を上吹きするとともに、底吹き羽
口から不活性ガスを吹き込んで溶銑を強撹拌することを
内容とする新たな方法を創案した。以下、この脱炭法を
第1図の模式図に基づいて説明すると、まず、この方法
では次のような条件で脱炭処理がなされる。 O2の供給は専ら上吹きランス1から行い、O2底吹き
は行わない。 上吹きランス1からは、純O2ではなく、不活性ガス
で希釈したO2を供給する。 底吹き羽口2から不活性ガスを吹き込んで強撹拌す
る。 従来知られているAOD法ではO2を炉底側の羽口から吹
き込む方法が採られているが、本発明者等の検討によれ
ば、底吹きO2がCr酸化ロスを増大させる大きな原因であ
ることが判った。すなわち、O2底吹きでは溶鋼静圧が加
わるためCO分圧が高くなり、この結果、脱炭反応が阻害
され、脱炭用O2がCrを酸化させてしまう。このため本脱
炭法ではO2底吹きは行わず、上吹きランス1から送酸を
行う。 しかし、この上吹きを単に純O2で行うだけではCr酸化
ロスを適切に防止し得ないことが判った。これは、脱炭
反応はランス送酸による火点においても最も激しく生じ
るが、O2だけの送酸ではこの部分のCO分圧が非常に高く
なり、この結果脱炭反応が阻害され、O2がCrを酸化させ
てしまうことによるのである。このため、本脱炭法では
不活性ガスで希釈したO2を上吹きするようにし、これに
よって火点におけるCO分圧を下げ脱炭反応を促進させる
ようにしたものである。なお、上吹きランスからは処理
時間を短くするため大量送酸することが好ましい。 さらに本脱炭法では、溶湯と上吹きO2との混合を促進
させるため、底吹き羽口2から不活性ガスを吹き込み、
溶湯を強撹拌するものであり、この底吹き不活性ガスに
よる強撹拌と、上記ランスによる不活性ガス希釈O2の上
吹きとの組合せによりCr酸化ロスを抑えた効率的な脱炭
処理が可能となる。 溶湯を強撹拌するためには大量の不活性ガスを吹き込
む必要がある。具体的には、Cr酸化ロスを1%以下とす
るためには0.5Nm3/分・溶湯ton以上、またCr酸化ロスを
0.5%以下とするためには1Nm3/分・溶湯ton以上の量の
ガスを底吹きする必要がある。但し、ガス量が多すぎる
と溶湯が飛散して問題を生じる恐れがあり、このため本
脱炭法では0.5〜5Nm3/分・溶湯ton、好ましくは1〜3Nm
3/分・溶湯ton程度の量のガスが吹き込まれる。 また、本発明者等は、鋼中Nに関し、脱炭反応が活発
な時期には鋼中Nが低く、脱炭速度が低下してくる時期
から鋼中Nが著しく上昇する事を見い出した。これは、
脱炭反応により発生するCOガスが鋼中Nを吸収し鋼中よ
りNを放出させるが、脱炭速度が低下するとN2ガスから
鋼中へのN吸収の方が大きくなるためである。 ここで、一般に、脱炭速度は鋼中〔C〕濃度が高いほ
ど速い(厳密には鋼中〔C〕が高濃度では脱炭反応が高
速度状態を維持する)。換言すれば、鋼中〔C〕濃度が
所定値まで低下するとそれ以降は脱炭速度が低下する。
すなわち、鋼中〔C〕濃度が、脱炭速度が低下してしま
う濃度に至るとCOガスの発生が低下し、鋼中Nが急激に
上昇することになる。このため、溶湯撹拌用底吹きガス
及び脱炭用O2の希釈ガスとして、当初はN2ガスを使用し
ておき、脱炭途中において、鋼中〔C〕が、脱炭速度が
低下する濃度に達するまでに、前記N2をArに切り換え、
引き続き脱炭を行うことにより、高価なArに比較して低
廉なN2ガスを有効に使用でき、製造コストを適切に低減
させることができる。 溶湯撹拌用底吹きガス及び脱炭用O2希釈ガスの切換時
期を具体例として示すと、後述する実施例から得られた
第3図において、溶鋼中〔C〕量が0.8〜2.0wt%の範囲
で、N2→Arの切換を行うことが好ましいものとなってい
る。すなわち、上記切換の時期が早過ぎると、それだけ
高価なArガスを多量に使用しなければならずコスト高と
なるので、溶鋼中〔C〕が2.0wt%以下が好ましいもの
となっている。一方、切換時期が遅すぎる(C濃度が低
くなり過ぎる)と、図示のように十分な脱窒効果が得ら
れず、このため切換は溶鋼中〔C〕が0.8wt%以上にあ
る時点で行うのが好ましいものとなっている。 ここで、脱炭用O2の希釈ガスをN2からArに切り換える
のは、脱炭吹錬ではランスの火点部分でNの吸収が最も
激しいことから、Nの放出が低減する脱炭速度が低下す
る時期に、そのような部分でN2を希釈ガスとして使用す
ると大量のNが溶湯中に溶け込んでしまうので、そのよ
うなN吸収を最大限に防止し、溶鋼中の窒素濃度の上昇
を効果的に抑えるためである。しかし、Arガスをより有
効に利用し、かつ、さらなる低窒素化を達成するために
は、溶湯撹拌用底吹きガスについてもN2からArに切り換
えるべきであり、このため本発明では、溶湯撹拌用底吹
きガス及び脱炭用O2の希釈ガスのいずれもN2からArに切
り換えるものとしている。 〔実施例〕 まず、本発明の構成要素であるArリンスの効果の試験
例を説明する。またその試験例では、本発明における溶
湯撹拌用底吹きガス種及び脱炭用O2希釈ガス種の切換の
効果を明瞭にするため、それら不活性ガスについてはい
ずれも切り換えない条件で行った。 上吹きランス及び底吹き羽口を有する転炉型容器を用
い、以下の(A)〜(E)の方法により、高Cr溶銑を脱
炭吹錬した後、Arリンス(Fe−Si投入+Ar底吹き)を実
施し、Cr:18%、C:0.05%のステンレス鋼を製造した。 (A) 脱炭吹錬 上吹きガス:O2+N2(希釈) 底吹きガス:N2(2Nm3/分・溶鋼ton) Arリンス 底吹きガス:Ar(0.1Nm3/分・溶鋼ton) (B) 脱炭吹錬 上吹きガス:O2+N2(希釈) 底吹きガス:N2(2Nm3/分・溶鋼ton) Arリンス 底吹きガス:Ar(0.5Nm3/分・溶鋼ton) (C) 脱炭吹錬 上吹きガス:O2+N2(希釈) 底吹きガス:N2(2Nm3/分・溶鋼ton) Arリンス 底吹きガス:Ar(1Nm3/分・溶鋼ton) (D) 脱炭吹錬 上吹きガス:O2+N2(希釈) 底吹きガス:N2(2Nm3/分・溶鋼ton) Arリンス 底吹きガス:Ar(2Nm3/分・溶鋼ton) (E) 脱炭吹錬 上吹きガス:O2+Ar(希釈) 底吹きガス:N2(2Nm3/分・溶鋼ton) Arリンス 底吹きガス:Ar(2Nm3/分・溶鋼ton) 第2図はArリンス中の脱窒速度に及ぼす底吹きArガス
量の影響を示したものである。まずリンス開始時の溶鋼
中〔N〕濃度を見ると、いずれも後述する本発明の実施
例(ロ)よりかなり高いが、その後鋼中〔N〕濃度が減
少していき、いずれの場合もArリンスにより溶鋼の脱窒
が効果的になされることが判る。しかし一方で、鋼中
〔N〕濃度を見ると、(A)〜(C)の例では最終N濃
度が750〜1750ppmとまだ高く、Arガス量が2Nm3/分・溶
鋼tonである(D)の場合でも、リンス時間4〜5分で
N:500〜600ppm、12分後でも250ppmであって本発明で得
ようとする低窒素化のレベルまでは達成できていない。
また、脱炭時にO2の希釈ガスとしてArを使用した(E)
の場合、脱炭終了時のN濃度が(A)〜(D)の場合の
約半分の1000ppm程度、リンス時間2分で250ppmまで低
下するが、その一方で、(E)では上吹きガスとして終
始高価なArを用いており、コストが割高となっている。 次に本発明に係る工程をすべて行った実施例を説明す
る。上記試験例と同様の転炉型容器を用い、以下に示す
(ロ)の方法により、高Cr溶銑を脱炭吹錬した後、Arリ
ンス(Fe−Si投入+Ar底吹き)を実施し、Cr:18%、C:
0.05%のステンレス鋼を製造した。 (ロ) 脱炭吹錬 :脱炭用O2の希釈ガス及び底吹きガ
スとして脱炭初期N2を用い、吹錬途中の種々の溶鋼中
〔C〕値の時点でN2をArに切り換えた。 Arリンス :底吹きガスAr(2Nm3/分・溶鋼tonで5分間
実施) 第3図は、脱炭吹錬終了後の溶鋼〔N〕に及ぼす脱炭
用O2希釈ガスのガス種切換時期の影響を示すものであ
る。図示のように、溶鋼中の〔C〕が略0.8%以下にな
ると〔N〕量が急激に増加し、1%を過ぎると〔N〕は
低値で平衡状態となるのが判る。これらのうち、脱炭吹
錬中のN2→Arの切換を溶鋼〔C〕1%で実施した一例を
示すと、脱炭吹錬後でさえ〔N〕は150ppmと低レベルに
達しており、Arリンス後は50ppmと極めて低レベルの低
Nステンレス鋼が、Arガスを大量に使用することなく容
易に得られることが判る。 〔発明の効果〕 以上述べた本発明によれば、大量のArガスを用いるこ
となく、低コストでかつ極めて低レベルの窒素含有量と
なる低窒素ステンレス鋼を製造することができ、またこ
のような効果に加え、低窒素ステンレス鋼をCr酸化ロス
を抑え、しかも短時間で製造できる効果がある。
The present invention relates to a method for producing low nitrogen stainless steel. [Prior art and its problems] When decarburizing a high Cr gun under atmospheric pressure in the production of stainless steel, it is necessary to blow a large amount of an inert gas into the hot metal as a stirring gas. Gases of this type that can usually be used include N 2 and Ar, but when the production target is low nitrogen stainless steel, N 2 cannot be used because it increases the N concentration in the steel, and therefore expensive Ar is used. I have to do it. But,
Since a large amount of Ar is used, there is a cost problem in practice. For this reason, the production of low-nitrogen stainless steel is usually performed by vacuum blowing, which facilitates denitrification. The present invention has been made in view of such conventional problems, and is intended to provide a method capable of producing low-nitrogen stainless steel at low cost under atmospheric pressure without using a large amount of Ar gas. is there. [Means for Solving the Problem] The present inventors carried out Cr decarburization of high Cr hot metal in a converter-type container.
As a method that can suppress oxidation loss and can be performed in a short time, decarburizing O 2 diluted with an inert gas is top-blown from the top-blown lance to the high Cr hot metal in the container, and the bottom-blown tuyeres are used. A new method was developed in which an inert gas was blown into the container to strongly stir the hot metal. However, even when low-nitrogen stainless steel is manufactured using this decarburization blowing technology, Ar gas is used as an inert gas.
However, using nitrogen gas all the time cannot solve the problem of high manufacturing cost, but nitrogen gas cannot be reduced by simply using inexpensive N 2 gas. Therefore, based on this decarburization blowing technology, a study was conducted focusing on changes in N in steel during decarburization. As a result, if Ar gas was used only at least after the decarburization rate decreased, It was found that the nitrogen concentration in the steel does not become high even when N 2 gas is used. Furthermore, it was also found that, after decarburization, it is very effective for denitrification to introduce a deoxidizing agent such as Fe-Si or Al and perform a rinsing treatment by blowing a large amount of Ar bottom. The present invention has been made based on such findings,
Its characteristic is that, with respect to the Cr-containing hot metal in a container equipped with a bottom blowing tuyere and a top blowing lance, decarburizing O 2 diluted with N 2 is top-blown from the top blowing lance and the bottom blowing tuyere N 2 is blown from the tank to start the decarburization blowing by strongly stirring the hot metal, and during the decarburization, the bottom blowing for the molten metal stirring is performed until C in the steel reaches the concentration at which the decarburization rate decreases. For gas and decarburization
After switching the diluting gas of O 2 from N 2 to Ar, and after completion of the blowing, Fe-
This is because a deoxidizing agent such as Si or Al was added and the molten steel was bottom-blown and stirred by Ar. By the way, generally, Fe-Si, Al, etc. are charged into molten steel for the purpose of Cr reduction and deoxidation in the slag after the completion of decarburization, but the present invention, in addition to such deoxidizer addition, is bottom-blown with Ar. Stirring is carried out, whereby N in steel is effectively removed in addition to Cr reduction and deoxidation. This is Fe-Si
Deoxidizing molten steel by adding deoxidizer such as (70-150ppm → 50pp
m), so that N easily comes out. By stirring this with Ar, N easily comes out from the molten steel,
This is due to denitrification of steel. This Ar bottom blowing is usually performed for 0.5 to 5 Nm 3 /min.molten steel ton for 5 to 10 minutes. On the other hand, as described above, the present inventors
As a method that can suppress Cr oxidation loss and perform decarburization in a short time, high Cr hot metal in a container equipped with a bottom blowing tuyere and a top blowing lance can be treated with an inert gas from the top blowing lance. while blowing on the diluted decarburization for O 2, was invented a new method for the content to vigorously stirred hot metal from the bottom tuyeres is blown inert gas. Hereinafter, this decarburization method will be described with reference to the schematic diagram of FIG. 1. First, in this method, decarburization treatment is performed under the following conditions. O 2 is exclusively supplied from the top-blowing lance 1, and no O 2 bottom-blowing is performed. From top lance 1, in pure O 2 without supplying O 2 diluted with an inert gas. Inert gas is blown from bottom blowing tuyere 2 and vigorously stirred. In the conventionally known AOD method, a method of blowing O 2 from the tuyere on the furnace bottom side is adopted, but according to the study by the present inventors, bottom blowing O 2 is a major cause of increasing Cr oxidation loss. Was found. That is, in the O 2 bottom blowing, the molten steel static pressure is applied, so that the CO partial pressure is increased. As a result, the decarburization reaction is inhibited, and the decarburizing O 2 oxidizes Cr. For this reason, in this decarburization method, O 2 bottom blowing is not performed, but acid is fed from the top blowing lance 1. However, it has been found that the Cr oxidation loss cannot be appropriately prevented by merely performing the top blowing with pure O 2 . This is decarburization but also occurs most severely in the fire spot due to lance oxygen-flow, CO partial pressure of this part by the oxygen-flow only O 2 is very high, this result decarburization is inhibited, O 2 Because it oxidizes Cr. Therefore, in this decarburization method, O 2 diluted with an inert gas is blown upward so that the CO partial pressure at the fire point is lowered and the decarburization reaction is promoted. In addition, it is preferable to supply a large amount of acid from the upper blowing lance in order to shorten the processing time. Further, in the present decarburization method, an inert gas is blown from the bottom blow tuyere 2 to promote the mixing of the molten metal and the top blown O 2 ,
The molten metal is vigorously stirred, and efficient decarburization can be performed while suppressing Cr oxidation loss by combining strong stirring with this bottom-blown inert gas and top-blown with inert gas diluted O 2 with the above lance. Becomes To strongly stir the molten metal, it is necessary to blow a large amount of inert gas. Specifically, in order to reduce the Cr oxidation loss to 1% or less, 0.5 Nm 3 / min · melt ton or more, and Cr oxidation loss
To achieve 0.5% or less, it is necessary to blow bottom gas with an amount of 1 Nm 3 / min. However, if the amount of gas is too large, the molten metal may scatter and cause a problem.Therefore, in this decarburization method, 0.5 to 5 Nm 3 / min ・ molton ton, preferably 1 to 3 Nm
Gas of about 3 / min. / Ton of molten metal is blown. Further, the inventors of the present invention have found that N in steel is low when the decarburization reaction is active, and that N in the steel is remarkably increased from the time when the decarburization rate decreases. this is,
This is because the CO gas generated by the decarburization reaction absorbs N in the steel and releases N from the steel, but when the decarburization rate decreases, the N absorption from the N 2 gas into the steel becomes larger. Here, in general, the decarburization rate is higher as the concentration of [C] in the steel is higher (strictly, the decarburization reaction maintains a high velocity state when the concentration of [C] in the steel is high). In other words, when the [C] concentration in the steel decreases to a predetermined value, thereafter, the decarburization rate decreases.
That is, when the [C] concentration in the steel reaches a concentration at which the decarburization rate decreases, the generation of CO gas decreases, and N in the steel rapidly increases. Therefore, N 2 gas was initially used as a bottom blowing gas for molten metal stirring and a diluting gas for decarburizing O 2 , and during decarburization, the concentration of decarburization rate in steel [C] decreased during decarburization. to reach, switching the N 2 to Ar,
Subsequent decarburization makes it possible to effectively use inexpensive N 2 gas as compared to expensive Ar, and to appropriately reduce the manufacturing cost. A concrete example of the switching timing of the bottom blowing gas for stirring the molten metal and the O 2 dilution gas for decarburizing is shown in FIG. 3 obtained from the example described later, in which the amount of [C] in the molten steel is 0.8 to 2.0 wt%. In the range, it is preferable to switch N 2 → Ar. That is, if the switching time is too early, a large amount of expensive Ar gas must be used, resulting in a high cost. Therefore, the content of [C] in the molten steel is preferably 2.0 wt% or less. On the other hand, if the switching time is too late (the C concentration becomes too low), a sufficient denitrifying effect cannot be obtained as shown in the figure. Therefore, the switching is performed when the molten steel [C] is 0.8 wt% or more. Is preferred. Here, the decarburization O 2 dilution gas is switched from N 2 to Ar because decarburization blowing has the strongest absorption of N at the fire point of the lance, so the decarburization rate at which N emission is reduced. If N 2 is used as a diluent gas in such a part at the time when the N decreases, a large amount of N will dissolve in the molten metal, so such N absorption will be prevented to the maximum and the nitrogen concentration in the molten steel will increase. This is to effectively suppress However, in order to utilize Ar gas more effectively, and to achieve a further reduction in nitrogen, the bottom blowing gas for molten metal stirring should also be switched from N 2 to Ar. Both the bottom blowing gas and the decarburizing O 2 diluent gas are supposed to be switched from N 2 to Ar. Example First, a test example of the effect of Ar rinse, which is a constituent element of the present invention, will be described. In addition, in the test example, in order to clarify the effect of switching the bottom-blown gas species for stirring the molten metal and the O 2 dilution gas species for decarburization in the present invention, the inert gas was not switched. Using a converter-type container having a top blowing lance and a bottom blowing tuyere, after decarburizing high-Cr hot metal by the following methods (A) to (E), Ar rinse (Fe-Si charging + Ar bottom Blow) was carried out to produce Cr: 18%, C: 0.05% stainless steel. (A) Decarburization blowing Top blowing gas: O 2 + N 2 (dilution) Bottom blowing gas: N 2 (2Nm 3 / min · molten steel ton) Ar rinse Bottom blowing gas: Ar (0.1Nm 3 / min · molten steel ton) (B) Decarburization blowing Top blowing gas: O 2 + N 2 (dilution) Bottom blowing gas: N 2 (2Nm 3 / min · molten steel ton) Ar rinse Bottom blowing gas: Ar (0.5Nm 3 / min · molten steel ton) (C) Decarburization blowing Top blowing gas: O 2 + N 2 (dilution) Bottom blowing gas: N 2 (2Nm 3 / min · molten steel ton) Ar rinse Bottom blowing gas: Ar (1Nm 3 / min · molten steel ton) ( D) Decarburization blowing Top blowing gas: O 2 + N 2 (dilution) Bottom blowing gas: N 2 (2Nm 3 / min · molten steel ton) Ar rinse Bottom blowing gas: Ar (2Nm 3 / min · molten steel ton) (E ) Decarburization Top-blown gas: O 2 + Ar (dilution) Bottom-blown gas: N 2 (2Nm 3 / min · molten steel ton) Ar rinse Bottom-blown gas: Ar (2Nm 3 / min · molten steel ton) Figure 2 shows It shows the effect of bottom-blown Ar gas amount on the denitrification rate in Ar rinse. First, looking at the [N] concentration in the molten steel at the start of rinsing, both are considerably higher than the embodiment (B) of the present invention described later, but after that, the [N] concentration in the steel decreases, and in any case Ar It can be seen that the rinsing effectively denitrifies the molten steel. On the other hand, looking at the [N] concentration in the steel, in the examples of (A) to (C), the final N concentration is still high at 750 to 1750 ppm, and the Ar gas amount is 2 Nm 3 / min · molten steel ton (D In the case of), the rinse time is 4 to 5 minutes.
N: 500 to 600 ppm, 250 ppm even after 12 minutes, and it has not been possible to achieve the level of low nitrogen content to be obtained in the present invention.
Also, Ar was used as a diluting gas for O 2 during decarburization (E)
In the case of, the N concentration at the end of decarburization is about half that of (A) to (D), which is about 1000 ppm, and it decreases to 250 ppm in 2 minutes of rinsing time. It uses expensive Ar all the time, and the cost is high. Next, an example in which all the steps according to the present invention are performed will be described. Using the same converter type vessel as in the above test example, by the method (b) shown below, after decarburizing the high Cr hot metal, Ar rinsing (Fe-Si charging + Ar bottom blowing) was performed, and : 18%, C:
0.05% stainless steel was produced. (B) Decarburization blowing: Using the initial decarburization N 2 as the diluting gas for decarburizing O 2 and the bottom blowing gas, switching N 2 to Ar at various [C] values in various molten steels during blowing. It was Ar rinse: Bottom-blown gas Ar (2 Nm 3 / min, molten steel ton for 5 minutes) Fig. 3 shows the timing of gas type switching of decarburizing O 2 dilution gas on molten steel [N] after decarburization blowing It shows the effect of. As shown in the figure, when [C] in the molten steel is about 0.8% or less, the amount of [N] rapidly increases, and when it exceeds 1%, [N] is in a low value and is in an equilibrium state. Among these, an example of switching N 2 → Ar during decarburization blowing with 1% molten steel [C] shows that even after decarburizing blowing, [N] reached a low level of 150 ppm. After Ar rinse, it can be seen that extremely low level of low N stainless steel of 50 ppm can be easily obtained without using a large amount of Ar gas. [Advantages of the Invention] According to the present invention described above, it is possible to produce a low-nitrogen stainless steel having a low nitrogen content at an extremely low level without using a large amount of Ar gas. In addition to the above effects, there is an effect that low nitrogen stainless steel can be manufactured in a short time while suppressing Cr oxidation loss.

【図面の簡単な説明】 第1図は本発明法に係る脱炭処理法が実施される設備を
模式的に示す説明図である。第2図は、Arリンス中の脱
窒速度に及ぼす底吹きAr量の影響を示す試験結果であ
る。第3図は、脱炭吹錬において、上吹き希釈ガス種及
び底吹きガス種をN2からArへ変更した時の溶鋼〔C〕値
と吹錬終了後の溶鋼〔N〕値の関係を示すグラフであ
る。 図において、(1)は上吹きランス、(2)は底吹き羽
口である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view schematically showing equipment for carrying out the decarburizing treatment method according to the present invention. FIG. 2 is a test result showing the influence of the bottom-blown Ar amount on the denitrification rate during Ar rinsing. Fig. 3 shows the relationship between the molten steel [C] value when the top-blown dilution gas species and the bottom-blown gas species are changed from N 2 to Ar in decarburization blowing and the molten steel [N] value after completion of blowing. It is a graph shown. In the figure, (1) is a top blowing lance and (2) is a bottom blowing tuyere.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 克博 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 井上 茂 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭62−130210(JP,A) 特開 昭56−130416(JP,A) 特開 昭57−110608(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Katsuhiro Iwasaki               1-2-1, Marunouchi, Chiyoda-ku, Tokyo               Nippon Kokan Co., Ltd. (72) Inventor Shigeru Inoue               1-2-1, Marunouchi, Chiyoda-ku, Tokyo               Nippon Kokan Co., Ltd.                (56) References JP-A-62-130210 (JP, A)                 JP-A-56-130416 (JP, A)                 JP-A-57-110608 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.底吹き羽口と上吹きランスとを備えた容器内の含Cr
溶銑に対し、上吹きランスから、N2で希釈した脱炭用O2
を上吹きするとともに、底吹き羽口からN2を吹き込んで
溶銑を強撹拌することにより脱炭吹錬を開始し、脱炭途
中であって、鋼中Cが、脱炭速度が低下する濃度に達す
るまでに、溶湯撹拌用底吹きガス及び脱炭用O2を希釈ガ
スをN2からArに切換え、該吹錬終了後、Fe−SiまたはAl
等の脱酸剤を投入し、溶鋼をArにより底吹き撹拌するこ
とを特徴とする低窒素ステンレス鋼の製造方法。 2.底吹き羽口と上吹きランスとを備えた容器内の含Cr
溶銑に対し、上吹きランスから、N2で希釈した脱炭用O2
を上吹きするとともに、底吹き羽口からN2を吹き込んで
溶銑を強撹拌することにより脱炭吹錬を開始し、脱炭途
中であって、鋼中C濃度が0.8wt%に達するまでに、溶
湯撹拌用底吹きガス及び脱炭用O2希釈ガスをN2からArに
切換え、該吹錬終了後、Fe−SiまたはAl等の脱酸剤を投
入し、溶鋼をArにより底吹き撹拌することを特徴とする
低窒素ステンレス鋼の製造方法。
(57) [Claims] Cr-containing in a container equipped with bottom blowing tuyere and top blowing lance
O 2 for decarburization diluted with N 2 from the top blowing lance to the hot metal
And degassing, the decarburization blowing is started by blowing N 2 from the bottom blowing tuyere and stirring the hot metal vigorously. During the decarburization, C in steel is a concentration at which the decarburization rate decreases. By the time, the gas for bottom blowing for molten metal stirring and O 2 for decarburization are switched from N 2 to Ar as the diluting gas, and after completion of the blowing, Fe--Si or Al
A method for producing low nitrogen stainless steel, characterized in that a deoxidizing agent such as is added and molten steel is bottom-blown and stirred by Ar. 2. Cr-containing in a container equipped with bottom blowing tuyere and top blowing lance
O 2 for decarburization diluted with N 2 from the top blowing lance to the hot metal
The while blowing above the decarburization blowing was started by stirring strongly the molten iron by blowing N 2 from the bottom tuyeres, a middle decarburization, up to the C concentration in the steel reached 0.8 wt% The bottom blowing gas for stirring the molten metal and the O 2 dilution gas for decarburizing were switched from N 2 to Ar, and after the blowing was completed, a deoxidizing agent such as Fe-Si or Al was added, and the molten steel was bottom blown with Ar by stirring. A method for producing low-nitrogen stainless steel, comprising:
JP62285444A 1987-09-09 1987-11-13 Manufacturing method of low nitrogen stainless steel Expired - Fee Related JP2674041B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP62285444A JP2674041B2 (en) 1987-09-17 1987-11-13 Manufacturing method of low nitrogen stainless steel
CA000576818A CA1333663C (en) 1987-09-09 1988-09-08 Method of decarburizing high cr molten metal
BR888807195A BR8807195A (en) 1987-09-09 1988-09-09 PROCESS FOR DECARBURIZING METAL MELTED WITH HIGH CHROME CONTENT
PCT/JP1988/000909 WO1989002479A1 (en) 1987-09-09 1988-09-09 Process for decarburizing high-cr molten pig iron
PCT/JP1988/000910 WO1989002478A1 (en) 1987-09-10 1988-09-09 Process for producing molten stainless steel
CN88107053A CN1013280B (en) 1987-09-09 1988-09-09 Method of decarburizing high cr molten metal
AU23058/88A AU619488B2 (en) 1987-09-09 1988-09-09 Process for decarburizing high-cr molten pig iron
US07/320,270 US5047081A (en) 1987-09-09 1988-09-09 Method of decarburizing high chromium molten metal
DE3850394T DE3850394T2 (en) 1987-09-10 1988-09-09 METHOD FOR PRODUCING MELTED STAINLESS STEEL.
AU23057/88A AU604974B2 (en) 1987-09-10 1988-09-09 Process for producing molten stainless steel
US07/362,418 US4944799A (en) 1987-09-10 1988-09-09 Method of producing stainless molten steel by smelting reduction
AT88907783T ATE107706T1 (en) 1987-09-10 1988-09-09 METHOD OF MAKING MOLTEN STAINLESS STEEL.
EP88907784A EP0331751B1 (en) 1987-09-09 1988-09-09 PROCESS FOR DECARBURIZING HIGH-Cr MOLTEN PIG IRON
BR888807201A BR8807201A (en) 1987-09-10 1988-09-09 METHOD OF PRODUCTION OF STAINLESS STEEL IN REDUCING FUSION FUSION
AT88907784T ATE103006T1 (en) 1987-09-09 1988-09-09 PROCESS FOR DECARBURIZING HIGH CHROMIUM PIG IRON.
DE3888518T DE3888518T2 (en) 1987-09-09 1988-09-09 METHOD FOR THE DECARBONIZING OF HIGH CHROMED PIG IRON.
EP88907783A EP0355163B1 (en) 1987-09-10 1988-09-09 Process for producing molten stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-231042 1987-09-17
JP23104287 1987-09-17
JP62285444A JP2674041B2 (en) 1987-09-17 1987-11-13 Manufacturing method of low nitrogen stainless steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9046924A Division JP2751924B2 (en) 1987-09-17 1997-02-17 Manufacturing method of low nitrogen stainless steel

Publications (2)

Publication Number Publication Date
JPH01159310A JPH01159310A (en) 1989-06-22
JP2674041B2 true JP2674041B2 (en) 1997-11-05

Family

ID=26529665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285444A Expired - Fee Related JP2674041B2 (en) 1987-09-09 1987-11-13 Manufacturing method of low nitrogen stainless steel

Country Status (1)

Country Link
JP (1) JP2674041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836494B2 (en) 2005-06-08 2011-12-14 芦森工業株式会社 Airbag device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130416A (en) * 1980-03-19 1981-10-13 Nippon Steel Corp Steel making method
JPS57110608A (en) * 1980-12-26 1982-07-09 Kawasaki Steel Corp Method for deoxidation in bottom blown converter
JPS62130210A (en) * 1985-11-30 1987-06-12 Kawasaki Steel Corp Production of stainless steel

Also Published As

Publication number Publication date
JPH01159310A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
EP0331751B1 (en) PROCESS FOR DECARBURIZING HIGH-Cr MOLTEN PIG IRON
JP2674041B2 (en) Manufacturing method of low nitrogen stainless steel
JP2751924B2 (en) Manufacturing method of low nitrogen stainless steel
JP3843589B2 (en) Melting method of high nitrogen stainless steel
KR970004990B1 (en) Decarburizing method of stainless steel
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JPH07179921A (en) Method for dephosphorizing molten iron
JP3548273B2 (en) Melting method of ultra low carbon steel
JPS6358203B2 (en)
JPH083619A (en) Method for melting stainless steel
JP2976855B2 (en) Method of deoxidizing molten steel
JPH06306442A (en) Production of extra low sulfur steel
JP2774812B2 (en) Steelmaking method using top and bottom blown converter
JPH08134528A (en) Production of extra low carbon steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP3390478B2 (en) Melting method of high cleanliness steel
JP3820686B2 (en) Melting method of low nitrogen stainless steel
KR100406434B1 (en) Method for deoxidizing in the low carbon metal with Fe-Si
JPH05195046A (en) Method for melting high manganese and extremely low carbon steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
KR20050003783A (en) Method for refining of extra low sulfur stainless steel
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPH05247522A (en) Refining method of highly clean stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees