JP2671171B2 - Battery with over-discharge overheat prevention device - Google Patents

Battery with over-discharge overheat prevention device

Info

Publication number
JP2671171B2
JP2671171B2 JP3171082A JP17108291A JP2671171B2 JP 2671171 B2 JP2671171 B2 JP 2671171B2 JP 3171082 A JP3171082 A JP 3171082A JP 17108291 A JP17108291 A JP 17108291A JP 2671171 B2 JP2671171 B2 JP 2671171B2
Authority
JP
Japan
Prior art keywords
battery
conductive polymer
anode
terminal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3171082A
Other languages
Japanese (ja)
Other versions
JPH0582119A (en
Inventor
晴夫 小林
潔 清玄寺
明 吉崎
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53877421&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2671171(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP1983170172U priority Critical patent/JPS6076872U/en
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP3171082A priority patent/JP2671171B2/en
Publication of JPH0582119A publication Critical patent/JPH0582119A/en
Application granted granted Critical
Publication of JP2671171B2 publication Critical patent/JP2671171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、過放電をおこして過
熱して事故が生じることを防止するための装置を有する
電池に関する。 【0002】 【従来の技術】電池を使用している器具においては、何
等かの原因により電源がシヨートする場合がある。その
場合、電池から大電流が流れ、それによつて電池が過熱
し、電池の周囲にあるプラスチツク製の部品を傷めた
り、電気回路の構成部品を破壊するおそれがある。ま
た、電池自体も漏液したり、時には爆発する危険もあ
る。 【0003】従来、このような事故を防止するために温
度ヒユーズを使用することが知られており、その構成を
図1に示してある。図1において、51は電池で、2本
が並設され、接続片60が一方の電池の陽極と他方の電
池の陰極に溶接されて2本の電池を直列に接続してい
る。互いに接続されていない方の電極には接片61、6
2が夫々溶着され、各接片61、62にはコネクター5
6、57を介してリード線63、58が接続されてい
る。一方のリード線58は図示しない回路構成要素に接
続されているが、他方のリード線63はコネクター54
を介して温度ヒユーズ53に接続され、該温度ヒユーズ
53からコネクター55を介してリード線59が伸び、
その先端が図示しない回路構成要素に接続されている。
温度ヒユーズ53は、電池51に発生した熱を温度ヒユ
ーズ53に伝える熱伝導板52に取り付けられており、
この熱伝導板52が一方の電池51の周りに巻かれてい
る。 【0004】この構成例において、シヨート等が起こり
電池51が過熱すると、この熱が熱伝導板52を介して
温度ヒユーズ53に伝達され、所定の温度を越えると温
度ヒユーズ53が切断されて回路が遮断されるため、そ
れ以上の過熱を防止することができる。 【0005】 【発明が解決しようとする課題】ところで、このような
温度ヒユーズによる装置においては、一度過熱して温度
ヒユーズが切断してしまうとこれを取り換えないと再使
用できないため、温度ヒユーズが交換できる構成にして
おかねばならず、例えば図1に示すようにコネクターで
接続したり熱伝導板によつて取外し可能に保持するなど
の必要があり、部品点数が増え組立にも手間がかかつて
しまう。また、温度ヒユーズの遮断温度は一般に95度
以上と高温であり、温度ヒユーズが接している部材(例
えば電池)が高温にならなければ遮断できず、比較的低
温でも破損しやすいプラスチツク部品の破損を防止する
には不十分であつた。 【0006】この対策として、温度上昇に応じて抵抗値
が上昇する導電性ポリマーを電池に直列に接続した構成
が提案されている(一例として特開昭55−10598
0号公報参照)。この構成では、電池の通常の動作で異
常な発熱がない場合は導電性ポリマーが低い抵抗値を示
して電池の正常な動作を行わせ、電池が過電流により過
熱した場合には導電性ポリマーが高い抵抗値を示して電
流を遮断して電池の過熱による事故を防止し、また、電
池の発熱原因が取り除かれた場合は導電性ポリマーの温
度の降下により抵抗値が下がり、正常な動作に復旧す
る。 【0007】 しかし、上記した導電性ポリマーを使用
した構成でも、導電性ポリマーに加えられた熱や導電性
ポリマー自体に発生した熱が熱容量の大きい電池外装や
電池外部に伝達放散されると、導電性ポリマーの温度上
昇が抑えられ、迅速に電流を遮断することができない。
また、電池の発熱原因が取り除かれた場合も熱容量の大
きい電池外装などから逆に熱が伝達されて導電性ポリマ
ーの温度降下が遅くなり、正常な状態に復旧するのに時
間がかかる等の不都合があつた。さらに、円筒型電池な
どでは一方の極(通常は陰極)が電池の外装と兼用され
ているため、電池を金属板などの上に置くなど取扱いの
不注意により電極が短絡してしまうおそれがあること等
の不都合があつた。この発明は上記課題を解決すること
を目的とするものである。 【0008】 【課題を解決するための手段】 この発明は上記課題を
解決するもので、電流を発生させるための陽極体及び陰
極体と、上記陽極体及び陰極体に接続され外部に露出す
ることによつて電流を外部に取り出す陽極端子及び陰極
端子と、上記陽極体及び陰極体を収納するとともに陽極
端子及び陰極端子のうちの一方が電気的に接続している
外装部材とを有する電池において、上記外装部材は絶縁
部材によりその外面が覆われ、かつ、上記外装部材に電
気的に接続していない側の電極側の極体と端子との間
に、温度上昇に応じて抵抗値が上昇する導電性ポリマー
が介装されていることを特徴とするものである。 【0009】 【作用】 電池の電極が短絡などの事態が生じて過電流
が流れた場合、導電性ポリマーはその特性により急激に
発熱するが、導電性ポリマーは熱容量の大きい電池の外
装部材に電気的に接続されていない側の電極体と端子と
の間に介装されているので、発生した熱は端子を介して
熱容量の大きい電池の外装部材に伝達されず、導電性ポ
リマー自体の温度は急速に上昇し電気抵抗は急速に高く
なるから、短時間に過電流を遮断乃至は電流を大きく制
限することができる。また、発熱の原因がなくなると、
導電性ポリマーは熱容量の大きい電池の外装部材に電気
的に接続されていない側の電極体と端子との間に介装さ
れているので、導電性ポリマーの温度は短時間で急速に
下がり、迅速に電流の遮断乃至は制限が解除される。さ
らに、前記導電性ポリマーによる過電流を遮断乃至は電
流を大きく制限する構造に加えて、電池の外装部材の外
面を絶縁部材により覆うことで電極の短絡が生じにくい
構造を付加し、二重の安全構造とすることで、電極の短
絡による事故の発生確率を更に減らすことができる。 【0010】 【実施例】以下、この発明の実施例につき、図面を参照
して説明する。近年、温度が上昇すると、温度の上昇に
応じて電気抵抗値が大きくなる特性を有する導電性ポリ
マーが開発されている。この導電性ポリマーは常温では
電気抵抗値が0.04Ω程度であり、一般的なサーミス
タに比べておよそ250分の1の抵抗しかなく導電性が
極めてよいが、温度が上昇すると抵抗値が大幅に増大す
る。図2はこの導電性ポリマーの温度に対する抵抗値を
示したもので、抵抗値が10−1Ω付近から10〜1
Ω付近まで極めて広範囲に変化することが示されて
いる。 【0011】図3は、導電性ポリマーの放熱カーブと発
熱カーブを示しており、Pは正常電流が流れていると
きの発熱カーブ、Pは周囲温度がT℃であるときの放
熱カーブである。発熱カーブPと放熱カーブPは点
A、B、Cで交差しているが、このうち点A、Cは温度
の上昇によつて発熱カーブPよりも放熱カーブP
大きく上昇する点であり、温度の平衡点となつている。
点Aは常温付近、点Cは高温付近であり、通常において
は点Aで平衡している。このとき、導電性ポリマーの電
気抵抗値は約0.04Ωであり電流は正常に流れてい
る。 【0012】何等かの原因で過電流が流れると、発熱カ
ーブはPから全体が上方へ移動するように変化する。
このときの一状態を図中Pで示している。このように
発熱カーブが上方へ移動すると、常温付近で発熱カーブ
と放熱カーブPの平衡点がなくなり、発熱量が放
熱量を上回つて、電池など他の構成部品が比較的低温に
うちに導電性ポリマーの温度が上昇する。温度が上昇す
ると、図2に示すように導電性ポリマーの抵抗値が増大
するため電流が流れ難くなり、逆に発熱量が低下する。
このことによつて発熱カーブPと放熱カーブPは高
温付近の点Dで交差し、このを平衡点として温度が安定
する。この後は、平衡点では導電性ポリマーはきわめて
高い抵抗値を示して電流の流れを阻止するので、電池そ
の他の部品は比較的低温のままでそれ以上過熱すること
はなく、部品の破壊等が防止される。 【0013】この後、過電流の原因が取り除かれ周囲温
度が低下すると、発熱カーブは正常な状態に復帰し、導
電性ポリマーは正常な平衡点Aに達して再び通常の状態
での使用が可能になる。 【0014】このように導電性ポリマーを使用すること
により、過電流による温度の上昇が原因となつて生じる
プラスチツク部品や回路部品の破損を防止することがで
きると共に、過電流の原因を取り除くことによつて再び
正常に使用することができるようになる。 【0015】図4は、電池に装着する導電性ポリマー部
材の形状を示す一例で、導電性ポリマーは薄く形成され
一対の導電板5に挟まれて一体化させることによつて導
電性ポリマー部材2を形成している。 【0016】図5は、この発明の第1実施例の電池の構
成を示す断面図で、その構成の特徴は、電池の陰極側の
極体と端子との間に導電性ポリマー4が介装されている
点にある。 【0017】図中10は高圧形成された陽極物質であ
り、11は高純度亜鉛粉末を分散させた陰極物質であ
る。この陽極物質10と陰極物質11はセパレータ13
で隔離されている。 【0018】15は封口体パツキングで、傘状に形成さ
れており、周辺部分は電池外装の下端を封止している。
また、その中心部分には封口体パツキング15を貫通し
て陰極物質11内に差し込まれた集電子棒12が配置さ
れている。封口体パツキング15の外側には、導電性ポ
リマー4を2枚の導電板5で挟んで構成された導電性ポ
リマー部材2が取り付けられ、前記した集電子棒12と
導電性ポリマー部材2とは電気的に接続されて、導電性
ポリマー部材2の導電板5は、電池の陰極端子6を構成
している。 【0019】さらに封口体パツキング15には、封口体
パツキング15と集電子棒12の間の隙間をなくし漏液
を防止するための漏液防止キヤツプ14が設けられてい
る。19は陽極端子で、図5に示すように、陽極物質1
0を収納した陽極内缶16の上端面に電気的に接続され
ている。 【0020】電池の外装は、内側から陽極物質10を収
納した陽極内缶16と陽極内缶16の外側の陽極外缶1
7、その表面の名称等を印刷したラベル20、熱収縮性
塩化ビニルパイプによる外装材21からなる。陽極内缶
16と陽極外缶17は内容物を収めた後、絞り加工によ
つて前記封口体パツキング15を締めつけて内容物を密
封している。なお、18は絶縁板である。 【0021】以上の構成を備えた第1実施例の電池で
は、陽極端子19は電池の外装を構成する陽極内缶16
に電気的に接続されており、また、陰極端子6は電池の
外装に電気的に接続されていない導電性ポリマー部材2
の導電板5で構成され、集電子棒12、即ち陰極体と陰
極端子6との間に導電性ポリマー4が介装された構成と
なつている。なお、一般的に2つの物体が電気的に接続
されている場合は、熱的にも接続されて熱が伝達される
ことは良く知られている事項である。 【0022】次に、その作用を説明する。電池の電極が
短絡などの事態が生じて過電流が流れた場合は、電池内
部に発生した熱が導電性ポリマーに伝達されるほか、導
電性ポリマー自体の特性により急速に発熱する。 【0023】このとき、陰極端子6は熱容量の大きい電
池の外装(陽極内缶16と陽極外缶17)に電気的に
(即ち熱的にも)接続されていないから、電池内部に発
生して導電性ポリマー4に伝達された熱、及び導電性ポ
リマー自体に発生した熱は、端子を介して熱容量の大き
い電池の外装に伝達されることなく、導電性ポリマー自
体の温度を急速に高める。この結果、導電性ポリマーの
電気抵抗は急速に著しく高くなり、短時間に過電流を遮
断乃至は電流を大きく制限して電池の爆発などの事態を
未然に防ぐことができる。 【0024】また、発熱の原因がなくなると、陰極端子
6は熱容量の大きい電池の外装(陽極内缶16と陽極外
缶17)に電気的に(即ち熱的にも)接続されていない
ので、導電性ポリマーの温度は短時間に下がり、電流の
遮断乃至は制限が迅速に解除される。 【0025】仮に、導電性ポリマーを使用した陰極端子
(或いは陽極端子)が熱容量の大きい電池の外装に電気
的に(即ち熱的にも)接続されていた場合は、電池に過
電流が流れた場合に、電池内部に発生して導電性ポリマ
ーに伝達された熱、及び導電性ポリマー自体に発生した
熱は、端子を介して熱容量の大きい電池の外装に伝達さ
れ、導電性ポリマー自体の温度上昇の割合が小さくな
る。この結果、導電性ポリマーの電気抵抗は緩やかに上
昇するから、短時間に過電流を遮断乃至は電流を大きく
制限できず、電池の爆発などの事態の発生を防ぐことが
できない。 【0026】また、発熱の原因がなくなると、陰極端子
6は熱容量の大きい電池の外装(陽極内缶16と陽極外
缶17)に電気的に(即ち熱的にも)接続されているた
め、導電性ポリマーの温度は容易に下がらず、電流の遮
断乃至は制限が長時間続くことになる。 【0027】次に、フラツシユ装置などに使用して電池
を長時間にわたり繰り返し重負荷で使用したような場合
には、重負荷での使用による発熱で、時間の経過と共に
電池内部の温度が次第に上昇する。 【0028】このとき、陰極端子は熱容量の大きい電池
の外装に電気的に接続されていないから、電池内部に発
生して導電性ポリマー4に伝達された熱、及び導電性ポ
リマー自体に発生した熱は徐々に電池の外装に伝達され
るが、伝達拡散される率が小さいために導電性ポリマー
自体の温度を高める。この結果、導電性ポリマーの電気
抵抗は高くなり、比較的短時間に電流を遮断乃至は電流
を大きく制限して電池の爆発などの事態を未然に防ぐこ
とができる。 【0029】仮に、導電性ポリマーを使用した陰極端子
(或いは陽極端子)が熱容量の大きい電池の外装に電気
的に接続されていた場合は、電池内部に発生して導電性
ポリマー4に伝達された熱、及び導電性ポリマー自体に
発生した熱は熱容量の大きい電池の外装に伝達され外気
に拡散するから、導電性ポリマー自体の温度上昇の割合
が小さくなる。この結果、導電性ポリマーの電気抵抗は
緩やかに上昇するから、短時間に過電流を遮断乃至は電
流を大きく制限できず、電池の爆発などの事態の発生を
防ぐことができない。 【0030】図6は前記第1実施例のものにおける陰極
端子部分の構成を変えた第2実施例を示すもので、陰極
端子23と集電子棒12の間の接続部分に導電性ポリマ
ー部材2を挟み込んだ実施例である。その他の構成は、
前記図5に示した第1実施例と同様である。この構成に
おいても、電池の外装部材に電気的に接触していない側
の極体である集電子棒12と陰極端子23との間に導電
性ポリマー4が介装されている。 【0031】以上説明した実施例では、陰極端子が熱容
量の大きい電池の外装に電気的に接続されてなく、陽極
端子が電池の外装に電気的に接続されている構成を示し
たが、これと反対に、陽極端子が熱容量の大きい電池の
外装に電気的に接続されてなく、陰極端子が電池の外装
に電気的に接続されている構成としてもよく、その作用
効果の点では同じである。 【0032】 【発明の効果】以上説明した通り、この発明は、電流を
発生させるための陽極体及び陰極体と、上記陽極体及び
陰極体に接続され外部に露出することによつて電流を外
部に取り出す陽極端子及び陰極端子と、上記陽極体及び
陰極体を収納するとともに陽極端子及び陰極端子のうち
の一方が電気的に接触している外装部材とを有する電池
において、上記外装部材に電気的に接触していない側の
電極側の極体と端子との間に、温度上昇に応じて抵抗値
が上昇する導電性ポリマーを介装したものであるから、
電源シヨートによる過放電や、長時間の連続重負荷での
使用等によつて電池が発熱しても、導電性ポリマーの温
度上昇により電気抵抗が高くなり、電池やその他の部品
が比較的低温のうちに電流を遮断或いは制限するので、
電池の異常な過熱とそれによる事故、比較的低温でも破
損しやすい部材の破損を防止することができる。 【0033】 そして、外装部材に電気的に接続されて
いない側の電極体と端子との間に導電性ポリマーを介装
したので、外装部材に電気的に接続されている側の電極
体と端子との間に介装したものに比較して、短時間で電
流を遮断乃至は制限することができ、また、発熱の原因
がなくなつたときの復帰が迅速に行なわれる。さらに、
前記した導電性ポリマーによる過電流を遮断乃至は電流
を大きく制限する構造に加えて、電池の外装部材の外面
を絶縁部材により覆うことで電極の短絡が生じにくい構
造を付加し、二重の安全構造とすることで、電極の短絡
による事故の発生確率を更に減らすことができるなど顕
著な作用効果を奏するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery having a device for preventing an accident due to overheating and overheating. 2. Description of the Related Art In a device using a battery, the power source may be shut down for some reason. In that case, a large current flows from the battery, which causes the battery to overheat, which may damage the plastic parts around the battery or destroy the components of the electric circuit. There is also a risk that the battery itself may leak or even explode. Conventionally, it is known to use a temperature fuse to prevent such an accident, and its configuration is shown in FIG. In FIG. 1, 51 is a battery, two of which are arranged side by side, and a connecting piece 60 is welded to the anode of one battery and the cathode of the other battery to connect the two batteries in series. The electrodes 61, 6 which are not connected to each other are connected to each other.
2 are welded to each other, and the connector 5 is attached to each contact piece 61, 62.
Lead wires 63, 58 are connected via 6, 57. One lead wire 58 is connected to a circuit component (not shown), while the other lead wire 63 is connected to the connector 54.
Is connected to the temperature fuse 53 through, and the lead wire 59 extends from the temperature fuse 53 through the connector 55,
Its tip is connected to a circuit component (not shown).
The temperature fuse 53 is attached to the heat conduction plate 52 that transfers the heat generated in the battery 51 to the temperature fuse 53,
This heat conduction plate 52 is wound around one battery 51. In this configuration example, when a battery is overheated due to a short or the like, this heat is transmitted to the temperature fuse 53 through the heat conduction plate 52, and when the temperature exceeds a predetermined temperature, the temperature fuse 53 is cut off and a circuit is formed. Since it is cut off, it is possible to prevent further overheating. By the way, in an apparatus using such a temperature fuse, once the temperature fuse is overheated and cut, the temperature fuse cannot be reused unless it is replaced. Therefore, the temperature fuse is replaced. It is necessary to make it possible to connect it with a connector as shown in FIG. 1 or to hold it detachably by a heat conduction plate as shown in FIG. 1, which increases the number of parts and makes the assembly troublesome. . In addition, the cutoff temperature of the temperature fuse is generally as high as 95 ° C or higher, and it cannot be cut off unless the member (for example, battery) with which the temperature fuse is in contact has a high temperature. It was insufficient to prevent it. As a countermeasure against this, there has been proposed a structure in which a conductive polymer whose resistance value increases with temperature rise is connected in series to a battery (as one example, JP-A-55-10598).
No. 0). With this configuration, the conductive polymer exhibits a low resistance value to cause the battery to operate normally when there is no abnormal heat generation in the normal operation of the battery, and when the battery is overheated due to overcurrent, the conductive polymer is It shows a high resistance value and shuts off the current to prevent accidents due to overheating of the battery, and when the cause of battery heat generation is removed, the resistance value decreases due to the temperature drop of the conductive polymer, and normal operation is restored. To do. However, even in the configuration using the above-mentioned conductive polymer, when the heat applied to the conductive polymer or the heat generated in the conductive polymer itself is transferred to and dissipated to the battery exterior having a large heat capacity or the outside of the battery, it becomes conductive. The temperature rise of the water-soluble polymer is suppressed, and the current cannot be interrupted quickly.
In addition, even if the cause of heat generation in the battery is removed, heat is transferred from the exterior of the battery, which has a large heat capacity, and the temperature drop of the conductive polymer slows down, so it takes time to restore the normal state. I got it. Furthermore, a cylindrical battery
In some cases, one pole (usually the cathode) is also used as the battery exterior.
Therefore, do not handle the battery by placing it on a metal plate, etc.
There is a risk that the electrodes may short-circuit due to carelessness, etc.
Was inconvenient. An object of the present invention is to solve the above problems. Means for Solving the Problems [0008] The present invention is to solve the above-described problems, and is to expose an anode body and a cathode body for generating an electric current and to the outside by being connected to the anode body and the cathode body. A battery having an anode terminal and a cathode terminal for taking out the current to the outside, and an exterior member in which one of the anode terminal and the cathode terminal is electrically connected while accommodating the anode body and the cathode body, The exterior member is insulated
A conductive polymer , whose outer surface is covered with a member, and whose resistance value increases according to temperature rise, is interposed between the electrode-side polar body on the side not electrically connected to the exterior member and the terminal. It is characterized by being worn. [0009] When an overcurrent flows due to a situation such as a short circuit of the battery electrodes, the conductive polymer rapidly generates heat due to its characteristics, but the conductive polymer is electrically charged to the exterior member of the battery having a large heat capacity. Since it is interposed between the electrode body on the side not electrically connected and the terminal, the generated heat is not transferred to the exterior member of the battery having a large heat capacity through the terminal, and the temperature of the conductive polymer itself is Since it rises rapidly and the electric resistance rises rapidly, overcurrent can be interrupted or the current can be greatly limited in a short time. Also, when the cause of fever disappears,
Since the conductive polymer is interposed between the electrode body and the terminal on the side that is not electrically connected to the exterior member of the battery with a large heat capacity, the temperature of the conductive polymer drops rapidly in a short time, The current is cut off or the restriction is released. Furthermore, in addition to the structure for blocking the overcurrent due to the conductive polymer or for greatly limiting the current, a structure in which the outer surface of the battery exterior member is covered with an insulating member so that the short circuit of the electrode does not easily occur is added. The safety structure can further reduce the probability of an accident due to a short circuit of the electrodes. Embodiments of the present invention will be described below with reference to the drawings. In recent years, a conductive polymer has been developed which has a characteristic that when the temperature rises, the electric resistance value increases as the temperature rises. This conductive polymer has an electric resistance value of about 0.04 Ω at room temperature, and has a resistance of about 1/250 of that of a general thermistor, which is extremely good in conductivity. However, the resistance value significantly increases as the temperature rises. Increase. FIG. 2 shows the resistance value with respect to temperature of this conductive polymer. The resistance value is from 10 −1 Ω to 10 6 to 1
It has been shown that the variation is extremely wide up to about 0 7 Ω. FIG. 3 shows a heat radiation curve and a heat generation curve of the conductive polymer. P 1 is a heat generation curve when a normal current is flowing, and P 2 is a heat radiation curve when the ambient temperature is T ° C. is there. The heat generation curve P 1 and the heat radiation curve P 2 intersect at points A, B, and C, and of these points, the heat radiation curve P 2 at points A and C rises more than the heat generation curve P 1 due to the rise in temperature. The point is the equilibrium point of temperature.
Point A is near room temperature and point C is near high temperature, and normally equilibrium at point A. At this time, the electric resistance value of the conductive polymer is about 0.04Ω, and the current flows normally. When an overcurrent flows for some reason, the heat generation curve changes so that the entire body moves upward from P 1 .
One state at this time is shown by P 3 in the figure. With such heating curve moves upward, it is not the heating curve P 3 at about room temperature equilibrium point of the heat dissipation curve P 2, the heating value is the heat radiation amount exceeded connexion, a relatively low temperature other components such as a battery Over time, the temperature of the conductive polymer rises. When the temperature rises, the resistance value of the conductive polymer increases as shown in FIG. 2, so that it becomes difficult for current to flow, and conversely the amount of heat generation decreases.
As a result, the heat generation curve P 3 and the heat radiation curve P 2 intersect at a point D near the high temperature, and the temperature is stabilized with this point as an equilibrium point. After that, the conductive polymer shows an extremely high resistance value at the equilibrium point and blocks the flow of current, so that the battery and other parts do not overheat further at a relatively low temperature, and the parts are destroyed. To be prevented. After that, when the cause of the overcurrent is removed and the ambient temperature decreases, the exothermic curve returns to the normal state, the conductive polymer reaches the normal equilibrium point A, and it can be used again in the normal state. become. By using the conductive polymer as described above, it is possible to prevent the plastic parts and circuit parts from being damaged due to the temperature rise due to the overcurrent, and to eliminate the cause of the overcurrent. Therefore, it can be used normally again. FIG. 4 shows an example of the shape of a conductive polymer member to be mounted on a battery. The conductive polymer is thinly formed and sandwiched between a pair of conductive plates 5 to be integrated so that the conductive polymer member 2 is formed. Is formed. FIG. 5 is a sectional view showing the structure of the battery of the first embodiment of the present invention. The structure is characterized in that the conductive polymer 4 is interposed between the electrode body on the cathode side of the battery and the terminal. There is a point. In the figure, 10 is an anode material formed under high pressure, and 11 is a cathode material in which high-purity zinc powder is dispersed. The anode material 10 and the cathode material 11 are separated by the separator 13
In isolation. Reference numeral 15 is a sealing packing, which is formed in an umbrella shape, and the peripheral portion seals the lower end of the battery exterior.
Further, a current collector rod 12 which penetrates the sealing body packing 15 and is inserted into the cathode material 11 is arranged in the central portion thereof. A conductive polymer member 2 constituted by sandwiching a conductive polymer 4 between two conductive plates 5 is attached to the outside of the sealing body packing 15, and the collector rod 12 and the conductive polymer member 2 are electrically connected to each other. Electrically connected, the conductive plate 5 of the conductive polymer member 2 constitutes the cathode terminal 6 of the battery. Further, the sealing body packing 15 is provided with a liquid leakage preventing cap 14 for eliminating a gap between the sealing body packing 15 and the collector rod 12 to prevent liquid leakage. Reference numeral 19 is an anode terminal, and as shown in FIG.
It is electrically connected to the upper end surface of the anode inner can 16 accommodating 0. The outer casing of the battery is an inner anode can 16 containing the anode material 10 from the inside and an outer anode can 1 outside the inner anode can 16.
7, a label 20 on which the name of the surface is printed, and an exterior material 21 made of a heat-shrinkable vinyl chloride pipe. After the contents are stored in the anode inner can 16 and the anode outer can 17, the sealing packing 15 is tightened by drawing to seal the contents. In addition, 18 is an insulating plate. In the battery of the first embodiment having the above-mentioned structure, the anode terminal 19 is the inner can 16 of the anode which constitutes the exterior of the battery.
And the cathode terminal 6 is not electrically connected to the exterior of the battery.
Of the conductive plate 5, and the conductive polymer 4 is interposed between the collector rod 12, that is, the cathode body and the cathode terminal 6. It is well known that when two objects are electrically connected to each other, they are also thermally connected and heat is transferred. Next, the operation will be described. When an overcurrent flows due to a situation such as a short circuit in the battery electrode, the heat generated inside the battery is transferred to the conductive polymer and also rapidly generates due to the characteristics of the conductive polymer itself. At this time, since the cathode terminal 6 is not electrically (ie, thermally) connected to the exterior (the anode inner can 16 and the anode outer can 17) of the battery having a large heat capacity, it is generated inside the battery. The heat transferred to the conductive polymer 4 and the heat generated in the conductive polymer itself, without being transferred to the exterior of the battery having a large heat capacity through the terminals, rapidly increase the temperature of the conductive polymer itself. As a result, the electric resistance of the conductive polymer rapidly increases remarkably, and overcurrent can be interrupted or the current can be greatly restricted in a short time to prevent a situation such as battery explosion. When the cause of heat generation disappears, the cathode terminal 6 is not electrically (ie, thermally) connected to the exterior of the battery having a large heat capacity (the anode inner can 16 and the anode outer can 17). The temperature of the conductive polymer falls in a short time, and the interruption or limitation of the electric current is quickly released. If the cathode terminal (or the anode terminal) using a conductive polymer is electrically (ie, thermally) connected to the exterior of the battery having a large heat capacity, an overcurrent flows in the battery. In this case, the heat generated inside the battery and transferred to the conductive polymer and the heat generated in the conductive polymer itself are transferred to the exterior of the battery having a large heat capacity through the terminals, and the temperature of the conductive polymer itself rises. The ratio of As a result, the electric resistance of the conductive polymer gradually rises, so that overcurrent cannot be interrupted or the current cannot be greatly limited in a short time, and the occurrence of a situation such as battery explosion cannot be prevented. When the cause of heat generation disappears, the cathode terminal 6 is electrically (ie, thermally) connected to the exterior (anode inner can 16 and anode outer can 17) of the battery having a large heat capacity. The temperature of the conductive polymer does not easily drop, and the current is interrupted or limited for a long time. Next, when the battery is repeatedly used for a long time under a heavy load by being used in a flash device or the like, the temperature inside the battery gradually rises with the lapse of time due to the heat generated by the use under the heavy load. To do. At this time, since the cathode terminal is not electrically connected to the exterior of the battery having a large heat capacity, the heat generated inside the battery and transferred to the conductive polymer 4 and the heat generated in the conductive polymer itself. Is gradually transferred to the exterior of the battery, but since the rate of transfer and diffusion is small, it raises the temperature of the conductive polymer itself. As a result, the electric resistance of the conductive polymer is increased, and the current can be interrupted or the current can be greatly restricted in a relatively short time to prevent the battery from exploding. If the cathode terminal (or anode terminal) using a conductive polymer was electrically connected to the exterior of a battery having a large heat capacity, it was generated inside the battery and transferred to the conductive polymer 4. Since the heat and the heat generated in the conductive polymer itself are transferred to the exterior of the battery having a large heat capacity and diffused into the outside air, the rate of temperature rise of the conductive polymer itself becomes small. As a result, the electric resistance of the conductive polymer gradually rises, so that overcurrent cannot be interrupted or the current cannot be greatly limited in a short time, and the occurrence of a situation such as battery explosion cannot be prevented. FIG. 6 shows a second embodiment in which the constitution of the cathode terminal portion in the first embodiment is changed, and the conductive polymer member 2 is provided at the connecting portion between the cathode terminal 23 and the current collecting rod 12. This is an example in which Other configurations are
This is the same as the first embodiment shown in FIG. Also in this configuration, the conductive polymer 4 is interposed between the collector terminal 12 which is a polar body on the side not electrically contacting the exterior member of the battery and the cathode terminal 23. In the above-described embodiments, the cathode terminal is not electrically connected to the exterior of the battery having a large heat capacity, but the anode terminal is electrically connected to the exterior of the battery. On the contrary, the anode terminal may be electrically connected to the outer case of the battery having a large heat capacity, and the negative terminal may be electrically connected to the outer case of the battery, and the effect is the same. As described above, according to the present invention, an anode body and a cathode body for generating an electric current, and an electric current which is connected to the anode body and the cathode body and exposed to the outside to externally supply the electric current. In a battery having an anode terminal and a cathode terminal to be taken out to and an exterior member that houses the anode body and the cathode body and one of the anode terminal and the cathode terminal is in electrical contact, the exterior member is electrically Between the terminal and the electrode body on the side of the electrode that is not in contact with the terminal, since the conductive polymer whose resistance value increases in accordance with the temperature rise is interposed.
Even if the battery heats up due to over-discharging due to the power supply short-circuit, long-term continuous heavy load use, etc., the electrical resistance will increase due to the temperature rise of the conductive polymer, and the battery and other parts will be kept at a relatively low temperature. Since the current is cut off or limited in time,
It is possible to prevent abnormal overheating of the battery, an accident due to the overheating, and damage to members that are easily damaged even at a relatively low temperature. Since the conductive polymer is interposed between the electrode body on the side not electrically connected to the exterior member and the terminal, the electrode body and the terminal on the side electrically connected to the exterior member are provided. The current can be interrupted or limited in a short time as compared with the one interposed between and, and when the cause of heat generation is eliminated, the recovery can be performed quickly. further,
In addition to the above-mentioned structure that cuts off or greatly limits the overcurrent due to the conductive polymer, the structure that the short circuit of the electrode does not easily occur by covering the outer surface of the battery exterior member with the insulating member is added, and the double safety By adopting the structure, it is possible to further reduce the probability of occurrence of an accident due to a short circuit of the electrodes, and it is possible to achieve remarkable effects.

【図面の簡単な説明】 【図1】従来の過熱防止装置を設けた電池の構成の一例
を示す斜視図。 【図2】導電性ポリマーの特性を示す説明図。 【図3】導電性ポリマーの特性を示す説明図。 【図4】導電性ポリマー部材の構成をを示す斜視図。 【図5】この発明の第1実施例の構成を示す断面図。 【図6】この発明の第2実施例の構成を示す断面図。 【符号の説明】 2 導電性ポリマー部材 4 導電性ポリマー 5 導電板 6 陰極端子 10 陽極、陽極物質 11 陰極、陰極物質 12 集電子棒 13 セパレータ 15 封口体パツキング 16 陽極内缶 17 陽極外缶 18 絶縁板 19 陽極端子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of the configuration of a battery provided with a conventional overheat prevention device. FIG. 2 is an explanatory diagram showing characteristics of a conductive polymer. FIG. 3 is an explanatory diagram showing characteristics of a conductive polymer. FIG. 4 is a perspective view showing a configuration of a conductive polymer member. FIG. 5 is a sectional view showing the configuration of the first embodiment of the present invention. FIG. 6 is a sectional view showing the structure of a second embodiment of the present invention. [Description of Reference Signs] 2 conductive polymer member 4 conductive polymer 5 conductive plate 6 cathode terminal 10 anode, anode material 11 cathode, cathode material 12 current collector bar 13 separator 15 sealing body packing 16 anode inner can 17 anode outer can 18 insulation Plate 19 Anode terminal

───────────────────────────────────────────────────── フロントページの続き 合議体 審判長 大屋 晴男 審判官 小野 秀幸 審判官 山田 靖 (56)参考文献 特開 昭58−188066(JP,A) 実開 昭59−144875(JP,U) 実開 昭59−144876(JP,U) 東京高裁判決,8、5、30,6(行 ケ)97   ────────────────────────────────────────────────── ─── Continuation of front page        Panel     Referee Chief Haruo Oya     Hideyuki Ono, Judge     Judge Yamada Yasushi (56) References JP-A-58-188066 (JP, A)                 Actual development Sho 59-144875 (JP, U)                 59-144876 (JP, U)                 Tokyo High Court Decision, 8, 5, 30, 6 (line               Ke) 97

Claims (1)

(57)【特許請求の範囲】 1.電流を発生させるための陽極体及び陰極体と、 上記陽極体及び陰極体に接続され外部に露出することに
よつて電流を外部に取り出す陽極端子及び陰極端子と、 上記陽極体及び陰極体を収納するとともに陽極端子及び
陰極端子のうちの一方が電気的に接続している外装部材
とを有する電池において、上記外装部材は絶縁部材によりその外面が覆われ、か
つ、 上記外装部材に電気的に接続していない側の電極側の極
体と端子との間に、温度上昇に応じて抵抗値が上昇する
導電性ポリマーが介装されていることを特徴とする過放
電過熱防止装置を有する電池。
(57) [Claims] An anode body and a cathode body for generating an electric current, an anode terminal and a cathode terminal which are connected to the anode body and the cathode body and take out a current by being exposed to the outside, and the anode body and the cathode body are housed. In addition , in a battery having an exterior member in which one of the anode terminal and the cathode terminal is electrically connected, the exterior surface of the exterior member is covered with an insulating member,
Two, between the electrode side electrode body not electrically connected to the exterior member and the terminal, a conductive polymer whose resistance value increases in accordance with a temperature rise is interposed. A battery having an over-discharge overheat protection device.
JP3171082A 1983-11-01 1991-07-11 Battery with over-discharge overheat prevention device Expired - Lifetime JP2671171B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1983170172U JPS6076872U (en) 1983-11-01 1983-11-01 Over discharge/overheat preventive device for battery
JP3171082A JP2671171B2 (en) 1983-11-01 1991-07-11 Battery with over-discharge overheat prevention device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1983170172U JPS6076872U (en) 1983-11-01 1983-11-01 Over discharge/overheat preventive device for battery
JP3171082A JP2671171B2 (en) 1983-11-01 1991-07-11 Battery with over-discharge overheat prevention device

Publications (2)

Publication Number Publication Date
JPH0582119A JPH0582119A (en) 1993-04-02
JP2671171B2 true JP2671171B2 (en) 1997-10-29

Family

ID=53877421

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1983170172U Pending JPS6076872U (en) 1983-11-01 1983-11-01 Over discharge/overheat preventive device for battery
JP3171082A Expired - Lifetime JP2671171B2 (en) 1983-11-01 1991-07-11 Battery with over-discharge overheat prevention device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP1983170172U Pending JPS6076872U (en) 1983-11-01 1983-11-01 Over discharge/overheat preventive device for battery

Country Status (1)

Country Link
JP (2) JPS6076872U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197222B2 (en) * 2018-10-05 2022-12-27 エルジー エナジー ソリューション リミテッド secondary battery
KR102465778B1 (en) 2018-10-05 2022-11-14 주식회사 엘지에너지솔루션 Rechargeable battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136876A (en) * 1974-09-25 1976-03-27 Hitachi Ltd Sairisuta no reetokokasokuteihoho narabini sochi
JPS5512683A (en) * 1978-07-14 1980-01-29 Nec Corp Cathode ray tube projector
JPS5532489Y2 (en) * 1978-09-09 1980-08-02
US4255698A (en) * 1979-01-26 1981-03-10 Raychem Corporation Protection of batteries
US4272471A (en) * 1979-05-21 1981-06-09 Raychem Corporation Method for forming laminates comprising an electrode and a conductive polymer layer
JPS59164166U (en) * 1983-04-18 1984-11-02 松下電器産業株式会社 battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
東京高裁判決,8、5、30,6(行ケ)97

Also Published As

Publication number Publication date
JPH0582119A (en) 1993-04-02
JPS6076872U (en) 1985-05-29

Similar Documents

Publication Publication Date Title
JP2574979B2 (en) battery
US4727006A (en) Method of monitoring electrochemical cells
KR100729106B1 (en) Safety device for preventing overcharge and secondary battery therewith
US8780521B2 (en) Metal oxide varistor with built-in alloy-type thermal fuse
JPS603827A (en) Varistor safety element
JP2008507248A (en) Safety element for preventing overcharge of secondary battery and secondary battery having the safety element combined
JPWO2007015418A1 (en) Electrical composite element
JP2001325943A (en) Flat cell
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP3416229B2 (en) Battery pack
KR20180082748A (en) Battery Cell Comprising Electrode Lead Employed with Thermal Fuse of Interrupting Electricity at High Temperature
JP2671171B2 (en) Battery with over-discharge overheat prevention device
JPH06349480A (en) Composite protective element and battery pack with composite protective element
JPH01197963A (en) Battery
JPH02237437A (en) Overcharging preventer
JP5073204B2 (en) Polymer PTC element
US3907588A (en) Electrochemical cell and safety resistor therefor
JP3078058B2 (en) Lithium battery
JPH11144704A (en) Entire solid battery
JPH10188945A (en) Lithium secondary battery
JP2002095154A (en) Electronic device protecting circuit
JP2001283828A (en) Polymer lithium secondary battery
JPH05151971A (en) Lithium battery
KR20200089828A (en) Battery Pack
CN217822238U (en) Voltage dependent resistor