JPH01197963A - Battery - Google Patents
BatteryInfo
- Publication number
- JPH01197963A JPH01197963A JP63023074A JP2307488A JPH01197963A JP H01197963 A JPH01197963 A JP H01197963A JP 63023074 A JP63023074 A JP 63023074A JP 2307488 A JP2307488 A JP 2307488A JP H01197963 A JPH01197963 A JP H01197963A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- temperature
- carbon powder
- resin film
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 15
- 239000011347 resin Substances 0.000 claims abstract description 15
- 230000009172 bursting Effects 0.000 abstract description 6
- 230000020169 heat generation Effects 0.000 abstract description 4
- -1 polyethylene Polymers 0.000 abstract description 4
- 239000004698 Polyethylene Substances 0.000 abstract description 2
- 239000004743 Polypropylene Substances 0.000 abstract description 2
- 239000006230 acetylene black Substances 0.000 abstract description 2
- 229920000573 polyethylene Polymers 0.000 abstract description 2
- 229920005672 polyolefin resin Polymers 0.000 abstract description 2
- 229920001155 polypropylene Polymers 0.000 abstract description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/583—Devices or arrangements for the interruption of current in response to current, e.g. fuses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、外部負荷電流が過大になった場合に、電池が
発熱し内部圧力が異常に上昇して電池容器が破裂するの
を防止することを目的とした密閉形電池の安全性の改良
に関するものである。[Detailed Description of the Invention] Industrial Application Field The present invention is directed to preventing a battery from generating heat and causing an abnormal increase in internal pressure and causing a battery container to burst when an external load current becomes excessive. The purpose is to improve the safety of sealed batteries.
従来の技術
電池使用機器の回路短絡などによシ、異常な過大電流が
流れた場合、電池は内部から発熱し高温となる。特に電
池がリチウム電池などの反応性の高い活物質が使用され
ている密閉形電池の場合、急激に温度があがり、電池中
のセパレークが溶融して正極活物質と負極活物質が密着
し温度がさらに上昇する。このような場合、温度が上昇
すると、電解液が気化するなどにより内圧が急上昇して
電池が破裂することが多かった。Conventional technology When an abnormally excessive current flows due to a short circuit in a battery-based device, the battery generates heat from within and reaches a high temperature. In particular, if the battery is a sealed battery that uses a highly reactive active material such as a lithium battery, the temperature will rise rapidly, the separator in the battery will melt, and the positive and negative active materials will come into close contact with each other, causing the temperature to rise. It rises further. In such cases, when the temperature rises, the electrolyte vaporizes and the internal pressure rises rapidly, often resulting in the battery bursting.
従来、この種の安全対策には、温度ヒユーズが用いられ
ていた、ポジスタ−などの感温抵抗素子が用いられてい
た。温度ヒユーズの従来例を第2図に示す。正極端子2
と負極端子3を具備した密閉形の電池本体1において、
絶縁リング4および温度ヒユーズ6を介して負極端子板
8が配置されている。温度ヒユーズ6は負極端子3およ
び負極端子板8と溶接あるいははんだ付けによって固着
されており、その固着部はそれぞれ6と7である。Conventionally, this type of safety measure has used a temperature sensitive resistance element such as a POSISTOR, which uses a temperature fuse. A conventional example of a temperature fuse is shown in FIG. Positive terminal 2
In a sealed battery body 1 equipped with a negative electrode terminal 3,
A negative terminal plate 8 is arranged via an insulating ring 4 and a temperature fuse 6. The temperature fuse 6 is fixed to the negative terminal 3 and the negative terminal plate 8 by welding or soldering, and the fixed parts are 6 and 7, respectively.
9は熱収縮性の外装フィルムである。9 is a heat-shrinkable exterior film.
他の従来例としてポジスタ−あるいはサーミスターと制
御回路を組合わせた素子などの正温度特性を有する感温
抵抗素子が用いられていたが、その構造は第2図の温度
ヒユーズの位置に前記感温素子を置き換えたもので、一
定の空間と溶接などの固着部が必要であった。As another conventional example, a temperature-sensitive resistance element with positive temperature characteristics, such as a POSISTOR or an element that combines a thermistor and a control circuit, has been used. This replaced the thermal element, and required a certain amount of space and a fixed part such as welding.
以上のように構成された電池について、以下その動作を
説明する。外部回路が短絡したり、強制電流が電池を流
れて、電池が発熱すると負極端子と負極端子板間の温度
ヒユーズが切れ、電池と外部回路は絶縁され電池の温度
上昇は上まる。一方、ポジスタ−などの感温抵抗素子の
場合も同様に電池の温度上昇によって感温素子の抵抗値
は増大し、負荷抵抗が大きくなることにより電池反応は
弱くなり、温度上昇は止まシ、発熱による破裂を未然に
防止するようになっている。The operation of the battery configured as above will be described below. If the external circuit is short-circuited or a forced current flows through the battery, causing the battery to generate heat, the temperature fuse between the negative terminal and the negative terminal plate is blown, and the battery and external circuit are insulated, increasing the temperature of the battery. On the other hand, in the case of a temperature-sensitive resistance element such as a POSISTOR, the resistance value of the temperature-sensitive element increases as the battery temperature rises, and as the load resistance increases, the battery reaction weakens, the temperature rise stops, and heat is generated. It is designed to prevent rupture due to
発明が解決しようとする課題
しかしながら上記の従来の構成では、温度ヒユーズや感
温素子を用いていたため、一定の収容スペースが必要と
なり電池の活物質が占める体積が減少するという課題を
有しておシ、さらに感温素子や温度ヒユーズを電池の負
極端子と負極端子板に溶接するなどの固着工程を必要と
するという課題を有していた。Problems to be Solved by the Invention However, the conventional configuration described above uses a temperature fuse and a temperature sensing element, which requires a certain amount of storage space, resulting in a reduction in the volume occupied by the battery's active material. Furthermore, there is a problem in that a fixing process such as welding the temperature sensing element and the temperature fuse to the negative terminal and the negative terminal plate of the battery is required.
本発明は上記の従来の課題を解決するもので、使用機器
回路の短絡などによって、電池が発熱しても、電流を遮
断させ発熱による破裂を防止できる高容量の電池を提供
することを目的とする。The present invention has been made to solve the above-mentioned conventional problems.It is an object of the present invention to provide a high-capacity battery that can cut off the current and prevent explosion due to heat generation even if the battery generates heat due to a short circuit in the circuit of the equipment used. do.
課題を解決するための手段
前記の目的を達成するために本発明の電池は、正極端子
または負極端子に、加熱により電気抵抗値が大となる正
温度抵抗特性を有する炭素粉含有の樹脂膜を備えた構成
としたものである。Means for Solving the Problems In order to achieve the above object, the battery of the present invention includes a resin film containing carbon powder, which has a positive temperature resistance characteristic that increases the electrical resistance value when heated, on the positive terminal or the negative terminal. The structure is equipped with the following features.
作 用
この構成によって、外部回路の短絡や強制電流によって
生ずる電池の発熱によって内圧力が異常に上昇し、破裂
するのを防止できる機能を有した高容量電池を実現する
ことができることとなる。Function: With this configuration, it is possible to realize a high-capacity battery that has a function of preventing the battery from bursting due to an abnormal increase in internal pressure due to heat generation in the battery caused by a short circuit in an external circuit or a forced current.
実施例
以下、本発明の一実施例について、図面を参照しながら
説明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例における電池の断面図を示す
ものである。第1図において、正極端子2と負極端子3
を具備した電池本体1は、それ自体の負極端子3の外表
面上に加熱により電気抵抗値が大となる正温度抵抗特性
を有する炭素粉含有の樹脂膜1oを介して、負極端子板
8が配設されている。9は熱収縮性の外装フィルムであ
る。FIG. 1 shows a cross-sectional view of a battery in one embodiment of the present invention. In Figure 1, positive terminal 2 and negative terminal 3
In the battery main body 1, the negative electrode terminal plate 8 is attached to the outer surface of the negative electrode terminal 3 of the battery body 1 through a carbon powder-containing resin film 1o having a positive temperature resistance characteristic that increases the electric resistance value by heating. It is arranged. 9 is a heat-shrinkable exterior film.
本発明に用いられる、上記の炭素粉含有の樹脂膜10は
炭素粉としてアセチレンブラックを混入したポリエチレ
ンまたはポリプロピレンなどのポリオレフィン系の樹脂
からなり、前記炭素粉の含有量は重量比で約6〜30%
である。フィルムの厚みは約30μm〜200μmの厚
みである。抵抗値は20’Cで約10−1Ωcmの体積
固有抵抗値を示し、100’C付近までは殆んど抵抗値
は変化しない。100’Cを越えると、抵抗値は急激に
上昇し、160℃では106Ωcmの固有抵抗値を示し
180°Cでは殆んど絶縁状態になる。この樹脂膜は可
逆的で、温度が下がると抵抗値も下がり、もとの抵抗値
にもどる。The carbon powder-containing resin film 10 used in the present invention is made of a polyolefin resin such as polyethylene or polypropylene mixed with acetylene black as carbon powder, and the content of the carbon powder is about 6 to 30% by weight. %
It is. The thickness of the film is approximately 30 μm to 200 μm thick. The resistance value shows a volume specific resistance value of about 10-1 Ωcm at 20'C, and the resistance value hardly changes up to around 100'C. When the temperature exceeds 100'C, the resistance value increases rapidly, and at 160°C it shows a specific resistance value of 106 Ωcm, and at 180°C it becomes almost insulated. This resin film is reversible; when the temperature drops, the resistance value decreases and returns to its original resistance value.
この原理は、m温になるにつれて樹脂層内部の炭素粉同
志の接触がなくなり絶縁状態になる。−方高温から低温
にもどすと、炭素粉同志かもとの接触状態にもどり抵抗
値は小さくなるものと考えられる。According to this principle, as the temperature reaches m, the carbon powder inside the resin layer loses contact with each other and becomes insulated. It is thought that when the temperature is returned from a high temperature to a low temperature, the carbon powder returns to a state of contact with each other and the resistance value decreases.
以上のように構成された本実施例の電池について、以下
その動作を説明する。単1形サイズのリチウム電池を例
に説明する。まず、外部回路で短絡が生ずると電池反応
が激しく起こり、電池内部の温度は上昇する。約2分で
電池表面温度は100°Cに達する。電池表面温度が1
00°Cを越えると負極端子に設置されている炭素粉を
含む樹脂膜の抵抗値は急激に上昇し始める。この抵抗値
の上昇により電池反応はおさえられ、電池の温度の上昇
をくい止め、電池温度上昇による電解液たとえばジメチ
ルエタンやテトラヒドロフランなどの低沸点溶媒の気化
によって電池内圧が過大となり電池が破裂するのを未然
に防止できる。The operation of the battery of this embodiment configured as described above will be described below. This will be explained using a AA size lithium battery as an example. First, when a short circuit occurs in the external circuit, a battery reaction occurs violently, and the temperature inside the battery rises. The battery surface temperature reaches 100°C in about 2 minutes. Battery surface temperature is 1
When the temperature exceeds 00°C, the resistance value of the resin film containing carbon powder placed on the negative electrode terminal begins to rise rapidly. This increase in resistance suppresses the battery reaction, preventing the battery from rising in temperature, and preventing the battery from bursting due to excessive internal pressure due to vaporization of the electrolyte, such as low boiling point solvents such as dimethylethane and tetrahydrofuran, due to the rise in battery temperature. It can be prevented.
以上のように本実施例によれば、電池の出力敗り出し部
となる負極端子の表面上に熱により電気抵抗値が大とな
る炭素粉含有の樹脂膜を備えた構成により、電池の発熱
による電池破裂を防止できる。さらに従来の温度ヒユー
ズや前記感温素子では、一定の収容スベーヌを必要とし
ていたが、本発明においては端子板に100μm以下の
樹脂膜を載置するだけでよいため、安全対策のためのヌ
ペースを必要としない。その結果、電池活物質を多量に
電池容器に充填することができる。本実施例の単1形サ
イズのリチウム電池の場合従来のヒユーズを内蔵した電
池に比較して20%も電池内容積を増加させることがで
きる。As described above, according to this embodiment, the battery generates heat due to the structure in which a resin film containing carbon powder, which increases the electrical resistance value due to heat, is provided on the surface of the negative electrode terminal, which is the output part of the battery. This prevents the battery from exploding. Furthermore, conventional temperature fuses and temperature sensing elements require a certain amount of space to accommodate, but in the present invention, it is only necessary to place a resin film of 100 μm or less on the terminal board, so there is no space for safety measures. do not need. As a result, a large amount of battery active material can be filled into the battery container. In the case of the D-sized lithium battery of this embodiment, the internal volume of the battery can be increased by 20% compared to a conventional battery with a built-in fuse.
なお、本実施例ではリチウム電池としたが、アルカリア
ンガン乾電池やニッケル、カドミウム電池でもよい。さ
らに、本実施例では負極端子に実施した場合について記
載しているが正極端子側でも同様に実施できる。In this embodiment, a lithium battery is used, but an alkaline anganese dry battery, a nickel battery, or a cadmium battery may be used. Furthermore, although this embodiment describes the case where the method is applied to the negative electrode terminal, it can be implemented similarly to the positive electrode terminal.
発明の効果
本発明によれば、電池の負極端子または正極端子の表面
上に、加熱により電気抵抗値が大になる正温度特性を有
する炭素粉含有の樹脂膜を設けることにより、発熱によ
って電池内圧が異常に上昇し電池容器が破裂するのを防
止した高容量の電池を実現できるという効果が得られる
。Effects of the Invention According to the present invention, by providing a resin film containing carbon powder on the surface of the negative or positive terminal of a battery, which has a positive temperature characteristic that increases electrical resistance when heated, the internal pressure of the battery is reduced by heat generation. The effect is that it is possible to realize a high-capacity battery that prevents the battery container from bursting due to an abnormal increase in .
第1図は本発明の一実施例における電池の断面図、第2
図は従来の電池の断面図である。
1・・・・・・電池本体、2・・・・・・正極端子部、
3・・・・・・負極端子、8・・・・・・負極端子板、
9・・・・・・外装フィルム、1o・・・・・・炭素粉
含有の樹脂膜。FIG. 1 is a cross-sectional view of a battery in one embodiment of the present invention, and FIG.
The figure is a cross-sectional view of a conventional battery. 1...Battery body, 2...Positive terminal part,
3... Negative terminal, 8... Negative terminal plate,
9...Exterior film, 1o...Resin film containing carbon powder.
Claims (2)
値が大となる正温度抵抗特性を有する炭素粉含有の樹脂
膜を備えたことを特徴とする電池。(1) A battery characterized in that the positive electrode terminal or the negative electrode terminal is provided with a resin film containing carbon powder, which has a positive temperature resistance characteristic that increases the electrical resistance value when heated.
正極または負極端子と端子板の間に介在していることを
特徴とする特許請求の範囲第1項記載の電池。(2) A resin film containing carbon powder that has positive temperature resistance characteristics,
2. The battery according to claim 1, wherein the battery is interposed between a positive electrode or a negative electrode terminal and a terminal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023074A JPH01197963A (en) | 1988-02-02 | 1988-02-02 | Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023074A JPH01197963A (en) | 1988-02-02 | 1988-02-02 | Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01197963A true JPH01197963A (en) | 1989-08-09 |
Family
ID=12100255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63023074A Pending JPH01197963A (en) | 1988-02-02 | 1988-02-02 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01197963A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040640A1 (en) * | 1998-02-06 | 1999-08-12 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
WO1999067838A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067842A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067835A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
WO1999067839A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067836A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067833A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067841A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067834A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
WO1999067840A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067837A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
-
1988
- 1988-02-02 JP JP63023074A patent/JPH01197963A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040640A1 (en) * | 1998-02-06 | 1999-08-12 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
US6399252B1 (en) | 1998-02-06 | 2002-06-04 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
WO1999067837A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
EP1035606A1 (en) * | 1998-06-25 | 2000-09-13 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067839A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067836A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067833A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067841A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067834A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
WO1999067840A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067842A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067835A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
EP1100135A1 (en) * | 1998-06-25 | 2001-05-16 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067838A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
US6440608B1 (en) | 1998-06-25 | 2002-08-27 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
US6579641B2 (en) | 1998-06-25 | 2003-06-17 | Mitsubishi Denki Kabushiki Kaisha | Battery and process for preparing the same |
US6623883B1 (en) | 1998-06-25 | 2003-09-23 | Mitsubishi Denki Kabushiki Kaisha | Electrode having PTC function and battery comprising the electrode |
US6670070B2 (en) | 1998-06-25 | 2003-12-30 | Mitsubishi Denki Kabushiki Kaisha | Battery and process for preparing the same |
US6677074B2 (en) | 1998-06-25 | 2004-01-13 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
EP1100135A4 (en) * | 1998-06-25 | 2006-06-14 | Mitsubishi Electric Corp | Cell and method of producing the same |
EP1035606A4 (en) * | 1998-06-25 | 2006-06-14 | Mitsubishi Electric Corp | Cell and method of producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100686844B1 (en) | Secondary battery with ptc device | |
Venugopal | Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries | |
KR100731462B1 (en) | Secondary battery | |
US8691408B2 (en) | Secondary battery including protective circuit module to protect battery when swelling occurs | |
KR100729106B1 (en) | Safety device for preventing overcharge and secondary battery therewith | |
RU2340983C1 (en) | Accumulator battery that has increased protection | |
US20040170887A1 (en) | Non-aqueous electrolytic secondary battery | |
KR20180113809A (en) | Battery module and battery pack including the same | |
JPS6333264B2 (en) | ||
JP2011519124A (en) | Electrochemical cell with irreversible fuse | |
JPH01197963A (en) | Battery | |
US11264661B2 (en) | Battery cell with improved safety | |
JPH10214613A (en) | Nonaqueous electrolyte secondary battery and assembled battery using the same | |
JP3658877B2 (en) | battery pack | |
JPS6174257A (en) | Battery | |
JPH04328279A (en) | Battery device having protecting element | |
JP2004178994A (en) | Nonaqueous electrolyte secondary battery | |
JP2023513117A (en) | Secondary batteries and devices containing them | |
KR20130089375A (en) | Secondary battery and element used for secondary battery | |
JP2004022477A (en) | Battery | |
GB2349284A (en) | Preventing overcharge of lithium cells | |
JP4751500B2 (en) | Electrode wound type secondary battery | |
US20070090809A1 (en) | Polymer ptc device | |
KR20080038662A (en) | Secondary battery | |
KR101201081B1 (en) | Lithium Rechargeable Battery |