JPH01197963A - Battery - Google Patents

Battery

Info

Publication number
JPH01197963A
JPH01197963A JP63023074A JP2307488A JPH01197963A JP H01197963 A JPH01197963 A JP H01197963A JP 63023074 A JP63023074 A JP 63023074A JP 2307488 A JP2307488 A JP 2307488A JP H01197963 A JPH01197963 A JP H01197963A
Authority
JP
Japan
Prior art keywords
battery
temperature
carbon powder
resin film
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63023074A
Other languages
Japanese (ja)
Inventor
Shigeo Kobayashi
茂雄 小林
Zenichiro Ito
伊藤 善一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63023074A priority Critical patent/JPH01197963A/en
Publication of JPH01197963A publication Critical patent/JPH01197963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To prevent the bursting of a container caused by heat generation by arranging a carbon powder-containing resin film having a positive terminal characteristic which increases electric resistance with increase in temperature on the surface of a negative terminal or a positive terminal. CONSTITUTION:A carbon powder-containing resin film 10 having a positive temperature-resistance characteristic which increases electric resistance with increase in temperature is arranged on a positive terminal 2 or a negative terminal 3. The resin film 10 consists of polyolefin resin such as polyethylene and polypropylene mixed with acetylene black as the carbon powder, and in which the content of the carbon powder is about 5-30% by weight and the film thickness is about 30-200mum. Even if a battery generates heat by the short circuit in an appliance circuit, current is shut off to prevent the bursting of the battery caused by heat generated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、外部負荷電流が過大になった場合に、電池が
発熱し内部圧力が異常に上昇して電池容器が破裂するの
を防止することを目的とした密閉形電池の安全性の改良
に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to preventing a battery from generating heat and causing an abnormal increase in internal pressure and causing a battery container to burst when an external load current becomes excessive. The purpose is to improve the safety of sealed batteries.

従来の技術 電池使用機器の回路短絡などによシ、異常な過大電流が
流れた場合、電池は内部から発熱し高温となる。特に電
池がリチウム電池などの反応性の高い活物質が使用され
ている密閉形電池の場合、急激に温度があがり、電池中
のセパレークが溶融して正極活物質と負極活物質が密着
し温度がさらに上昇する。このような場合、温度が上昇
すると、電解液が気化するなどにより内圧が急上昇して
電池が破裂することが多かった。
Conventional technology When an abnormally excessive current flows due to a short circuit in a battery-based device, the battery generates heat from within and reaches a high temperature. In particular, if the battery is a sealed battery that uses a highly reactive active material such as a lithium battery, the temperature will rise rapidly, the separator in the battery will melt, and the positive and negative active materials will come into close contact with each other, causing the temperature to rise. It rises further. In such cases, when the temperature rises, the electrolyte vaporizes and the internal pressure rises rapidly, often resulting in the battery bursting.

従来、この種の安全対策には、温度ヒユーズが用いられ
ていた、ポジスタ−などの感温抵抗素子が用いられてい
た。温度ヒユーズの従来例を第2図に示す。正極端子2
と負極端子3を具備した密閉形の電池本体1において、
絶縁リング4および温度ヒユーズ6を介して負極端子板
8が配置されている。温度ヒユーズ6は負極端子3およ
び負極端子板8と溶接あるいははんだ付けによって固着
されており、その固着部はそれぞれ6と7である。
Conventionally, this type of safety measure has used a temperature sensitive resistance element such as a POSISTOR, which uses a temperature fuse. A conventional example of a temperature fuse is shown in FIG. Positive terminal 2
In a sealed battery body 1 equipped with a negative electrode terminal 3,
A negative terminal plate 8 is arranged via an insulating ring 4 and a temperature fuse 6. The temperature fuse 6 is fixed to the negative terminal 3 and the negative terminal plate 8 by welding or soldering, and the fixed parts are 6 and 7, respectively.

9は熱収縮性の外装フィルムである。9 is a heat-shrinkable exterior film.

他の従来例としてポジスタ−あるいはサーミスターと制
御回路を組合わせた素子などの正温度特性を有する感温
抵抗素子が用いられていたが、その構造は第2図の温度
ヒユーズの位置に前記感温素子を置き換えたもので、一
定の空間と溶接などの固着部が必要であった。
As another conventional example, a temperature-sensitive resistance element with positive temperature characteristics, such as a POSISTOR or an element that combines a thermistor and a control circuit, has been used. This replaced the thermal element, and required a certain amount of space and a fixed part such as welding.

以上のように構成された電池について、以下その動作を
説明する。外部回路が短絡したり、強制電流が電池を流
れて、電池が発熱すると負極端子と負極端子板間の温度
ヒユーズが切れ、電池と外部回路は絶縁され電池の温度
上昇は上まる。一方、ポジスタ−などの感温抵抗素子の
場合も同様に電池の温度上昇によって感温素子の抵抗値
は増大し、負荷抵抗が大きくなることにより電池反応は
弱くなり、温度上昇は止まシ、発熱による破裂を未然に
防止するようになっている。
The operation of the battery configured as above will be described below. If the external circuit is short-circuited or a forced current flows through the battery, causing the battery to generate heat, the temperature fuse between the negative terminal and the negative terminal plate is blown, and the battery and external circuit are insulated, increasing the temperature of the battery. On the other hand, in the case of a temperature-sensitive resistance element such as a POSISTOR, the resistance value of the temperature-sensitive element increases as the battery temperature rises, and as the load resistance increases, the battery reaction weakens, the temperature rise stops, and heat is generated. It is designed to prevent rupture due to

発明が解決しようとする課題 しかしながら上記の従来の構成では、温度ヒユーズや感
温素子を用いていたため、一定の収容スペースが必要と
なり電池の活物質が占める体積が減少するという課題を
有しておシ、さらに感温素子や温度ヒユーズを電池の負
極端子と負極端子板に溶接するなどの固着工程を必要と
するという課題を有していた。
Problems to be Solved by the Invention However, the conventional configuration described above uses a temperature fuse and a temperature sensing element, which requires a certain amount of storage space, resulting in a reduction in the volume occupied by the battery's active material. Furthermore, there is a problem in that a fixing process such as welding the temperature sensing element and the temperature fuse to the negative terminal and the negative terminal plate of the battery is required.

本発明は上記の従来の課題を解決するもので、使用機器
回路の短絡などによって、電池が発熱しても、電流を遮
断させ発熱による破裂を防止できる高容量の電池を提供
することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems.It is an object of the present invention to provide a high-capacity battery that can cut off the current and prevent explosion due to heat generation even if the battery generates heat due to a short circuit in the circuit of the equipment used. do.

課題を解決するための手段 前記の目的を達成するために本発明の電池は、正極端子
または負極端子に、加熱により電気抵抗値が大となる正
温度抵抗特性を有する炭素粉含有の樹脂膜を備えた構成
としたものである。
Means for Solving the Problems In order to achieve the above object, the battery of the present invention includes a resin film containing carbon powder, which has a positive temperature resistance characteristic that increases the electrical resistance value when heated, on the positive terminal or the negative terminal. The structure is equipped with the following features.

作   用 この構成によって、外部回路の短絡や強制電流によって
生ずる電池の発熱によって内圧力が異常に上昇し、破裂
するのを防止できる機能を有した高容量電池を実現する
ことができることとなる。
Function: With this configuration, it is possible to realize a high-capacity battery that has a function of preventing the battery from bursting due to an abnormal increase in internal pressure due to heat generation in the battery caused by a short circuit in an external circuit or a forced current.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における電池の断面図を示す
ものである。第1図において、正極端子2と負極端子3
を具備した電池本体1は、それ自体の負極端子3の外表
面上に加熱により電気抵抗値が大となる正温度抵抗特性
を有する炭素粉含有の樹脂膜1oを介して、負極端子板
8が配設されている。9は熱収縮性の外装フィルムであ
る。
FIG. 1 shows a cross-sectional view of a battery in one embodiment of the present invention. In Figure 1, positive terminal 2 and negative terminal 3
In the battery main body 1, the negative electrode terminal plate 8 is attached to the outer surface of the negative electrode terminal 3 of the battery body 1 through a carbon powder-containing resin film 1o having a positive temperature resistance characteristic that increases the electric resistance value by heating. It is arranged. 9 is a heat-shrinkable exterior film.

本発明に用いられる、上記の炭素粉含有の樹脂膜10は
炭素粉としてアセチレンブラックを混入したポリエチレ
ンまたはポリプロピレンなどのポリオレフィン系の樹脂
からなり、前記炭素粉の含有量は重量比で約6〜30%
である。フィルムの厚みは約30μm〜200μmの厚
みである。抵抗値は20’Cで約10−1Ωcmの体積
固有抵抗値を示し、100’C付近までは殆んど抵抗値
は変化しない。100’Cを越えると、抵抗値は急激に
上昇し、160℃では106Ωcmの固有抵抗値を示し
180°Cでは殆んど絶縁状態になる。この樹脂膜は可
逆的で、温度が下がると抵抗値も下がり、もとの抵抗値
にもどる。
The carbon powder-containing resin film 10 used in the present invention is made of a polyolefin resin such as polyethylene or polypropylene mixed with acetylene black as carbon powder, and the content of the carbon powder is about 6 to 30% by weight. %
It is. The thickness of the film is approximately 30 μm to 200 μm thick. The resistance value shows a volume specific resistance value of about 10-1 Ωcm at 20'C, and the resistance value hardly changes up to around 100'C. When the temperature exceeds 100'C, the resistance value increases rapidly, and at 160°C it shows a specific resistance value of 106 Ωcm, and at 180°C it becomes almost insulated. This resin film is reversible; when the temperature drops, the resistance value decreases and returns to its original resistance value.

この原理は、m温になるにつれて樹脂層内部の炭素粉同
志の接触がなくなり絶縁状態になる。−方高温から低温
にもどすと、炭素粉同志かもとの接触状態にもどり抵抗
値は小さくなるものと考えられる。
According to this principle, as the temperature reaches m, the carbon powder inside the resin layer loses contact with each other and becomes insulated. It is thought that when the temperature is returned from a high temperature to a low temperature, the carbon powder returns to a state of contact with each other and the resistance value decreases.

以上のように構成された本実施例の電池について、以下
その動作を説明する。単1形サイズのリチウム電池を例
に説明する。まず、外部回路で短絡が生ずると電池反応
が激しく起こり、電池内部の温度は上昇する。約2分で
電池表面温度は100°Cに達する。電池表面温度が1
00°Cを越えると負極端子に設置されている炭素粉を
含む樹脂膜の抵抗値は急激に上昇し始める。この抵抗値
の上昇により電池反応はおさえられ、電池の温度の上昇
をくい止め、電池温度上昇による電解液たとえばジメチ
ルエタンやテトラヒドロフランなどの低沸点溶媒の気化
によって電池内圧が過大となり電池が破裂するのを未然
に防止できる。
The operation of the battery of this embodiment configured as described above will be described below. This will be explained using a AA size lithium battery as an example. First, when a short circuit occurs in the external circuit, a battery reaction occurs violently, and the temperature inside the battery rises. The battery surface temperature reaches 100°C in about 2 minutes. Battery surface temperature is 1
When the temperature exceeds 00°C, the resistance value of the resin film containing carbon powder placed on the negative electrode terminal begins to rise rapidly. This increase in resistance suppresses the battery reaction, preventing the battery from rising in temperature, and preventing the battery from bursting due to excessive internal pressure due to vaporization of the electrolyte, such as low boiling point solvents such as dimethylethane and tetrahydrofuran, due to the rise in battery temperature. It can be prevented.

以上のように本実施例によれば、電池の出力敗り出し部
となる負極端子の表面上に熱により電気抵抗値が大とな
る炭素粉含有の樹脂膜を備えた構成により、電池の発熱
による電池破裂を防止できる。さらに従来の温度ヒユー
ズや前記感温素子では、一定の収容スベーヌを必要とし
ていたが、本発明においては端子板に100μm以下の
樹脂膜を載置するだけでよいため、安全対策のためのヌ
ペースを必要としない。その結果、電池活物質を多量に
電池容器に充填することができる。本実施例の単1形サ
イズのリチウム電池の場合従来のヒユーズを内蔵した電
池に比較して20%も電池内容積を増加させることがで
きる。
As described above, according to this embodiment, the battery generates heat due to the structure in which a resin film containing carbon powder, which increases the electrical resistance value due to heat, is provided on the surface of the negative electrode terminal, which is the output part of the battery. This prevents the battery from exploding. Furthermore, conventional temperature fuses and temperature sensing elements require a certain amount of space to accommodate, but in the present invention, it is only necessary to place a resin film of 100 μm or less on the terminal board, so there is no space for safety measures. do not need. As a result, a large amount of battery active material can be filled into the battery container. In the case of the D-sized lithium battery of this embodiment, the internal volume of the battery can be increased by 20% compared to a conventional battery with a built-in fuse.

なお、本実施例ではリチウム電池としたが、アルカリア
ンガン乾電池やニッケル、カドミウム電池でもよい。さ
らに、本実施例では負極端子に実施した場合について記
載しているが正極端子側でも同様に実施できる。
In this embodiment, a lithium battery is used, but an alkaline anganese dry battery, a nickel battery, or a cadmium battery may be used. Furthermore, although this embodiment describes the case where the method is applied to the negative electrode terminal, it can be implemented similarly to the positive electrode terminal.

発明の効果 本発明によれば、電池の負極端子または正極端子の表面
上に、加熱により電気抵抗値が大になる正温度特性を有
する炭素粉含有の樹脂膜を設けることにより、発熱によ
って電池内圧が異常に上昇し電池容器が破裂するのを防
止した高容量の電池を実現できるという効果が得られる
Effects of the Invention According to the present invention, by providing a resin film containing carbon powder on the surface of the negative or positive terminal of a battery, which has a positive temperature characteristic that increases electrical resistance when heated, the internal pressure of the battery is reduced by heat generation. The effect is that it is possible to realize a high-capacity battery that prevents the battery container from bursting due to an abnormal increase in .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における電池の断面図、第2
図は従来の電池の断面図である。 1・・・・・・電池本体、2・・・・・・正極端子部、
3・・・・・・負極端子、8・・・・・・負極端子板、
9・・・・・・外装フィルム、1o・・・・・・炭素粉
含有の樹脂膜。
FIG. 1 is a cross-sectional view of a battery in one embodiment of the present invention, and FIG.
The figure is a cross-sectional view of a conventional battery. 1...Battery body, 2...Positive terminal part,
3... Negative terminal, 8... Negative terminal plate,
9...Exterior film, 1o...Resin film containing carbon powder.

Claims (2)

【特許請求の範囲】[Claims] (1)正極端子または負極端子に、加熱により電気抵抗
値が大となる正温度抵抗特性を有する炭素粉含有の樹脂
膜を備えたことを特徴とする電池。
(1) A battery characterized in that the positive electrode terminal or the negative electrode terminal is provided with a resin film containing carbon powder, which has a positive temperature resistance characteristic that increases the electrical resistance value when heated.
(2)正温度抵抗特性を有する炭素粉含有の樹脂膜が、
正極または負極端子と端子板の間に介在していることを
特徴とする特許請求の範囲第1項記載の電池。
(2) A resin film containing carbon powder that has positive temperature resistance characteristics,
2. The battery according to claim 1, wherein the battery is interposed between a positive electrode or a negative electrode terminal and a terminal plate.
JP63023074A 1988-02-02 1988-02-02 Battery Pending JPH01197963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023074A JPH01197963A (en) 1988-02-02 1988-02-02 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023074A JPH01197963A (en) 1988-02-02 1988-02-02 Battery

Publications (1)

Publication Number Publication Date
JPH01197963A true JPH01197963A (en) 1989-08-09

Family

ID=12100255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023074A Pending JPH01197963A (en) 1988-02-02 1988-02-02 Battery

Country Status (1)

Country Link
JP (1) JPH01197963A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040640A1 (en) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067838A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067842A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067839A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067836A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067833A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067841A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067834A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067840A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067837A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040640A1 (en) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
US6399252B1 (en) 1998-02-06 2002-06-04 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067837A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
EP1035606A1 (en) * 1998-06-25 2000-09-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067839A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067836A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067833A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067841A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067834A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067840A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067842A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
EP1100135A1 (en) * 1998-06-25 2001-05-16 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067838A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6440608B1 (en) 1998-06-25 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6579641B2 (en) 1998-06-25 2003-06-17 Mitsubishi Denki Kabushiki Kaisha Battery and process for preparing the same
US6623883B1 (en) 1998-06-25 2003-09-23 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC function and battery comprising the electrode
US6670070B2 (en) 1998-06-25 2003-12-30 Mitsubishi Denki Kabushiki Kaisha Battery and process for preparing the same
US6677074B2 (en) 1998-06-25 2004-01-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1100135A4 (en) * 1998-06-25 2006-06-14 Mitsubishi Electric Corp Cell and method of producing the same
EP1035606A4 (en) * 1998-06-25 2006-06-14 Mitsubishi Electric Corp Cell and method of producing the same

Similar Documents

Publication Publication Date Title
KR100686844B1 (en) Secondary battery with ptc device
Venugopal Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries
KR100731462B1 (en) Secondary battery
US8691408B2 (en) Secondary battery including protective circuit module to protect battery when swelling occurs
KR100729106B1 (en) Safety device for preventing overcharge and secondary battery therewith
RU2340983C1 (en) Accumulator battery that has increased protection
US20040170887A1 (en) Non-aqueous electrolytic secondary battery
KR20180113809A (en) Battery module and battery pack including the same
JPS6333264B2 (en)
JP2011519124A (en) Electrochemical cell with irreversible fuse
JPH01197963A (en) Battery
US11264661B2 (en) Battery cell with improved safety
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP3658877B2 (en) battery pack
JPS6174257A (en) Battery
JPH04328279A (en) Battery device having protecting element
JP2004178994A (en) Nonaqueous electrolyte secondary battery
JP2023513117A (en) Secondary batteries and devices containing them
KR20130089375A (en) Secondary battery and element used for secondary battery
JP2004022477A (en) Battery
GB2349284A (en) Preventing overcharge of lithium cells
JP4751500B2 (en) Electrode wound type secondary battery
US20070090809A1 (en) Polymer ptc device
KR20080038662A (en) Secondary battery
KR101201081B1 (en) Lithium Rechargeable Battery