JP2659193B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2659193B2
JP2659193B2 JP62205178A JP20517887A JP2659193B2 JP 2659193 B2 JP2659193 B2 JP 2659193B2 JP 62205178 A JP62205178 A JP 62205178A JP 20517887 A JP20517887 A JP 20517887A JP 2659193 B2 JP2659193 B2 JP 2659193B2
Authority
JP
Japan
Prior art keywords
film
hydrogen
plasma
aluminum
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62205178A
Other languages
Japanese (ja)
Other versions
JPS6449234A (en
Inventor
顕 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62205178A priority Critical patent/JP2659193B2/en
Publication of JPS6449234A publication Critical patent/JPS6449234A/en
Application granted granted Critical
Publication of JP2659193B2 publication Critical patent/JP2659193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体基板表面上の
金属配線間に設ける層間絶縁膜や金属配線上に設ける表
面保護膜として用いるプラズマ気相成長シリコン酸化窒
化膜を有する半導体装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a plasma vapor deposition used as an interlayer insulating film provided between metal wirings on a surface of a semiconductor substrate and a surface protective film provided on metal wirings. The present invention relates to a semiconductor device having a silicon oxynitride film.

〔従来の技術〕[Conventional technology]

従来の半導体装置では、半導体基板の表面上に形成し
た多層構造の金属配線の層間絶縁膜や、金属配線上に形
成した表面保護膜に、シラン(SiH4),アンモニア(NH
3)の混合ガスを原料としてプラズマ気相成長法によっ
て形成されたシリコン窒化膜(以下、プラズマ窒化膜と
称する)が用いられている。
In a conventional semiconductor device, silane (SiH 4 ), ammonia (NH) is used for an interlayer insulating film of a multi-layered metal wiring formed on the surface of a semiconductor substrate and a surface protective film formed on the metal wiring.
A silicon nitride film (hereinafter, referred to as a plasma nitride film) formed by a plasma vapor deposition method using the mixed gas of 3 ) as a raw material is used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来のプラズマ窒化膜は、一般に350℃以下
の低温で膜形成を行うため、膜中に多量の水素を含んで
いる。したがって、半導体基板表面のアルミニウム配線
上にプラズマ窒化膜を成長して450℃程度の熱処理を行
うと、膜中の水素が離脱してこれが膜と半導体基板との
間に溜まり膜が膨れる不良(以後、窒化膜膨れと呼ぶ)
が発生したり、あるいは水素の影響で膜と接しているア
ルミニウム配線の一部が消失する不良(以後、アルミ消
失と呼ぶ)が発生するという問題がある。
The above-mentioned conventional plasma nitride film generally forms a film at a low temperature of 350 ° C. or less, and therefore contains a large amount of hydrogen in the film. Therefore, when a plasma nitride film is grown on the aluminum wiring on the surface of the semiconductor substrate and subjected to a heat treatment at about 450 ° C., the hydrogen in the film is released and accumulates between the film and the semiconductor substrate to cause the film to swell. , Called nitride film swelling)
Or a defect (hereinafter, referred to as aluminum disappearance) occurs in which part of the aluminum wiring in contact with the film disappears due to the influence of hydrogen.

本発明は、この窒化膜膨れやアルミ消失等の不良を確
実に防止することができる半導体装置を提供することを
目的としている。
An object of the present invention is to provide a semiconductor device that can reliably prevent such defects as swelling of the nitride film and loss of aluminum.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の半導体装置は、半導体基板上に形成したアル
ミニウム配線の層間絶縁膜や表面保護膜等の絶縁膜とし
て、亜酸化窒素を原料の一部に含んで形成され、その含
有水素量が1.8×1022cm-3以下のプラズマ気相成長シリ
コン酸化窒化膜を有し、かつこの絶縁膜をアルミニウム
配線に密着して形成した構成としている。
The semiconductor device of the present invention is formed as an insulating film such as an interlayer insulating film or a surface protective film of aluminum wiring formed on a semiconductor substrate, containing nitrous oxide as a part of a raw material, and has a hydrogen content of 1.8 × The structure has a plasma vapor grown silicon oxynitride film of 10 22 cm −3 or less, and this insulating film is formed in close contact with an aluminum wiring.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例の縦断図面である。図に
おいて、半導体基板11の表面絶縁膜(図示せず)上に1
層目のアルミニウム配線12を形成した後、第1のプラズ
マ酸化窒化膜13を形成する。この時、ガス流量をシラン
900sccm,アンモニア200sccm,酸素化合物ガスとしてのN2
O300sccmとし、圧力0.35Torr,RFパワー2Aの条件で成長
させると、プラズマ酸化窒化膜中の水素を1.8×1022個/
cm3にすることができる。
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention. In the drawing, 1 is formed on a surface insulating film (not shown) of a semiconductor substrate 11.
After the aluminum wiring 12 of the layer is formed, a first plasma oxynitride film 13 is formed. At this time, the gas flow rate was
900 sccm, ammonia 200 sccm, N 2 as oxygen compound gas
When grown under the conditions of O300 sccm, a pressure of 0.35 Torr, and an RF power of 2 A, the hydrogen in the plasma oxynitride film was 1.8 × 10 22 /
it is possible to cm 3.

これは、通常のプラズマ酸化窒化膜をフーリエ変換赤
外分光法(FTIR法)で分析すると、膜中の水素はSi−H
結合,N−H結合の形で取込まれているが、第2図に示す
ように、シランとアンモニアの流量比を一定にして、酸
素化合物(例えば、N2Oガス)の流量を増加していく
と、N−H結合には流量依存性は特に認められないが、
Si−H結合は減少し、トータルの水素量が減少すること
による。
This is because when a normal plasma oxynitride film is analyzed by Fourier transform infrared spectroscopy (FTIR), hydrogen in the film is Si-H
Bonds are incorporated in the form of NH bonds, but as shown in FIG. 2, the flow rate of oxygen compounds (eg, N 2 O gas) is increased while the flow rate ratio of silane and ammonia is kept constant. As a result, the flow rate dependence is not particularly recognized in the NH bond,
This is because the Si—H bond is reduced and the total amount of hydrogen is reduced.

この場合、N2Oガス流量を増やすと、さらに水素量の
少ない膜を形成することができるのはいうまでもない。
In this case, if the flow rate of the N 2 O gas is increased, it is needless to say that a film with a smaller amount of hydrogen can be formed.

また、この第1のプラズマ酸化窒化膜13上には2層目
のアルミニウム配線14を形成し、更にこの上には表面保
護膜として第2のプラズマ酸化窒化膜15を形成してい
る。この第2のプラズマ酸化窒化膜15は、第1のプラズ
マ酸化窒化膜13と全く同様に形成する。
A second layer of aluminum wiring 14 is formed on the first plasma oxynitride film 13, and a second plasma oxynitride film 15 is further formed thereon as a surface protection film. This second plasma oxynitride film 15 is formed in exactly the same manner as the first plasma oxynitride film 13.

したがって、前述したように形成した第1及び第2の
プラズマ酸化窒化膜13,15では、熱処理を行っても膜中
水素の発生が極めて少なくなり、膜膨れやアルミ消失の
発生を抑制できる。
Therefore, in the first and second plasma oxynitride films 13 and 15 formed as described above, generation of hydrogen in the films is extremely reduced even when heat treatment is performed, and occurrence of film swelling and loss of aluminum can be suppressed.

因に、第3図は450℃,30分の熱処理によるアルミ消失
発生率の膜中水素温度依存性を示すものである。これに
よると、膜中水素が1.8×1022cm-3以下であればアルミ
消失は発生しないが2.0×1022cm-3を越えるとアルミ消
失の発生率が急激に増加することが判る。
FIG. 3 shows the dependency of the rate of occurrence of aluminum disappearance by the heat treatment at 450 ° C. for 30 minutes on the hydrogen temperature in the film. According to this, it can be seen that if hydrogen in the film is 1.8 × 10 22 cm −3 or less, no aluminum disappearance occurs, but if it exceeds 2.0 × 10 22 cm −3 , the occurrence rate of aluminum disappearance sharply increases.

ここで、層間絶縁膜としての第1プラズマ酸化窒化膜
13に比べて、表面保護膜としての第2プラズマ酸化窒化
膜15を製造する際のN2Oガスを400sccmとすることにより
含有水素量をさらに少なくすることができ、かつアルカ
リイオンに対する阻止能力を向上させることも可能であ
る。
Here, a first plasma oxynitride film as an interlayer insulating film
As compared with 13, the hydrogen content can be further reduced by setting the N 2 O gas to 400 sccm when manufacturing the second plasma oxynitride film 15 as the surface protective film, and the ability to block alkali ions is reduced. It is also possible to improve.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、アルミニウム配線に密
着して形成するプラズマ気相成長シリコン酸化窒化膜を
亜酸化窒素を原料の一部に含んで形成され、その含有水
素量を1.8×1022cm-3以下に設定しているので、膜形成
後の熱処理によって離脱する水素の量を減らすことがで
き、この水素が原因とされる窒化膜膨れやアルミ消失、
あるいはアルカリイオンによるアルミニウム配線の腐食
といった不良の発生を未然に防止できるという効果があ
る。
As described above, the present invention forms a plasma vapor-grown silicon oxynitride film formed in close contact with an aluminum wiring, containing nitrous oxide as a part of the raw material, and reduces the hydrogen content thereof to 1.8 × 10 22 cm. -3 or less, the amount of hydrogen released by heat treatment after film formation can be reduced, and this hydrogen causes nitride film swelling and aluminum loss,
Alternatively, there is an effect that defects such as corrosion of aluminum wiring due to alkali ions can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の縦断面図、第2図はN2O流
量と膜中水素量の関係を示した図、第3図はアルミ消失
発生率と膜中水素量の関係を示した図である。 11……半導体基板、12……1層目のアルミニウム配線、
13……第1のプラズマ酸化窒化膜(層間絶縁膜)、14…
…2層目のアルミニウム配線、15……第2のプラズマ酸
化窒化膜(表面保護膜)。
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the N 2 O flow rate and the amount of hydrogen in the film, and FIG. 3 is a relationship between the rate of occurrence of aluminum loss and the amount of hydrogen in the film. FIG. 11 ... semiconductor substrate, 12 ... first layer aluminum wiring,
13 ... first plasma oxynitride film (interlayer insulating film), 14 ...
... Second-layer aluminum wiring, 15... Second plasma oxynitride film (surface protective film).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に形成したアルミニウム配線
の層間絶縁膜や表面保護膜等の絶縁膜をシラン、アンモ
ニアおよび亜酸化窒素ガスを原料としたプラズマ気相成
長シリコン酸化窒化膜で形成し、前記プラズマ気相成長
シリコン酸化窒化膜中の含有水素量が1.8×1022cm-3
下であることを特徴とする半導体装置。
An insulating film such as an interlayer insulating film or a surface protective film of aluminum wiring formed on a semiconductor substrate is formed of a plasma vapor grown silicon oxynitride film using silane, ammonia and nitrous oxide gas as raw materials, A semiconductor device, wherein the hydrogen content in the plasma vapor grown silicon oxynitride film is 1.8 × 10 22 cm −3 or less.
JP62205178A 1987-08-20 1987-08-20 Semiconductor device Expired - Fee Related JP2659193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62205178A JP2659193B2 (en) 1987-08-20 1987-08-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62205178A JP2659193B2 (en) 1987-08-20 1987-08-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6449234A JPS6449234A (en) 1989-02-23
JP2659193B2 true JP2659193B2 (en) 1997-09-30

Family

ID=16502713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62205178A Expired - Fee Related JP2659193B2 (en) 1987-08-20 1987-08-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2659193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189862A1 (en) * 2008-09-30 2011-08-04 Tokyo Electron Limited Silicon oxynitride film and process for production thereof, computer-readable storage medium, and plasma cvd device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152132A (en) * 1981-03-13 1982-09-20 Fujitsu Ltd Chemical vapor growing method
JPS6039837A (en) * 1983-08-12 1985-03-01 Nec Corp Growth of insulating film
JPS60224231A (en) * 1984-04-20 1985-11-08 Hitachi Ltd Semiconductor device
JPS61194827A (en) * 1985-02-25 1986-08-29 Oki Electric Ind Co Ltd Diffused protective film forming method
JPS6262529A (en) * 1985-09-12 1987-03-19 Toppan Printing Co Ltd Forming method for silicon nitride film
JPS6276537A (en) * 1985-09-27 1987-04-08 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS62186540A (en) * 1986-02-12 1987-08-14 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS6449234A (en) 1989-02-23

Similar Documents

Publication Publication Date Title
JP2682403B2 (en) Method for manufacturing semiconductor device
US6579787B2 (en) Semiconductor device with a fluorinated silicate glass film as an interlayer metal dielectric film, and manufacturing method thereof
KR100368697B1 (en) Semiconductor Device and a Process for Forming Thereof
JPH0653210A (en) Semiconductor device
JP3967567B2 (en) Semiconductor device and manufacturing method thereof
US6790778B1 (en) Method for capping over a copper layer
US6693345B2 (en) Semiconductor wafer assemblies comprising photoresist over silicon nitride materials
EP0976149A1 (en) Method for limiting internal diffusion in a semiconductor device with composite si/sige gate
US8304353B2 (en) Silicon dioxide deposition methods using at least ozone and TEOS as deposition precursors
JP2659193B2 (en) Semiconductor device
JPS62204575A (en) Thin film semiconductor device and manufacture thereof
JPH0750295A (en) Manufacture of semiconductor device
US20070190806A1 (en) UV blocking and crack protecting passivation layer fabricating method
US6551921B2 (en) Method of polishing a stack of dielectric layers including a fluorine containing silicon oxide layer
JPS62174927A (en) Semiconductor device
JP2601112B2 (en) Method for manufacturing semiconductor device
JPH0677478A (en) Semiconductor device and its manufacture
US5977608A (en) Modified poly-buffered isolation
JPH0555199A (en) Semiconductor device
WO2023105680A1 (en) Method for forming silicon nitride film
JP2830604B2 (en) Method for manufacturing semiconductor device
KR100259166B1 (en) Method for manufacturing semiconductor device
JPH03276723A (en) Insulating thin film and its forming method
US6362114B1 (en) Semiconductor processing methods of forming an oxynitride film on a silicon substrate
JPH07221176A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees