JP2652074B2 - Method for producing bonded body of copper plate and ceramic substrate - Google Patents

Method for producing bonded body of copper plate and ceramic substrate

Info

Publication number
JP2652074B2
JP2652074B2 JP9333990A JP9333990A JP2652074B2 JP 2652074 B2 JP2652074 B2 JP 2652074B2 JP 9333990 A JP9333990 A JP 9333990A JP 9333990 A JP9333990 A JP 9333990A JP 2652074 B2 JP2652074 B2 JP 2652074B2
Authority
JP
Japan
Prior art keywords
copper
ceramic substrate
copper plate
sio
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9333990A
Other languages
Japanese (ja)
Other versions
JPH03290378A (en
Inventor
尚之 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOGYO KK
Original Assignee
DOWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOGYO KK filed Critical DOWA KOGYO KK
Priority to JP9333990A priority Critical patent/JP2652074B2/en
Publication of JPH03290378A publication Critical patent/JPH03290378A/en
Application granted granted Critical
Publication of JP2652074B2 publication Critical patent/JP2652074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、セラミックス基板に銅板を直接接合する
方法、詳しくは不活性ガス雰囲気中で銅板を酸化させる
ことなく加熱し、銅板中の酸化第1銅(Cu2O)とセラミ
ックス基板中のSiO2とを反応させて接合する銅板とセラ
ミックス基板との接合体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for directly bonding a copper plate to a ceramic substrate, and more particularly, to a method for heating a copper plate in an inert gas atmosphere without oxidizing the copper plate. (1) The present invention relates to a method for producing a joined body of a copper plate and a ceramic substrate, which is joined by reacting copper (Cu 2 O) with SiO 2 in a ceramic substrate.

[従来の技術] 最近の半導体技術の進展に伴いセラミックス基板上に
銅回路板を直接接合する方法が用いられるようになり、
このような方法に関して数多くの提案がなされている。
これらの提案された方法について、それらが内蔵する問
題点を含めて、従来のセラミックス基板に金属片等を直
接接合するための方法を列挙すると以下の通りである。
[Prior art] With the recent development of semiconductor technology, a method of directly joining a copper circuit board on a ceramic substrate has been used,
Many proposals have been made for such a method.
With respect to these proposed methods, including the problems contained therein, methods for directly joining a metal piece or the like to a conventional ceramic substrate are listed below.

銅板を予め酸化してセラミックス基板に接するように
配置し、不活性ガス雰囲気中において、銅酸化物と銅と
の亜共晶融体を形成させることによってセラミックス基
板上にぬれを発生させて直接接合させる技術が、特公昭
60−4154号の「セラミックからなる基体に銅部材を結合
する方法」によって公知である。
The copper plate is oxidized in advance and placed so as to be in contact with the ceramic substrate, and in an inert gas atmosphere, a hypoeutectic melt of copper oxide and copper is formed, so that wetting occurs on the ceramic substrate and direct bonding is performed. The technology to make it
It is known by "Method of bonding a copper member to a substrate made of ceramic" of JP-A-60-4154.

しかしこの方法では予め酸化された酸化銅が分解しな
いようにするための最小酸素分圧が必要であることが特
開昭58−217475号の「金属片と酸化物セラミック基板を
直接接合する方法」に開示されている。
However, this method requires a minimum oxygen partial pressure in order to prevent decomposition of pre-oxidized copper oxide. Japanese Unexamined Patent Application Publication No. 58-217475 discloses a "method of directly joining a metal piece and an oxide ceramic substrate". Is disclosed.

また前記特公昭60−4154号公報において酸素含有銅部
材を使用することが示されているが、この場合について
も特開昭58−217475号公報で、炉雰囲気中に最小酸素分
圧が維持されなければ銅とセラミックス基板との間に結
合が生じないばかりなく、銅に溶解した酸素が銅とセラ
ミックスの接触面に拡散し、そこに封入され、その結
果、気泡が発生し金属とセラミックスとの結合の欠陥を
もたらすことが指摘されている。
Japanese Patent Publication No. 60-4154 discloses the use of an oxygen-containing copper member.In this case, too, Japanese Patent Application Laid-Open No. 58-217475 discloses that a minimum oxygen partial pressure is maintained in a furnace atmosphere. Otherwise, the bond between the copper and the ceramic substrate will not only occur, but the oxygen dissolved in the copper will diffuse to the contact surface between the copper and the ceramic and be encapsulated there, resulting in the formation of air bubbles and the interaction between the metal and the ceramic. It has been pointed out that this leads to bonding defects.

また、予備酸化なしに銅箔を用いて酸素含有雰囲気の
ような反応性雰囲気下で酸化物セラミックス基板と接合
させる方法が特公昭57−13515号の「金属を非金属基体
に直接結合する方法」によって公知である。この方法で
は、本来の結合過程が進行する前に雰囲気中の酸素がま
ず銅を表面酸化しなければならないが、特にセラミック
スと銅の間の結合面積が大きい場合は、十分な量の酸素
がセラミックスと銅の間のギャップに進入することがで
きないため、気泡状の非付着箇所が発生する。また雰囲
気中に0.01〜0.5容積%の範囲の酸素量が存在するため
に、セラミックス基板と接触させた銅箔表面(雰囲気ガ
スと接している面)が厚い黒色の酸化銅皮膜で覆われる
こととなる。従って銅材の有する本来の特性を生かすた
めには、酸化銅皮膜を除去する工程が必要とされている
(特開昭58−217475号参照)。
Japanese Patent Publication No. 57-13515 discloses a method of bonding a metal directly to a non-metal substrate by bonding a copper foil to an oxide ceramic substrate in a reactive atmosphere such as an oxygen-containing atmosphere without using pre-oxidation. Is known. In this method, oxygen in the atmosphere must first oxidize copper before the original bonding process proceeds, but a sufficient amount of oxygen can be removed from the ceramic, especially when the bonding area between ceramic and copper is large. Cannot enter the gap between the copper and the copper, so that a bubble-shaped non-adhered portion is generated. In addition, since the atmosphere has an oxygen content in the range of 0.01 to 0.5% by volume, the surface of the copper foil in contact with the ceramic substrate (the surface in contact with the atmosphere gas) is covered with a thick black copper oxide film. Become. Therefore, in order to make full use of the inherent properties of the copper material, a step of removing the copper oxide film is required (see Japanese Patent Application Laid-Open No. 58-217475).

一方、他の接合手段として、特公昭60−28785号によ
る「金属をセラミックに結着する方法」は、酸化銅と銅
との共晶融体による接合方法を開示し、この場合、予め
酸化した金属片を使用している。この金属片は加熱の際
に徐々にセラミックス基板に接するように、予めわん曲
体に成形してあるため、接合時に金属片とセラミックス
基板との間に生ずる気泡を順次外へ押し出すことができ
るものである。
On the other hand, as another joining means, Japanese Patent Publication No. 60-28785, `` Method of Bonding Metal to Ceramic, '' discloses a joining method using a eutectic melt of copper oxide and copper, in which case, it is oxidized in advance. Metal pieces are used. Since this metal piece is formed into a curved body in advance so that it gradually comes into contact with the ceramic substrate during heating, it can sequentially extrude bubbles generated between the metal piece and the ceramic substrate during bonding. It is.

しかしながら、この方法では費用がかさみ、工程制御
が繁雑であるという問題がある。すなわち、金属片又は
セラミックス基板が複雑に予備成形されている場合は、
金属のわん曲を行うことができない他、金属片が十分に
均一な状態でセラミックス基板に接触しないという欠点
があった。この方法においても、反応性雰囲気中に約0.
01〜0.5容積%の酸素が存在すると、金属の露出面が酸
化物層で覆われることとなるため、前述のように酸化物
層を後工程で除去する必要があった(特開昭58−217475
号参照)。
However, this method has a problem that the cost is high and the process control is complicated. That is, when the metal piece or the ceramic substrate is complicatedly preformed,
In addition to the inability to bend the metal, the metal piece does not contact the ceramic substrate in a sufficiently uniform state. Also in this method, about 0.
Since the exposed surface of the metal is covered with the oxide layer when oxygen of 01 to 0.5% by volume is present, it is necessary to remove the oxide layer in a later step as described above (Japanese Patent Laid-Open No. 58-1983). 217475
No.).

以上のような公知技術の問題点を改善する手段とし
て、上述の特開昭58−217475号は、金属片とセラミック
ス基板との間に無気泡の完全な結合が得られるととも
に、酸化物のない金属表面が簡単に得られる直接接合法
を開示している。
As means for improving the problems of the above-mentioned known techniques, Japanese Patent Application Laid-Open No. 58-217475 described above discloses that a bubble-free perfect bond can be obtained between a metal piece and a ceramic substrate, and that there is no oxide. It discloses a direct bonding method in which a metal surface can be easily obtained.

しかしながらこの接合方法は、連続式炉内の雰囲気の
酸素濃度を20〜50ppmに常時制御する必要があり、炉内
への大気の混入を極力避けなければならないため、使用
される炉は高価なものとなり、かつ大気の混入を防止す
るため入口及び出口にガスカーテンの設置を必要として
いる。さらに、接合に用いる金属片は予め予備酸化が必
要であり、その酸化物層は表面粗さの約10分の1が好ま
しいとされるように、調整するのに相当の労力を必要と
していた。
However, in this joining method, it is necessary to constantly control the oxygen concentration of the atmosphere in the continuous furnace to 20 to 50 ppm, and it is necessary to avoid mixing of the atmosphere into the furnace as much as possible. In addition, it is necessary to install gas curtains at the entrance and the exit in order to prevent air from being mixed. In addition, the metal pieces used for bonding require pre-oxidation in advance, and the oxide layer requires a considerable amount of labor to adjust so that about one-tenth of the surface roughness is preferable.

以上述べたように従来の技術にあっては、予め予備酸
化が必要であるため、酸化皮膜の厚さを均一に制御する
必要があり、接合工程前に除去作業を行っていた。さら
に亜共晶融体の形成は、配置された銅板の表面に形成さ
れた酸化銅と銅との境界面から溶解が始まり、酸化銅皮
膜側へと移行して行く。この溶解の進行は銅板側にも進
行して、ほぼ酸化銅皮膜の倍の共晶融体が発生するが、
この共晶融体は凝固することによって凝固収縮がおこ
り、これが原因となって接着界面に小さなボイドを発生
することが本発明者らの実験によって確認されている。
As described above, in the prior art, since preliminary oxidation is required in advance, it is necessary to uniformly control the thickness of the oxide film, and the removal operation has been performed before the joining step. Further, the formation of the hypoeutectic melt starts from the interface between copper oxide and copper formed on the surface of the placed copper plate, and shifts to the copper oxide film side. The progress of this dissolution proceeds to the copper plate side, and a eutectic melt almost double that of the copper oxide film is generated.
It has been confirmed by experiments of the present inventors that the eutectic melt undergoes solidification shrinkage due to solidification, which causes small voids at the bonding interface.

[発明が解決しようとする課題] 上述のように、従来技術では、予備酸化を行わなけれ
ばならないため、それに伴う諸作業が必要となり、コス
ト上昇の要因となっていた。したがって、従来の方法の
欠点である銅板を予め酸化処理するという工程をなくす
ることや、接合界面に共晶融体あるいは亜共晶融体の形
成または凝固時のボイド発生をなくするような新規な直
接接合方法の開発が望まれていた。
[Problems to be Solved by the Invention] As described above, in the related art, since pre-oxidation has to be performed, various operations associated with the pre-oxidation have been required, which has caused a cost increase. Therefore, it is possible to eliminate the step of pre-oxidizing the copper plate, which is a disadvantage of the conventional method, and to eliminate the formation of a eutectic or hypoeutectic melt at the bonding interface or the generation of voids at the time of solidification. Development of a direct bonding method has been desired.

本発明の目的は、上記課題を解決して、銅部材の予備
酸化による前処理工程を必要とせず、かつ雰囲気コント
ロールが容易な方法によって接着性の優れた接合体を安
価にかつ大量に製造できる銅板とセラミックス基板との
接合体の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, to eliminate the need for a pretreatment step by pre-oxidation of a copper member, and to produce a bonded body having excellent adhesiveness at low cost and in a large amount by a method in which atmosphere control is easy. An object of the present invention is to provide a method for manufacturing a joined body of a copper plate and a ceramic substrate.

[課題を解決するための手段及び作用] 本発明者らは、上記目的を達成すべく研究の結果、銅
中の酸素が昇温時にCu2O粒子を発生させ、このCu2O粒子
が1,060以上でセラミックス基板中のSiO2と反応し、こ
れによって銅板とセラミックス基板との境界に強固な接
合が得られることを見出し本発明に到達した。
[Means and Actions for Solving the Problems] As a result of research to achieve the above object, the present inventors have found that oxygen in copper generates Cu 2 O particles when the temperature rises, and that the Cu 2 O particles As described above, the present inventors have found that it reacts with SiO 2 in the ceramic substrate, thereby obtaining a strong bond at the boundary between the copper plate and the ceramic substrate, and reached the present invention.

すなわち、本発明は、酸素濃度が50ppm以上の銅板
を、SiO2を0.5%以上含有するセラミックス基板面に配
置し、これらを不活性ガス雰囲気、好ましくは1,060℃
より低い温度で銅板表面上に酸化銅及び亜酸化銅を形成
しない酸素を含有する雰囲気中で加熱処理し、銅板中の
酸素を利用することによってCu2O粒子を発生させながら
昇温して1,060℃以上1,065℃未満の温度範囲でセラミッ
クス基板中のSiO2と銅板中のCu2Oとを反応させて銅板と
セラミックス基板とを直接接合せしめることを特徴とす
る銅板とセラミックス基板との接合体の製造方法を提供
するものでる。
That is, in the present invention, a copper plate having an oxygen concentration of 50 ppm or more is disposed on a ceramic substrate surface containing 0.5% or more of SiO 2 , and these are placed in an inert gas atmosphere, preferably 1,060 ° C.
Heat treatment in an atmosphere containing oxygen that does not form copper oxide and cuprous oxide on the surface of the copper plate at a lower temperature, and raise the temperature while generating Cu 2 O particles by utilizing oxygen in the copper plate to 1,060. The reaction between SiO 2 in the ceramic substrate and Cu 2 O in the copper plate in a temperature range of not less than 1,065 ° C. and less than 1,065 ° C. to directly join the copper plate and the ceramic substrate. It provides a manufacturing method.

一般的にセラミックスの焼結を行う場合、焼結性をよ
り向上させる目的でSiO2を利用することが多い。この場
合SiO2は焼結中に母材であるセラミックス材と反応して
化合物を形成してしまうことが多いが、アルミナセラミ
ックスの焼結の場合は、アルミナ粒子の粒界にSiO2が存
在することや、焼結されたアルミナ基板の表面にSiO2
比較的多く存在することが知られている。
Generally, when sintering ceramics, SiO 2 is often used for the purpose of further improving sinterability. In this case, SiO 2 often reacts with a ceramic material as a base material during sintering to form a compound, but in the case of sintering of alumina ceramics, SiO 2 is present at a grain boundary of alumina particles. It is known that relatively large amounts of SiO 2 exist on the surface of a sintered alumina substrate.

一方、本発明の方法で使用する金属板として、銅中に
酸素を含有している銅部材(タフピッチ銅)が用いられ
る。このタフピッチ銅は、JISに規定されているよう
に、工業的手段で容易にかつ安価に入手できる材料であ
る。この材料では通常、粒内及び粒界に極く微小なCu2O
粒子が存在しているだけであることが知られている。
On the other hand, as a metal plate used in the method of the present invention, a copper member containing oxygen in copper (tough pitch copper) is used. This tough pitch copper is a material that can be easily and inexpensively obtained by industrial means as specified in JIS. This material usually has extremely small Cu 2 O inside and at the grain boundaries.
It is known that only particles are present.

しかし、昇温中に、このCu2O粒子の結晶化が進むにつ
れて、銅中に存在する酸素はCu2O粒子として成長するこ
ととなり、さらに昇温速度が比較的速い場合は、CuとCu
2Oとの2相平衡状態図の一部を示した第1図から理解さ
れるように、Cu2O+Cu相混合領域はCu2Oの低濃度側に、
例えば縦の点線で示すようにずれて行くものと考えられ
る。この場合、Cu2Oが分解してCu中にO2が拡散する大き
さが大きくなる前、つまり高温でCu中に存在した状態で
1,060℃に達することにより、タフピッチ銅中のCu2Oと
セラミックス基板中のSiO2とが反応して結合が起きるこ
とが確認されたのである。
However, during the heating, as the crystallization of the Cu 2 O particles progresses, the oxygen present in the copper will grow as Cu 2 O particles, and if the heating rate is relatively high, Cu and Cu
As can be understood from FIG. 1 which shows a part of a two-phase equilibrium diagram with 2 O, the Cu 2 O + Cu phase mixed region is located on the lower concentration side of Cu 2 O.
For example, it is considered that they shift as shown by a vertical dotted line. In this case, before Cu 2 O decomposes and the size of O 2 diffused into Cu increases,
It was confirmed that when the temperature reached 1,060 ° C., Cu 2 O in the tough pitch copper and SiO 2 in the ceramic substrate reacted with each other to cause bonding.

したがって、本発明方法で使用する銅板としてはその
酸素濃度が50ppm以上のものを用いる必要があり、その
理由は、工業的に安定して得られるタフピッチ銅が50pp
m以上、好ましくは200〜400ppmの酸素を含有するためで
あると同時に、銅中のCu2O粒子量が少ないと接合された
接合体の信頼性が劣るためである。
Therefore, it is necessary to use a copper plate having an oxygen concentration of 50 ppm or more as the copper plate used in the method of the present invention, because the tough pitch copper obtained industrially stably is 50 pp.
m or more, preferably 200 to 400 ppm of oxygen, and at the same time, when the amount of Cu 2 O particles in the copper is small, the reliability of the joined body is inferior.

さらに加熱温度を1,065℃以上に上昇させると、銅材
中のCuとCu2Oとが共晶化するため、1,065℃より低い温
度で数秒から数時間保持すれば良く、工業的には数分程
度で安定して接合体を製造することができる。本発明方
法の実施試験によれば1〜10分程度の保持時間でもって
製造し、良好な接合体を得ている。また、昇温速度は10
〜50℃/分であればCu2O粒子の高温での存在が可能であ
ることが確認されており、一方、降温速度においては、
その速度が大きいと昇温と同様にセラミックス基板自体
にクラックが生じること及び工業生産性の点から下限を
10℃/分程度にすべきであるので、降温速度も10〜50℃
/分とするのが好ましい。
If the heating temperature is further increased to 1,065 ° C. or higher, Cu and Cu 2 O in the copper material become eutectic, so that the temperature may be maintained at a temperature lower than 1,065 ° C. for several seconds to several hours. It is possible to manufacture a joined body stably by the degree. According to the test of the method of the present invention, it was manufactured with a holding time of about 1 to 10 minutes to obtain a good bonded body. The heating rate is 10
It has been confirmed that the presence of Cu 2 O particles at a high temperature is possible if it is 50 ° C./min.
If the speed is high, cracks will occur on the ceramic substrate itself as well as the temperature rise, and the lower limit will be set in terms of industrial productivity.
Since the temperature should be about 10 ° C / min, the cooling rate should be 10-50 ° C
/ Min.

上述の銅中に存在するCu2O粒子とセラミックス中のSi
O2との反応は1,060℃で共晶となり融体が発生する反応
であるが、この融体は極くわずかしか発生せず、銅−セ
ラミックス接触界面に薄く存在するだけである。
Cu 2 O particles existing in copper and Si in ceramics
The reaction with O 2 is a reaction in which eutectic occurs at 1,060 ° C. and a melt is generated, but this melt is generated very little and exists only thinly at the copper-ceramics contact interface.

接合はCu2O−SiO2の反応によって可能となるが、この
場合、当然のことながら反応するCu2OとSiO2はそれぞれ
接触する表面に存在しているものであり、部材中に含ま
れている全てではない。
Bonding is enabled by the reaction of Cu 2 O-SiO 2 , in which case, of course, the reacting Cu 2 O and SiO 2 are present on the surfaces in contact with each other, and are included in the member. Not all that is.

SiO2がアルミナ基板の粒界等に存在することにより、
銅材中のCu2Oと反応して形成された化合物は、Cu2Oある
いはSiO2と強固な接着力を持つためアルミナ基板から剥
離・分離することはなく、逆にCu2Oも同様に銅中の粒
界、粒内に分散しているため、銅中にくさびが打ち込ま
れたのと同じ効果を果たし、接着力を維持することとな
る。つまりCu2Oの単一相とSiO2の単一相が接することに
よって反応しただけでは強固な接合は得られず、Cu2Oお
よびSiO2が粒界や粒内に偏在しかつ分散していることに
よって強固な接合体を得ることが本発明の特徴である。
Due to the presence of SiO 2 at the grain boundaries of the alumina substrate,
The compound formed by reacting with Cu 2 O in the copper material does not separate and separate from the alumina substrate because it has a strong adhesive force with Cu 2 O or SiO 2, and conversely, Cu 2 O Since the particles are dispersed in the grain boundaries and in the grains in the copper, the same effect as when a wedge is driven into the copper is achieved, and the adhesive strength is maintained. In other words, a strong bond cannot be obtained only by reacting by contacting the single phase of Cu 2 O and the single phase of SiO 2 , and Cu 2 O and SiO 2 are unevenly distributed and dispersed at the grain boundaries and grains. It is a feature of the present invention that a strong bonded body is obtained by the above.

本発明の方法における雰囲気としては、N2ガス等の不
活性ガス雰囲気が用いられるが、この場合純粋な不活性
状態である必要はなく、1,060℃以下の加熱温度下で銅
板表面を酸化しない程度の微量の酸素が混在しても良好
な接合体が得られることを確認している。
As the atmosphere in the method of the present invention, an inert gas atmosphere such as N 2 gas is used.In this case, it is not necessary to be in a pure inert state, and the copper plate surface is not oxidized at a heating temperature of 1,060 ° C. or less. It has been confirmed that a good bonded body can be obtained even if a small amount of oxygen is mixed.

以下、実施例及び比較例により本発明をさらに説明す
る。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.

[実施例] 第1表に示すように、セラミックス基板として99.5
%、96%及び92%アルミナ焼結体とサファイア(アルミ
ナ単結晶)を準備すると共に、接合される銅板として厚
さ0.3mmのタフピッチ銅板(酸素濃度280ppm)と、比較
材としての無酸素銅板(酸素濃度8ppm)とを予め用意し
た。
[Example] As shown in Table 1, 99.5% ceramic substrate was used.
%, 96% and 92% alumina sintered body and sapphire (alumina single crystal) are prepared, and a 0.3 mm thick tough pitch copper plate (oxygen concentration 280 ppm) as a copper plate to be joined and an oxygen-free copper plate as a comparative material ( Oxygen concentration of 8 ppm).

接合に使用される炉は、コンベア式の連続炉であり、
昇温速度ならびに降温速度各々10、20、50及び100℃/
分と変化させて試験を行った。
The furnace used for joining is a conveyor type continuous furnace,
Heating and cooling rates 10, 20, 50 and 100 ° C /
The test was performed with a change in minutes.

使用するセラミックス基板にはX線回折によりSiO2
が存在することを確認して供試したが、サファイアには
SiO2相は含まれていない。
X-ray diffraction confirmed that SiO 2 phase was present on the ceramic substrate used, and the test was performed.
No SiO 2 phase is included.

なお、コンベア炉内の雰囲気には液体窒素を気化させ
たN2ガスを使い、炉内の酸素濃度は約10ppmとなるよう
に制御した。
The atmosphere in the conveyer furnace was controlled by using an N 2 gas obtained by evaporating liquid nitrogen, and controlling the oxygen concentration in the furnace to about 10 ppm.

上記のセラミックス基板上にタフピッチ銅板と無酸素
銅板とを同時に配置してコンベア炉に装入し、最高温度
1,063℃にて7分間保持できるように温度プロフィール
を作成し、第1表に示すような各昇温速度及び降温速度
で接合試験を行った。この試験結果を第1表に示す。
Place the tough pitch copper plate and oxygen-free copper plate on the above ceramic substrate at the same time
A temperature profile was created so that the temperature profile could be maintained at 1,063 ° C. for 7 minutes, and a bonding test was performed at each of the heating rate and the cooling rate shown in Table 1. Table 1 shows the test results.

なお、第1表に示す試験結果について、良好な接合体
が得られた場合を○印で示し、セラミックス基板に割れ
が発生した場合を△印、全く接合しなかった場合を×印
で示した。
In the test results shown in Table 1, a case where a good joined body was obtained was indicated by a circle, a case where cracks occurred on the ceramic substrate was indicated by a mark, and a case where no joining was performed was indicated by a mark x. .

第1表に示す試験結果から以下のことが確認された。
すなわち、昇温速度が速い場合(例えば100℃/分)、
セラミックス基板自体が高速昇温について行けなくなり
破壊してしまうことが判った。また、高速昇温を実施す
るには炉自体の設備が高価となるため、大量生産向け装
置としては不適である。また降温速度が速いと、昇温と
同様に、セラミックス基板自体にクラックが入り破壊す
ることになるため、昇温及び降温の速度は最大50℃/分
とするのが好ましい。一方速度下限としては、工業的生
産性を考慮して10℃/分以上としたが、これは10℃/分
未満の速度の場合は1,060℃までの昇温及びこの温度か
らの降温にそれぞれ100分以上かかり、そのため炉自体
も長大とならざるを得ないため下限速度は昇温、降温と
も10℃/分が好ましい。
From the test results shown in Table 1, the following was confirmed.
In other words, when the heating rate is fast (for example, 100 ° C./min),
It was found that the ceramic substrate itself could not be moved at a high temperature and was destroyed. Further, since the equipment of the furnace itself is expensive to perform the high-speed heating, it is not suitable as an apparatus for mass production. Further, if the temperature drop rate is high, the ceramic substrate itself cracks and breaks, as in the case of temperature rise. Therefore, the rate of temperature rise and temperature drop is preferably at most 50 ° C./min. On the other hand, the lower limit of the speed was set to 10 ° C./min or more in consideration of industrial productivity. However, when the speed was lower than 10 ° C./min, the temperature rise to 1,060 ° C. and the temperature decrease from this temperature were 100 It takes more than one minute, so that the furnace itself must be long, so the lower limit speed is preferably 10 ° C./min for both temperature rise and temperature decrease.

上記試験において、SiO2を含まないサファイアを用い
たものと無酸素銅を用いたものは全て接合しなかった。
In the above test, those using sapphire containing no SiO 2 and those using oxygen-free copper were all not joined.

[比較例] アルミナ基板の上にSiO2層のみを形成したブレーズ基
板にタフピッチ銅板を載せ、実施例に示した要領に従い
接合を図った。その結果、タフピッチ銅はSiO2層と接合
することは確認できたが、アルミナ基板とSiO2層との界
面の熱膨張差と思われる原因により発生したクラックが
存在しており、接合体としては接着力が弱いため使用に
耐えられなかった。
Comparative Example A tough pitch copper plate was placed on a blazed substrate having only an SiO 2 layer formed on an alumina substrate, and bonding was performed according to the procedure described in the example. As a result, a tough pitch copper was confirmed to be bonded to the SiO 2 layer, and cracks are present in performance due to causes seems to differential thermal expansion at the interface between the alumina substrate and the SiO 2 layer, a conjugate It could not withstand use due to weak adhesion.

[発明の効果] 以上説明したように、本発明方法は工業的に容易な焼
結法で得られるSiO2含有セラミックス基板と、タフピッ
チ銅板との組合わせによってセラミックス−金属接合体
を得る方法であるので、従来技術のように銅部材の前処
理工程を必要とせず、かつ雰囲気コントロールが容易な
方法で接着性の優れた接合体を安価に大量生産すること
ができる。
[Effects of the Invention] As described above, the method of the present invention is a method of obtaining a ceramic-metal bonded body by combining an SiO 2 -containing ceramic substrate obtained by an industrially easy sintering method with a tough pitch copper plate. Therefore, a joined body having excellent adhesiveness can be mass-produced inexpensively by a method that does not require a pretreatment step of a copper member as in the related art and that can easily control the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、CuとCu2Oとの2相平衡状態図の主要部を示す
図である。
FIG. 1 is a diagram showing a main part of a two-phase equilibrium diagram of Cu and Cu 2 O.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素濃度が50ppm以上の銅板を、SiO2を0.5
%以上含有するセラミックス基板面に配置し、これらを
不活性ガス雰囲気中で加熱処理し、銅板中の酸素を利用
することによってCu2O粒子を発生させながら昇温して1,
060℃以上1,065℃未満の温度範囲でセラミックス基板中
のSiO2と銅板中のCu2Oとを反応させて銅板とセラミック
ス基板とを直接接合せしめることを特徴とする銅板とセ
ラミックス基板との接合体の製造方法。
The method according to claim 1 oxygen concentration is not less than 50ppm copper plate, a SiO 2 0.5
% Or more, and heat-treat them in an inert gas atmosphere to raise the temperature while generating Cu 2 O particles by utilizing oxygen in the copper plate.
A bonded body of a copper plate and a ceramic substrate, wherein the copper plate and the ceramic substrate are directly bonded by reacting SiO 2 in the ceramic substrate with Cu 2 O in the copper plate in a temperature range of 060 ° C. or more and less than 1,065 ° C. Manufacturing method.
【請求項2】上記不活性ガス雰囲気が1,060℃より低い
温度において、銅板表面上に酸化銅及び亜酸化銅を形成
しない酸素を含有する雰囲気である請求項1記載の方
法。
2. The method according to claim 1, wherein the inert gas atmosphere is an atmosphere containing oxygen that does not form copper oxide and cuprous oxide on the surface of the copper plate at a temperature lower than 1,060 ° C.
JP9333990A 1990-04-09 1990-04-09 Method for producing bonded body of copper plate and ceramic substrate Expired - Lifetime JP2652074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9333990A JP2652074B2 (en) 1990-04-09 1990-04-09 Method for producing bonded body of copper plate and ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9333990A JP2652074B2 (en) 1990-04-09 1990-04-09 Method for producing bonded body of copper plate and ceramic substrate

Publications (2)

Publication Number Publication Date
JPH03290378A JPH03290378A (en) 1991-12-20
JP2652074B2 true JP2652074B2 (en) 1997-09-10

Family

ID=14079512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9333990A Expired - Lifetime JP2652074B2 (en) 1990-04-09 1990-04-09 Method for producing bonded body of copper plate and ceramic substrate

Country Status (1)

Country Link
JP (1) JP2652074B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244769A1 (en) * 2021-05-19 2022-11-24 株式会社 東芝 Bonded object production method and production method for ceramic circuit substrate using same

Also Published As

Publication number Publication date
JPH03290378A (en) 1991-12-20

Similar Documents

Publication Publication Date Title
JP3011433B2 (en) Manufacturing method of ceramic circuit board
US4483810A (en) Method for directly joining metal pieces to oxide-ceramic substrates
JP5908473B2 (en) Oxide ceramic circuit board manufacturing method and oxide ceramic circuit board
US3766634A (en) Method of direct bonding metals to non-metallic substrates
US4591401A (en) Process for the direct bonding of metal to ceramics
JPS6028785B2 (en) How to bond metal to ceramic
US4811893A (en) Method for bonding copper plate to alumina substrate and process for producing copper/alumina bonded assembly
JP2652074B2 (en) Method for producing bonded body of copper plate and ceramic substrate
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
GB2059323A (en) Bonding metals to non-metallic substrates
JP2590255B2 (en) Copper material with good bondability with ceramics
Wittmer Eutectic Bonding of Copper to Ceramics
KR890001909A (en) Complex oxidation reaction product and ceramic body manufacturing method including the same
JPH1177370A (en) Low melting point solder alloy and its production
JPS59156974A (en) Method of bonding ceramics and silicon
KR900005304B1 (en) Printed circuit board method for integrated circuit using
JPH0826841A (en) Production of bonded ceramics and the bonded ceramics
JPH0364474B2 (en)
US4824735A (en) Casting transition metal alloy containing rare earth metal
JPS61287153A (en) Joining method for ceramic substrate and metallic piece
JPS61295280A (en) Method of joining ceramic substrate and metal
JP2937049B2 (en) Manufacturing method of AlN circuit board
JPS6389477A (en) Method of directly joining cu base member to ceramic substrate
JPS58103984A (en) Joining method for copper and non-metallic refractory material
JPS61148898A (en) Joining of ceramic substrate and metal piece

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100523

EXPY Cancellation because of completion of term