JP2650405B2 - Bipolar transistor - Google Patents

Bipolar transistor

Info

Publication number
JP2650405B2
JP2650405B2 JP1055954A JP5595489A JP2650405B2 JP 2650405 B2 JP2650405 B2 JP 2650405B2 JP 1055954 A JP1055954 A JP 1055954A JP 5595489 A JP5595489 A JP 5595489A JP 2650405 B2 JP2650405 B2 JP 2650405B2
Authority
JP
Japan
Prior art keywords
region
electrode
base
base region
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1055954A
Other languages
Japanese (ja)
Other versions
JPH02235339A (en
Inventor
和広 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1055954A priority Critical patent/JP2650405B2/en
Publication of JPH02235339A publication Critical patent/JPH02235339A/en
Application granted granted Critical
Publication of JP2650405B2 publication Critical patent/JP2650405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路装置等用の高耐圧トランジスタに適
するバイポーラトランジスタであって、一方の導電形の
コレクタ領域と、コレクタ領域内に他方の導電形で作り
込まれたベース領域と、ベース領域内に一方の導電形で
作り込まれたエミッタ領域とを備えるものに関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a bipolar transistor suitable for a high breakdown voltage transistor for an integrated circuit device or the like, in which a collector region of one conductivity type and another conductive region in a collector region are provided. A base region formed in a shape and an emitter region formed in the base region in one conductivity type.

〔従来の技術〕[Conventional technology]

周知のように、バイポーラトランジスタはバイポーラ
形やBiMOS形の集積回路装置等に広く用いられる基本的
な回路要素であるが、最近ではこれらの出力側にバイポ
ーラトランジスタを組み込んで負荷を駆動させる場合が
多くなって来た。従って、バイポーラトランジスタに高
耐圧や大電流性能が要求される場合が多く、このため従
来から種々の工夫がなされて来た。第4図および第5図
にその代表的な従来構造を示す。
As is well known, a bipolar transistor is a basic circuit element widely used for a bipolar type or BiMOS type integrated circuit device, etc.In recent years, in many cases, a load is driven by incorporating a bipolar transistor on its output side. It has become. Accordingly, bipolar transistors often require high withstand voltage and high current performance, and various contrivances have conventionally been made. 4 and 5 show a typical conventional structure.

第4図は高耐圧用に適するグラフとベースを構造のnp
nトランジスタを集積回路装置に組み込んだ状態で示
す。集積回路装置用のp形基板1の表面の所定範囲にあ
らかじめ埋込層2を強いn形で拡散して置いた後、エピ
タキシャル層3をn形で成長させ、その表面から所定範
囲を囲んで分離層4を強いp形で基板1に達するように
深く拡散して基板1からエピタキシャル層3を島状の領
域に接合分離し、この領域をコレクタ領域としてバイポ
ーラトランジスタを作り込む。
Fig. 4 shows a graph and base suitable for high withstand voltage
The figure shows a state in which an n transistor is incorporated in an integrated circuit device. After a buried layer 2 is diffused in a strong n-type in advance in a predetermined area on the surface of a p-type substrate 1 for an integrated circuit device, an epitaxial layer 3 is grown in an n-type and surrounds a predetermined area from the surface. The epitaxial layer 3 is junction-separated from the substrate 1 into an island-shaped region by deeply diffusing the isolation layer 4 so as to reach the substrate 1 with a strong p-type, and this region is used as a collector region to form a bipolar transistor.

図のトランジスタは縦形なので、埋込層2からコレク
タ端子Cを導出するために、強いn形の低抵抗層5を深
く拡散して埋込層2と接続する。次に、ベース領域8を
作り込むべき範囲を囲む環状パターンでp形のグラフト
ベース領域6を低不純物濃度で深目に拡散して置き、そ
の内側周縁と重なるようにp形のベース領域8をそれよ
りは浅目に拡散し、さらにその内部にエミッタ領域9を
強いn形で作り込む。コレクタC,ベースBおよびエミッ
タE用の端子は、簡略化のため図から省かれた金属の電
極膜を酸化膜等の絶縁膜10に明けた窓部内で対応する領
域表面に導電接触させることにより導出される。
Since the transistor in the figure is a vertical transistor, a strong n-type low-resistance layer 5 is deeply diffused and connected to the buried layer 2 in order to lead the collector terminal C from the buried layer 2. Next, the p-type graft base region 6 is deeply diffused with a low impurity concentration in an annular pattern surrounding a range where the base region 8 is to be formed, and the p-type base region 8 is overlapped with its inner peripheral edge. It diffuses shallower than that, and further forms an emitter region 9 with a strong n-type inside. The terminals for the collector C, the base B, and the emitter E are formed by making the metal electrode film, which is omitted from the drawing for simplicity, into conductive contact with the surface of the corresponding region in the window opened in the insulating film 10 such as an oxide film. Derived.

コレクタ端子Cとベース端子Bとの間に高電圧が掛か
ったとき、よく知られているようにベース領域8の底の
周縁の隅部に電界が集中して耐圧が低下しやすいが、こ
の隅部を囲むように低不純物濃度のグラフと領域6が深
く拡散されてその曲率半径が大きいので、電界集中が緩
和されて耐圧値が向上される。
When a high voltage is applied between the collector terminal C and the base terminal B, as is well known, an electric field concentrates on the bottom peripheral corner of the base region 8 and the breakdown voltage tends to decrease. Since the low impurity concentration graph and the region 6 are deeply diffused so as to surround the portion and the radius of curvature is large, the electric field concentration is reduced and the withstand voltage value is improved.

第4図では電子eの流れが細い矢印で示されており、
これによる電流はエミッタ領域9の底面のほか図のよう
にその底の周縁部にかなり集中して流れる。第5図に示
すバイポーラトランジスタの構造では、このエミッタ領
域8の底の周縁部の電流貢献度を上げために、ベース領
域8内にエミッタ領域9が複数個作り込まれており、こ
の構造によって大電流容量のトランジスタを狭いチップ
面積内に作り込むことができる。もちろん、この第5図
のトランジスタのベース領域8の周縁に第4図のグラフ
と領域6を設けることにより、その耐圧値を向上するこ
とができる。
In FIG. 4, the flow of electrons e is indicated by thin arrows,
The current caused by this flows considerably concentrated not only on the bottom surface of the emitter region 9 but also on the periphery of the bottom as shown in the figure. In the structure of the bipolar transistor shown in FIG. 5, a plurality of emitter regions 9 are formed in the base region 8 in order to increase the current contribution at the bottom peripheral portion of the emitter region 8. A transistor having a current capacity can be formed in a small chip area. Of course, by providing the graph of FIG. 4 and the region 6 on the periphery of the base region 8 of the transistor of FIG. 5, the withstand voltage value can be improved.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述のように、第4図のグラフとベース構造は高耐圧
化を図る上で非常に有効な手段であるが、この手段で耐
圧値を高めるにはそれに応じてチップ面積を大きくしな
ければならない問題があり、とくに100V以上に耐圧値を
高め、あるいは高耐圧化と大電流容量化を同時に果たし
たいときにチップ面積が相当に大きくなる。
As described above, the graph of FIG. 4 and the base structure are very effective means for increasing the withstand voltage. However, in order to increase the withstand voltage by this means, the chip area must be increased accordingly. There is a problem, and the chip area becomes considerably large especially when it is desired to increase the withstand voltage to 100 V or more, or to achieve both high withstand voltage and large current capacity.

すなわち、第4図のグラフと領域6は電界集中を緩和
できる程度に大きな曲率半径で作り込まねば効果がな
く、このためにはその縦方向の拡散深さを必要な耐圧値
に応じて充分大きくする必要があり、これに伴って拡散
が横方向にも広がってしまうからである。また、第4図
からわかるようにベース領域8の底よりもグラフと領域
6が図の下方に突出し、エミッタ領域9の底の隅部から
の電子eの流れがこれによって阻害されると電流容量が
低下するので、グラフト領域6をエミッタ領域9から横
方向に充分離す必要があり、このためチップ面積がさら
に大きくなってしまう。
That is, the graph of FIG. 4 and the region 6 have no effect unless they are formed with a radius of curvature large enough to alleviate the electric field concentration. To this end, the diffusion depth in the vertical direction is made sufficiently large according to the required breakdown voltage. This is because the diffusion also spreads in the horizontal direction. As can be seen from FIG. 4, the graph and the region 6 protrude downward from the bottom of the base region 8 and the flow of electrons e from the bottom corner of the emitter region 9 is hindered by this. Therefore, it is necessary to laterally separate and separate the graft region 6 from the emitter region 9, which further increases the chip area.

第5図の大電流容量構造のバイポーラトランジスタを
高耐圧化する際にも同様な問題があることはもちろんで
ある。
Needless to say, there is a similar problem when increasing the breakdown voltage of the bipolar transistor having the large current capacity structure shown in FIG.

本発明はかかる問題を解決して、高耐圧化とくに100V
以上に耐圧値を上げるに際してチップ面積を従来よりも
縮小でき、かつ同時に電流容量をできるだけ高めるに適
した構造のバイポーラトランジスタを得ることを目的と
する。
The present invention solves such a problem and increases the withstand voltage, particularly 100 V
It is an object of the present invention to obtain a bipolar transistor having a structure suitable for increasing the withstand voltage, reducing the chip area as compared with the conventional one, and at the same time, increasing the current capacity as much as possible.

〔課題を解決するための手段〕[Means for solving the problem]

この目的は本発明によれば、一方の導電形のコレクタ
領域と、コレクタ領域内にその表面に絶縁膜を介して形
成された電極と、コレクタ領域内にその表面から前記電
極をマスクとして自己整合的に順次前記電極下に周縁部
が潜り込むように拡散形成された他方の導電形のベース
領域と、一方の導電形のエミッタ領域とを備え、前記電
極は連続する前記コレクタ領域,前記ベース領域および
前記エミッタ領域の表面の少なくともエミッタ領域の周
縁部を含む範囲に絶縁膜を介して対峙し、前記電極にベ
ース領域とほぼ等しい電位を賦与することによって達成
される。
According to the present invention, according to the present invention, a collector region of one conductivity type, an electrode formed in the collector region via an insulating film on the surface thereof, and self-alignment in the collector region from the surface using the electrode as a mask A base region of the other conductivity type and an emitter region of one conductivity type, which are formed so that a peripheral portion of the base region is sunk under the electrode sequentially, and the electrode is continuous with the collector region, the base region, and the base region. This is achieved by applying an electric potential substantially equal to that of the base region to the electrode by opposing the surface of the emitter region including at least a peripheral portion of the emitter region via an insulating film.

なお、上記構成中の電極は電界効果トランジスタのゲ
ートと同様に多結晶シリコンで構成するのが最も好適で
ある。この電極は原理的にはベース領域と等電位に接続
されるが、適用回路によってエミッタ領域と等電位に接
続する方が望ましい場合がある。この電極下の絶縁膜に
は酸化膜が好適で、その厚みは一様であってよいが、コ
レクタ領域上のその一部をベース領域の周縁付近よりも
厚く形成する方がコレクタ領域内の空乏層の広がりを適
度にする上で望ましい場合がある。
It is most preferable that the electrodes in the above structure be made of polycrystalline silicon, like the gate of the field effect transistor. Although this electrode is in principle connected to the base region at an equipotential, it may be desirable to connect the electrode to the emitter region at an equipotential depending on the application circuit. An oxide film is suitable for the insulating film below this electrode, and its thickness may be uniform, but it is more depleted in the collector region if a part of the collector region is formed thicker than the periphery of the base region. It may be desirable to moderate the spreading of the layers.

本発明は、最も簡単には単一のベース領域内に単一な
いし複数個のエミッタ領域を作り込む構造のバイポーラ
トランジスタに適用できるほか、複数個のベース領域内
にそれぞれ単一のエミッタ領域を作り込む構造にも適用
して、ストライプ状の電極を隣合わせのベース領域に共
通に設けることができる。後者の場合、ベース領域群を
外側から囲むように環状の電極を設けることができる
が、場合によってはこの環状電極のかわりにグラフト領
域を設ける方が有利になる。
The present invention is most easily applied to a bipolar transistor having a structure in which a single base region or a plurality of emitter regions are formed in a single base region, and furthermore, a single emitter region is formed in a plurality of base regions. In this case, a stripe-shaped electrode can be commonly provided in adjacent base regions. In the latter case, an annular electrode can be provided so as to surround the base region group from the outside. In some cases, it is advantageous to provide a graft region instead of the annular electrode.

本発明は、電界効果トランジスタにおけるようにその
ゲートに対応する電極をマスクとして、ベース領域およ
びエミッタ領域をイオン注入法によるいわゆる自己整合
拡散によって作り込むものであるが、この際、電極はベ
ース領域およびエミッタ領域の周縁を含む一部の範囲の
表面に絶縁膜を介して対峙するように設けられる。
In the present invention, the base region and the emitter region are formed by so-called self-aligned diffusion by an ion implantation method using an electrode corresponding to the gate as a mask as in a field effect transistor. Is provided so as to face the surface of a part of the range including the peripheral edge thereof via an insulating film.

〔作用〕[Action]

周知のようにバイポーラトランジスタの耐圧値はふつ
うそのオフ状態時にコレクタ領域とベース領域との間に
掛け得る最大電圧であり、この電圧が掛かったとき両領
域のpn接合面から空乏層が主にコレクタ領域内に広がる
が、この空乏層の広がりが充分でないと前述のようにベ
ース領域の底の隅部に電界が集中して耐圧値が低下す
る。本発明は上記構成にいう電極によってこの空乏層の
広がりを助長して耐圧値を向上させるもので、第1図を
参照しながらその作用を説明する。
As is well known, the withstand voltage of a bipolar transistor is usually the maximum voltage that can be applied between the collector region and the base region when the bipolar transistor is off, and when this voltage is applied, a depletion layer mainly forms from the pn junction surface of both regions. If the depletion layer is not sufficiently expanded, the electric field is concentrated on the bottom corner of the base region, and the breakdown voltage decreases. The present invention promotes the expansion of the depletion layer by the electrodes described above to improve the breakdown voltage, and its operation will be described with reference to FIG.

第1図(a)において、第4図と同じくn形のコレク
タ領域3内にp形のベース領域8が,さらにその中にn
形のエミッタ領域9がそれぞれ作り込まれている。これ
らの領域の表面はふつうは酸化膜である薄い絶縁膜10に
より覆われ、コレクタ領域3とベース領域8の表面の両
領域間のpn接合面であるベース領域8の周縁を含む範囲
上に、この絶縁膜10を挟んで多結晶シリコン等からなる
本発明による電極7が設けられる。
In FIG. 1 (a), a p-type base region 8 is formed in an n-type collector region 3 as in FIG.
A respective emitter region 9 is formed. The surfaces of these regions are usually covered with a thin insulating film 10, which is an oxide film, and over a range including the periphery of the base region 8, which is a pn junction between the collector region 3 and the surface of the base region 8. An electrode 7 of the present invention made of polycrystalline silicon or the like is provided with the insulating film 10 interposed therebetween.

さらに本発明では、この電極7にベース領域とほぼ等
しい電位が与えられる。この電極7の電位による絶縁膜
10を介する静電誘導により、コレクタ領域3およびベー
ス領域8の表面における空乏層DLの広がりが影響される
が、その広がりは電極7と同電位であるベース領域8側
では若干抑制され、これとは逆伝導形のコレクタ領域3
側では逆に助長される。一方、ベース領域8の底の下側
のコレクタ領域3内への空乏層DLの広がりは電極7の存
在とはもちろん無関係である。
Further, in the present invention, a potential substantially equal to that of the base region is applied to the electrode 7. Insulating film by the potential of this electrode 7
The spread of the depletion layer DL on the surfaces of the collector region 3 and the base region 8 is affected by the electrostatic induction via 10, but the spread is slightly suppressed on the side of the base region 8 having the same potential as the electrode 7. Is the collector region 3 of the reverse conductivity type
On the side, the opposite is encouraged. On the other hand, the extension of the depletion layer DL into the collector region 3 below the bottom of the base region 8 is, of course, irrelevant to the presence of the electrode 7.

このように、コレクタ領域3内の空乏層DLの広がりが
縦方向には助長されず、その表面部で横方向に助長され
る結果、空乏層DLの形状は図でハッチッグを付して示し
たようになり、その底の隅部の曲率半径Rがベース領域
8の底の隅部の曲率半径rより図示のようにずっと大き
くなり、これによって電界集中が著しく緩和される。な
お、コレクタ領域3の表面での空乏層DLの広がりは、絶
縁膜10の厚みによって若干異なるが、電極7の幅でかな
り正確に制御することができる。
As described above, the spreading of the depletion layer DL in the collector region 3 is not promoted in the vertical direction, but is promoted in the horizontal direction on the surface thereof. As a result, the shape of the depletion layer DL is shown by hatching in the figure. As a result, the radius of curvature R of the bottom corner of the base region 8 becomes much larger than the radius of curvature r of the bottom corner of the base region 8 as shown in the figure, thereby remarkably reducing the electric field concentration. The extent of the depletion layer DL on the surface of the collector region 3 slightly varies depending on the thickness of the insulating film 10, but can be controlled quite accurately by the width of the electrode 7.

これからわかるように、本発明による電極7はベース
領域の底の隅部の電界集中を緩和して耐圧値を向上する
上で従来のグラフトベース領域と等価な機能を持つが、
図から容易にわかるように、それとは異なりベース領域
8の幅および不純物濃度がエミッタ領域9の側面方向と
エミッタ領域9の底面方向とでほぼ等しいのでエミッタ
領域9の側面方向の電子の流れを阻害することがなく、
従って本発明はグラフトベース構造よりも大電流用に適
する特長を有する。
As can be seen, the electrode 7 according to the present invention has a function equivalent to that of the conventional graft base region in relaxing the electric field concentration at the bottom corner of the base region and improving the breakdown voltage.
As can be easily understood from the figure, unlike the above, the width and the impurity concentration of the base region 8 are substantially equal in the side direction of the emitter region 9 and the bottom direction of the emitter region 9, so that the flow of electrons in the side direction of the emitter region 9 is hindered. Without
Therefore, the present invention has a feature that is more suitable for a large current than a graft base structure.

本願発明では電極7をエミッタ領域9と重ね合わせる
ことによって電極7をマスクとするイオン注入法によっ
てベース領域8とエミッタ領域9とを自己整合的にコレ
クタ領域3内に作り込むことができる。これによって製
作が容易になるとともに、コレクタ領域3とエミッタ領
域9との間のベース領域8の表面の幅を狭くできる利点
が得られる。もちろんこの場合はベース領域8の表面は
電極7で覆われるが、電極7によってベース領域8の表
面における空乏層DLの広がりが抑制されることがこの際
に有利に働く。
In the present invention, the base region 8 and the emitter region 9 can be formed in the collector region 3 in a self-aligned manner by an ion implantation method using the electrode 7 as a mask by overlapping the electrode 7 with the emitter region 9. This facilitates fabrication and provides the advantage that the width of the surface of base region 8 between collector region 3 and emitter region 9 can be reduced. Of course, in this case, the surface of the base region 8 is covered with the electrode 7, but it is advantageous that the electrode 7 suppresses the spread of the depletion layer DL on the surface of the base region 8.

第1図(b)に示す本発明を適用した構造では、ベー
ス領域8内にエミッタ領域9を作り込んだ構造が複数設
けられ、電極7が隣合わせのかかる構造に対して図示の
ように共通に設けられる。2個のベース領域8の相互間
隔を充分狭い目に選択することにより、チップ面積を極
力縮小するとともに、両ベース領域8からコレクタ領域
3内に広がる空乏層DLを図示のように互いに接合させ、
曲率半径Rを第1図(a)の場合よりも大きくして耐圧
値をさらに向上するができる。
In the structure to which the present invention is applied as shown in FIG. 1 (b), a plurality of structures in which the emitter region 9 is formed in the base region 8 are provided, and the electrode 7 is commonly used as shown in FIG. Provided. By selecting a sufficiently small interval between the two base regions 8, the chip area is reduced as much as possible, and the depletion layers DL extending from both base regions 8 into the collector region 3 are joined to each other as shown in the figure.
By making the radius of curvature R larger than in the case of FIG. 1A, the withstand voltage value can be further improved.

〔実施例〕〔Example〕

以下、第2図および第3図を参照しながら本発明の実
施例を具体的に説明する。これらの図中前の第4図およ
び第5図に対応する部分には同じ符号が付けられてい
る。第2図は前の第1図(a)に対応する実施例を示
し、同ず(a)にはその断面が同図(b)には上面がそ
れぞれ示されている。
Hereinafter, an embodiment of the present invention will be specifically described with reference to FIG. 2 and FIG. In these figures, parts corresponding to those in FIGS. 4 and 5 are denoted by the same reference numerals. FIG. 2 shows an embodiment corresponding to the previous FIG. 1 (a), wherein FIG. 2 (a) shows a cross section and FIG. 2 (b) shows an upper surface.

第2図(a)において、集積回路装置用基板1はこの
例でもp形で1015原子/cm3程度の不純物濃度を持ち、そ
の表面にn形の埋込層2は1018原子/cm3以上の高い不純
物濃度であらかじめ拡散して置いた上から、n形のコレ
クタ領域となる高抵抗性のエピタキシャル層3を例えば
1014原子/cm3程度の不純物濃度で高耐圧用の場合は20μ
m程度以上の厚みに成長させる。通例のように、p形の
分離層4はエピタキシャル層3の表面から、同図(b)
に示すようにバイポーラトランジスタを作り込むべき範
囲を取り込むように、1019原子/cm3以上の高い不純物濃
度で拡散される。
In FIG. 2 (a), the integrated circuit device substrate 1 also has a p-type impurity concentration of about 10 15 atoms / cm 3 , and the n-type buried layer 2 has a surface of 10 18 atoms / cm 3. After being diffused in advance with a high impurity concentration of 3 or more, a high-resistance epitaxial layer 3 serving as an n-type collector region is formed, for example.
20μ for high withstand voltage with impurity concentration of 10 14 atoms / cm 3
It is grown to a thickness of about m or more. As is customary, the p-type isolation layer 4 extends from the surface of the epitaxial layer 3 in FIG.
As shown in (1), the impurity is diffused at a high impurity concentration of 10 19 atoms / cm 3 or more so as to incorporate a range in which a bipolar transistor is to be formed.

バイポーラトランジスタはこの分離層4で囲まれたエ
ピタキシャル層3をコレクタ領域として作り込まれ、こ
のためにまずコレクタ端子Cを導出するためのn形の低
抵抗層5が1018原子/cm3以上の高い不純物濃度で同図
(b)のようにこの例ではストライプ状のパターンで拡
散される。この低抵抗層5は、必要に応じてコレクタ領
域3を囲むパターンのいわゆるウォール層とされる。
In the bipolar transistor, the epitaxial layer 3 surrounded by the separation layer 4 is formed as a collector region. For this purpose, first, the n-type low-resistance layer 5 for leading out the collector terminal C is formed of 10 18 atoms / cm 3 or more. In this example, the light is diffused in a stripe pattern at a high impurity concentration as shown in FIG. The low resistance layer 5 is a so-called wall layer having a pattern surrounding the collector region 3 as necessary.

電極7の下側になる絶縁膜11にはふつう酸化シリコン
膜が用いられ、コレクタ領域3の中央部の表面上に例え
ばドライ酸化法により所望の耐圧値に応じた,ただし少
なくとも0.1μmの厚みでこれが付けられるが、この例
ではこれに先立ってコレクタ領域3の周縁部と分離層4
の表面を連続して覆うようにいわゆるLOCOS膜である厚
い絶縁膜12がスチーム酸化法等の手段で例えば1μm前
後の厚みで付けられている。
A silicon oxide film is usually used for the insulating film 11 below the electrode 7 and is formed on the surface of the central portion of the collector region 3 according to a desired withstand voltage value by, for example, a dry oxidation method, but with a thickness of at least 0.1 μm. In this example, prior to this, the periphery of the collector region 3 and the separation layer 4 are added.
A thick insulating film 12, which is a so-called LOCOS film, is formed to have a thickness of, for example, about 1 μm by means of a steam oxidation method or the like so as to continuously cover the surface.

本発明による電極7は、電界効果トランジスタのゲー
トと同様に多結晶シリコンで構成するのが好適で、通例
のCVD法で例えば0.5μm前後の厚みに成長させたものを
フォトエッチングすることにより、同図(b)にハッチ
ングを付して示すようにこの例では環状に形成される。
なお、この例での電極7は同図(a)からわかるように
薄い絶縁膜11および厚い絶縁膜12のに形成されている。
この薄い絶縁膜11は電極7の下のコレクタ領域3の表面
に沿って空乏層DLを広げる効果が高く、厚い絶縁膜12で
はこの効果が若干小さくなる。
The electrode 7 according to the present invention is preferably made of polycrystalline silicon similarly to the gate of the field effect transistor. The electrode 7 is grown by photo-etching, for example, to a thickness of about 0.5 μm by a conventional CVD method. In this example, as shown by hatching in FIG.
The electrode 7 in this example is formed on the thin insulating film 11 and the thick insulating film 12, as can be seen from FIG.
The thin insulating film 11 has a high effect of expanding the depletion layer DL along the surface of the collector region 3 under the electrode 7, and the effect is slightly reduced with the thick insulating film 12.

この実施例では、ベース領域8とエミッタ領域9用の
不純物はいずれも電極7をマスクとするイオン注入法に
よって拡散され、その拡散パターンは、図示のようにベ
ース領域8は方形とされ、エミッタ領域9は中央に窓を
有する方形とされる。P形のベース領域8は1017原子/c
m3程度の不純物濃度で例えば3μmの深さに,n形のエミ
ッタ領域9は1020原子/cm3程度の不純物濃度で例えば2
μmの深さにそれぞれ作り込まれる。この際、通常のよ
うにp形不純物としてボロンを,n形不純物として燐をそ
れぞれ用いたときは、各不純物をイオン注入のつど個別
に熱拡散させ、燐のかわりに砒素等の拡散速度の遅い不
純物を用いたときは両不純物のイオン注入後に同時熱拡
散させる。
In this embodiment, both impurities for the base region 8 and the emitter region 9 are diffused by an ion implantation method using the electrode 7 as a mask, and the diffusion pattern is such that the base region 8 is square as shown in FIG. Reference numeral 9 denotes a square having a window in the center. P type base region 8 is 10 17 atoms / c
to a depth of m 3 approximately impurity concentration, for example 3 [mu] m, the emitter region 9 of the n-type is 10 20 atoms / cm 3 about impurity concentration, for example 2
Each is built to a depth of μm. At this time, as usual, when boron is used as the p-type impurity and phosphorus is used as the n-type impurity, each impurity is thermally diffused individually at every ion implantation, and the diffusion rate of arsenic or the like is low instead of phosphorus. When impurities are used, they are simultaneously thermally diffused after ion implantation of both impurities.

これにより、ベース領域8の周縁の全部とエミッタ領
域9の外周縁の一部が図のように薄い絶縁膜11の下側に
潜り込むように拡散され、従ってエミッタ領域9の外周
縁はそれからコレクタ領域3に向かって空乏層DLが広が
りやすいように薄い絶縁膜11の下側に置かれることにな
る。
As a result, the entire periphery of the base region 8 and a part of the outer periphery of the emitter region 9 are diffused so as to enter below the thin insulating film 11 as shown in the figure, so that the outer periphery of the emitter region 9 is separated from the collector region. The depletion layer DL is placed under the thin insulating film 11 so that the depletion layer DL easily spreads toward the third layer.

ベース領域8とエミッタ領域9の拡散後、ふつうは酸
化膜である上側絶縁膜13が全面被着され、その要所に明
けた窓部に電極膜21〜23が図示のように設けられる。コ
レクタ端子C用の電極膜21は低抵抗層5に、エミッタ端
子E用の電極膜22はエミッタ領域9にそれぞれ導電接触
され、ベース端子B用の電極膜23はこの例ではエミッタ
領域9の窓部に当たるベース領域8の中央部と電極7と
に導電接触され、従って電極7はベース領域8と同電位
に置かれる。
After the diffusion of the base region 8 and the emitter region 9, an upper insulating film 13, which is usually an oxide film, is entirely deposited, and electrode films 21 to 23 are provided in the windows opened at the key points as shown in the figure. The electrode film 21 for the collector terminal C is in conductive contact with the low resistance layer 5, the electrode film 22 for the emitter terminal E is in conductive contact with the emitter region 9, and the electrode film 23 for the base terminal B is in this example a window of the emitter region 9. The electrode 7 is brought into conductive contact with the central part of the base region 8, which corresponds to the part, and the electrode 7 is therefore placed at the same potential as the base region 8.

第2図(a)にはこの実施例におけるバイポーラトラ
ンジスタのオフ状態における空乏層DLの広がりがハッチ
ングを付して示されている。この空乏層DLの広がりは、
ベース領域8内ではその薄い絶縁膜11の下側で電極7に
より抑制されるので全体としてごく少ないが、ベース領
域8の外周縁からコレクタ領域3内に向けては電極7に
よって横方向に助長され、薄い絶縁膜11を越えて厚い絶
縁膜12の下側にまで延び、前述のように局部的な電界集
中を緩和する役目を果たす。
FIG. 2A shows the spread of the depletion layer DL in the off state of the bipolar transistor in this embodiment with hatching. The spread of the depletion layer DL
In the base region 8, it is suppressed as a whole by the electrode 7 under the thin insulating film 11, but is very small as a whole. Extends below the thin insulating film 11 beyond the thin insulating film 11 and serves to reduce local electric field concentration as described above.

なお、コレクタ領域3の表面電位はベース領域8の周
縁から空乏層DLの先端に行くに従って高くなるが、空乏
層DLの先端が厚い絶縁膜12の下に潜り込むので、電極7
の耐圧はこの厚い絶縁膜12によって保証される。また、
空乏層DLの広がりは厚い絶縁膜12の下ではあまり助長さ
れず、その先端が例えば低抵抗層5に達していわゆるパ
ンチスルーが発生するのが防止される。
Although the surface potential of the collector region 3 increases from the periphery of the base region 8 to the tip of the depletion layer DL, since the tip of the depletion layer DL goes under the thick insulating film 12, the electrode 7
Is assured by this thick insulating film 12. Also,
The spread of the depletion layer DL is not greatly promoted under the thick insulating film 12, and the so-called punch-through is prevented from being caused at its tip to reach, for example, the low resistance layer 5.

また、この実施例ではベース領域8の中に単一のエミ
ッタ領域9が作り込まれるとしたが、エミッタ領域を例
えば同心状に複数個作り込んでその総周縁長を増加させ
ることにより、バイポーラトランジスタの耐圧値を落と
すことなく電流容量を増加させることが可能である。
Further, in this embodiment, a single emitter region 9 is formed in the base region 8, but a plurality of emitter regions are formed concentrically, for example, so that the total peripheral length thereof is increased. It is possible to increase the current capacity without lowering the withstand voltage value.

第3図は前の第1図(b)に対応する実施例を示すも
ので、前と同様に同図(a)がその断面を,同図(b)
がその上面をそれぞれ示すが、図がいたずらに複雑化す
るのを避けるため、第2図における上側絶縁膜13および
電極膜がこの第3図では省略されていることを了解され
たい。
FIG. 3 shows an embodiment corresponding to FIG. 1 (b), in which FIG. 3 (a) shows a cross section and FIG.
3 show the upper surfaces, respectively. It should be understood that the upper insulating film 13 and the electrode film in FIG. 2 are omitted in FIG. 3 in order to avoid unnecessarily complicating the figure.

この実施例では、いずれもストライプ状パターンのベ
ース領域8とエミッタ領域9とを対にしてコレクタ領域
3内にそれぞれ複数個作り込まれ、ストライプ状パター
ンの電極7が隣合うベース領域8とエミッタ領域9との
対に対して共通に設けられる。また、両端の耐に対して
はグラフト領域6が設けられる。
In this embodiment, a plurality of base regions 8 and emitter regions 9 each having a stripe pattern are formed in the collector region 3 as a pair, and electrodes 7 having a stripe pattern are adjacent to each other. 9 is provided in common with the pair. Further, a graft region 6 is provided for resistance to both ends.

第3図(a)において、コレクタ領域3内に低抵抗層
5を拡散するまでは前の実施例と同じであり、ついでp
形のグラフト領域6がベース領域8とエミッタ領域9と
を複数対拡散すべき範囲を含む図示のような環状に、例
えば1015〜1016原子/cm3の不純物濃度で必要な耐圧値に
応じて4〜6μmの深さに拡散される。次に前の実施例
と同様に薄い絶縁膜11と厚い絶縁膜12とで表面を覆った
後、主に薄い絶縁膜11上に電極7をストライプ状パター
ンで複数個設ける。この際、同図(b)からわかるよう
に各電極7はその図の上下の両端部がグラフト領域6の
上になるよう、ないしはそれから若干突出するようにパ
ターンニングされる。
In FIG. 3 (a), the process is the same as in the previous embodiment until the low resistance layer 5 is diffused into the collector region 3.
According to the required withstand voltage value at an impurity concentration of, for example, 10 < 15 > to 10 < 16 > atoms / cm < 3 >, as shown in FIG. To a depth of 4 to 6 μm. Next, after covering the surface with a thin insulating film 11 and a thick insulating film 12, as in the previous embodiment, a plurality of electrodes 7 are provided mainly on the thin insulating film 11 in a stripe pattern. At this time, as can be seen from FIG. 7B, each electrode 7 is patterned so that the upper and lower ends of the electrode are above the graft region 6 or slightly project from it.

ベース領域8葉のp形不純物およびエミッタ領域9用
のn形不純物は、この例でも電極7をマスクの一部とす
るイオン注入法により導入され、そのつど個別に熱拡散
される。この際、ベース領域8は電極7の部分ではその
下側に作り込まれ、その他の部分ではグラフト領域6と
重なり合うように作り込まれる。エミッタ領域9の方は
ベース領域8内に、かつ同図(b)からわかるようにそ
の周縁の一部分ないし大部分が電極7の下側に潜り込む
ように作り込まれる。
Also in this example, the p-type impurity in the leaves of the base region 8 and the n-type impurity for the emitter region 9 are introduced by an ion implantation method using the electrode 7 as a part of the mask, and are individually thermally diffused each time. At this time, the base region 8 is formed below the electrode 7 and is overlapped with the graft region 6 in the other portions. The emitter region 9 is formed in the base region 8 and, as can be seen from FIG. 3B, a part or most of the periphery thereof is sunk below the electrode 7.

第3図(b)に示すように、コレクタ端子Cは埋込層
2を介してコレクタ領域3と接続された低抵抗層5か
ら,エミッタ端子Eは複数個のエミッタ領域9およびこ
の例では複数個の電極7から,ベース端子Bは複数個の
ベース領域8からそれぞれ取られる。従って、この実施
例では電極7はベース領域とほぼ同電位のエミッタ領域
9と同電位に置かれる。これはベース端子Bがトランジ
スタの動作中浮動電位になり得る場合に、電極7の電位
を常に安定化させる上で有利である。
As shown in FIG. 3 (b), the collector terminal C is formed from the low-resistance layer 5 connected to the collector region 3 via the buried layer 2, and the emitter terminal E is formed from a plurality of emitter regions 9 and a plurality of emitter regions 9 in this example. From the electrodes 7, the base terminals B are respectively taken from a plurality of base regions 8. Therefore, in this embodiment, the electrode 7 is placed at the same potential as the emitter region 9 having substantially the same potential as the base region. This is advantageous for always stabilizing the potential of the electrode 7 when the base terminal B can be at a floating potential during the operation of the transistor.

同図(a)にトランジスタのオフ動作時の空乏層DLを
ハッチングを付して示す。この実施例では、図示のよう
にベース領域8の相互間では空乏層DLが融合し合い、端
のベース領域8から空乏層DLがグラフト領域6内に広が
るので高耐圧が得られる。さらに、エミッタ領域9の層
周縁長,従ってその底の隅部の長さ合計が前の例により
大きくなるので大電流容量が得られる。
FIG. 7A shows the depletion layer DL when the transistor is turned off, with hatching. In this embodiment, the depletion layer DL is fused between the base regions 8 as shown in the drawing, and the depletion layer DL spreads from the end base region 8 into the graft region 6, so that a high breakdown voltage is obtained. Further, the layer peripheral length of the emitter region 9, that is, the total length of the corners at the bottom thereof is larger than in the previous example, so that a large current capacity can be obtained.

以上のように構成されたこの実施例によるバイポーラ
トランジスタでは、例えば100x300μm程度のチップ面
積内に十数個のベース領域8とエミッタ領域9の対を作
り込むことにより、200V程度の高耐圧値と100mA程度の
大電流容量をこれに持たせることができ、電流増幅率と
しては100〜150の値が得られる。
In the bipolar transistor according to the present embodiment configured as described above, for example, by forming a dozen pairs of base regions 8 and emitter regions 9 in a chip area of about 100 × 300 μm, a high withstand voltage of about 200 V and 100 mA This can have a large current capacity, and a current amplification factor of 100 to 150 can be obtained.

なお、この実施例のグラフト領域6を電極7で置き換
え得る。この場合の電極7は枠状の電極の対辺間にスト
ライプ状の電極を複数個懸け渡した形状の単一電極とな
り、その各窓からベース領域8とエミッタ領域9が作り
込まれる。
It should be noted that the graft region 6 in this embodiment can be replaced by an electrode 7. In this case, the electrode 7 is a single electrode having a shape in which a plurality of stripe-shaped electrodes are suspended between the opposite sides of the frame-shaped electrode, and the base region 8 and the emitter region 9 are formed from each window.

これからもわかるように、本発明は以上説明した実施
例に限らず種々の態様で実施をすることができる。例え
ば、電極にはベース領域とほぼ等しい電位を与えればよ
いから、これをベース領域およびエミッタ領域のいずれ
と接続しても実際上は大差がない。電極は実施例のよう
に多結晶シリコンで構成するのが、本発明によるバイポ
ーラトランジスタをBiMOS回路等内に作り込む際に有利
であるが、これを適宜な金属膜例えば電極膜用のアルミ
等で構成してもなんら差し支えない。実施例における電
極のパターン,絶縁膜の種類や厚み,各領域の導電形,
ベース領域およびエミッタ領域のパターンや不純物濃度
や拡散深さ等もあくまで例示であって、実際に当たって
はバイポーラトランジスタに要求される定格や特性に則
して適宜選択すべきものである。また、実施例でも一部
述べたように、本発明に基づく構造をグラフト領域等な
どの従来技術による構造と適宜組み合わせて、本発明の
要旨内でその効果の一部ないし全部を有効利用すること
ができる。
As can be seen from the above, the present invention is not limited to the embodiments described above, but can be implemented in various modes. For example, since it is sufficient to apply a potential substantially equal to that of the base region to the electrode, there is practically no significant difference when this is connected to either the base region or the emitter region. The electrodes are made of polycrystalline silicon as in the embodiment, which is advantageous when the bipolar transistor according to the present invention is built in a BiMOS circuit or the like.However, this is made of an appropriate metal film such as aluminum for an electrode film. There is no harm in configuring. In the embodiment, the electrode pattern, the type and thickness of the insulating film, the conductivity type of each region,
The patterns of the base region and the emitter region, the impurity concentration, the diffusion depth, and the like are merely examples, and should be appropriately selected according to the ratings and characteristics required for the bipolar transistor in practice. Further, as partially described in the examples, the structure according to the present invention is appropriately combined with the structure according to the related art such as the graft region, and part or all of the effects are effectively used within the gist of the present invention. Can be.

〔発明の効果〕〔The invention's effect〕

以上の記載から明らかなように本発明では、一方の導
電形のコレクタ領域と、コレクタ領域内にその表面に絶
縁膜を介して形成された電極と、コレクタ領域内にその
表面から前記電極をマスクとして他の導電形で拡散形成
されたベース領域と、ベース領域内にその表面から前記
電極をマスクとして一方の導電形で拡散形成されたエミ
ッタ領域とを備え、前記電極にベース領域とほぼ等しい
電位を賦与するようにしたので、この電極に与える電位
によって絶縁膜下のエミッタ領域の周縁からコレクタ領
域に向けて空乏層を横方向に広がらせ、これによってベ
ース領域の底の隅に生じる電界集中を有効に緩和して従
来より耐圧値を向上できる。また、空乏層の広がりはエ
ミッタ電流路を阻害することがなく、また電極直下に形
成されるベース領域の幅は狭く形成されるためエミッタ
領域の側面からも電流を流すことができ、従来よりも電
流容量を向上できる。さらに、空乏層の広がりを電極に
与えるパターンにより正確に制御できるので、パターン
寸法上の余裕をとる要がなくなり、チップ面積を従来よ
りも縮小することができる。
As is apparent from the above description, in the present invention, a collector region of one conductivity type, an electrode formed in the collector region with an insulating film formed on the surface thereof, and masking the electrode in the collector region from the surface thereof A base region formed by diffusion of another conductivity type, and an emitter region formed by diffusion from one surface of the base region using the electrode as a mask, and a potential substantially equal to that of the base region in the electrode. The depletion layer is spread laterally from the periphery of the emitter region under the insulating film toward the collector region by the potential applied to this electrode, thereby reducing the electric field concentration generated at the bottom corner of the base region. By effectively relaxing, the withstand voltage value can be improved as compared with the related art. In addition, the expansion of the depletion layer does not hinder the emitter current path, and the width of the base region formed immediately below the electrode is narrow, so that current can flow from the side surface of the emitter region. The current capacity can be improved. Further, since the spread of the depletion layer can be accurately controlled by the pattern applied to the electrode, there is no need to take a margin in the pattern dimension, and the chip area can be reduced as compared with the conventional case.

例えば第2図に示した単一のベース領域およびエミッ
タ領域を備える最も簡単な例でも、180Vの高耐圧値が得
られ、かつ同じチップ面積で電流容量を従来よりも20%
以上向上できる。
For example, even in the simplest example shown in FIG. 2 having a single base region and emitter region, a high withstand voltage value of 180 V can be obtained, and the current capacity can be reduced by 20% compared to the conventional one with the same chip area.
The above can be improved.

また、ベース領域とエミッタ領域との対を複数個設
け、隣合う対に共通に電極を設ける態様によれば、エミ
ッタ領域の周縁長さを大きくとって電流容量を増大させ
るとともに、耐圧値も一層向上させることができる。
According to the aspect in which a plurality of pairs of the base region and the emitter region are provided, and the common electrode is provided in the adjacent pair, the peripheral length of the emitter region is increased to increase the current capacity, and the breakdown voltage value is further increased. Can be improved.

例えば、第3図に示したようにベース領域とエミッタ
領域の対を数個設ける場合でも、200V程度の高耐圧値を
容易に得るとともに、同じチップ面積で電流容量を従来
より50%程度向上することができる。
For example, even when several pairs of a base region and an emitter region are provided as shown in FIG. 3, a high withstand voltage of about 200 V can be easily obtained, and the current capacity can be improved by about 50% with the same chip area as compared with the conventional case. be able to.

本発明はバイポーラトランジスタ全般に適用できるほ
か、とくにBiMOS集積回路装置への組み込み用に適用し
て非常に有利で、上述の高耐圧化,大電流化および小形
化の効果により大容量負荷の直接駆動を可能にして、そ
の一層の発展と普及に貢献することができる。
The present invention is applicable not only to bipolar transistors in general, but also to a BiMOS integrated circuit device, which is very advantageous, and is directly driven by a large-capacity load due to the above-described effects of high breakdown voltage, large current, and small size. And contribute to its further development and spread.

【図面の簡単な説明】[Brief description of the drawings]

第1図から第3図までが本発明に関し、第1図(a)お
よび(b)は本発明によるバイポーラトランジスタの基
本構造の要部を示す断面図、第2図(a)および
(b),第3図(a)および(b)は本発明のそれぞれ
異なる実施例を示す断面図および上面図である。第4図
以降は従来技術に関し、第4図は従来の高耐圧バイポー
ラトランジスタの断面図、第5図は従来の大電流バイポ
ーラトランジスタの断面図である。図において、 1:集積回路装置用半導体基板、2:埋込層、3:コレクタ領
域ないしエピタキシャル層、4:分離層、5:コレクタ端子
用低抵抗層、6:グラフト領域、7:電極、8:ベース領域、
9:エミッタ領域、10:絶縁膜、11:薄い絶縁膜、12:厚い
絶縁膜、13:上側絶縁膜、21:コレクタ端子用電極膜、2
2:エミッタ端子用電極膜、23:ベース端子用電極膜、B:
ベース端子、C:コレクタ端子、DL:空乏層、E:エミッタ
端子、e:電子、R:空乏層の曲率半径、r:ベース領域の底
の隅部の曲率半径、である。
FIGS. 1 to 3 relate to the present invention, and FIGS. 1 (a) and (b) are cross-sectional views showing main parts of a basic structure of a bipolar transistor according to the present invention, and FIGS. 2 (a) and (b). 3 (a) and 3 (b) are a sectional view and a top view, respectively, showing different embodiments of the present invention. FIG. 4 et seq. Relate to the prior art, FIG. 4 is a sectional view of a conventional high breakdown voltage bipolar transistor, and FIG. 5 is a sectional view of a conventional large current bipolar transistor. In the figure, 1: semiconductor substrate for integrated circuit device, 2: buried layer, 3: collector region or epitaxial layer, 4: isolation layer, 5: low resistance layer for collector terminal, 6: graft region, 7: electrode, 8 : Base area,
9: emitter region, 10: insulating film, 11: thin insulating film, 12: thick insulating film, 13: upper insulating film, 21: electrode film for collector terminal, 2
2: Electrode film for emitter terminal, 23: Electrode film for base terminal, B:
Base terminal, C: collector terminal, DL: depletion layer, E: emitter terminal, e: electron, R: radius of curvature of depletion layer, r: radius of curvature of bottom corner of base region.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方の導電形のコレクタ領域と、コレクタ
領域内にその表面に絶縁膜を介して形成された電極と、
コレクタ領域内にその表面から前記電極をマスクとして
自己整合的に順次前記電極下に周縁部が潜り込むように
拡散形成された他方の導電形のベース領域と、一方の導
電形のエミッタ領域とを備え、前記電極は連続する前記
コレクタ領域,前記ベース領域および前記エミッタ領域
の表面の少なくともエミッタ領域の周縁を含む範囲に絶
縁膜を介して対峙し、前記電極にベース領域とほぼ等し
い電位を賦与するようにしたことを特徴とするバイポー
ラトランジスタ。
1. A collector region of one conductivity type, and an electrode formed on the surface of the collector region via an insulating film,
A collector region includes a base region of the other conductivity type and an emitter region of one conductivity type, which are formed in a self-aligned manner from the surface thereof in a self-aligned manner by using the electrode as a mask so that a peripheral portion of the electrode is sunk under the electrode. The electrode faces the continuous collector region, the base region, and a region including at least the periphery of the emitter region on the surface of the emitter region via an insulating film, and applies a potential substantially equal to that of the base region to the electrode. A bipolar transistor, characterized in that:
JP1055954A 1989-03-08 1989-03-08 Bipolar transistor Expired - Fee Related JP2650405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055954A JP2650405B2 (en) 1989-03-08 1989-03-08 Bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055954A JP2650405B2 (en) 1989-03-08 1989-03-08 Bipolar transistor

Publications (2)

Publication Number Publication Date
JPH02235339A JPH02235339A (en) 1990-09-18
JP2650405B2 true JP2650405B2 (en) 1997-09-03

Family

ID=13013468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055954A Expired - Fee Related JP2650405B2 (en) 1989-03-08 1989-03-08 Bipolar transistor

Country Status (1)

Country Link
JP (1) JP2650405B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121874A (en) * 1982-12-27 1984-07-14 Toshiba Corp Semiconductor device
JPS6272163A (en) * 1985-09-26 1987-04-02 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPH02235339A (en) 1990-09-18

Similar Documents

Publication Publication Date Title
JP2766239B2 (en) High voltage semiconductor device
JPH0336311B2 (en)
US20040048428A1 (en) Semiconductor device and method of manufacturing the same
JPH0127592B2 (en)
KR970060534A (en) Power semiconductor device and manufacturing method thereof
JPH0834312B2 (en) Vertical field effect transistor
JP3099917B2 (en) Field effect transistor
JP2628988B2 (en) Semiconductor device and manufacturing method thereof
JP2650405B2 (en) Bipolar transistor
JPH07202204A (en) Mos type semiconductor element
JP3180672B2 (en) Semiconductor device
US20010000413A1 (en) PNP lateral bipolar electronic device
JPH055373B2 (en)
JPH10335631A (en) Power semiconductor device with field plate and manufacture thereof
JPS6055995B2 (en) Junction field effect transistor
JPH02172281A (en) Semiconductor device
JPS6327865B2 (en)
JP2605753B2 (en) Vertical bipolar transistor
JPS61278161A (en) High withstand voltage semiconductor device
JP4211084B2 (en) Manufacturing method of semiconductor device
JPH06338514A (en) Semiconductor device
JPH0432754Y2 (en)
JP2521745Y2 (en) Photo thyristor
JP2001144096A (en) Semiconductor device
JPH0713969B2 (en) Vertical PNP transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees