JP2645811B2 - Method for forming electrode of semiconductor device having diffusion barrier function - Google Patents

Method for forming electrode of semiconductor device having diffusion barrier function

Info

Publication number
JP2645811B2
JP2645811B2 JP7085909A JP8590995A JP2645811B2 JP 2645811 B2 JP2645811 B2 JP 2645811B2 JP 7085909 A JP7085909 A JP 7085909A JP 8590995 A JP8590995 A JP 8590995A JP 2645811 B2 JP2645811 B2 JP 2645811B2
Authority
JP
Japan
Prior art keywords
film
transition group
electrode
metal
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7085909A
Other languages
Japanese (ja)
Other versions
JPH08264481A (en
Inventor
ゾン・ス・ビヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERU JII SEMIKON CO Ltd
Original Assignee
ERU JII SEMIKON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERU JII SEMIKON CO Ltd filed Critical ERU JII SEMIKON CO Ltd
Priority to JP7085909A priority Critical patent/JP2645811B2/en
Priority to US08/601,621 priority patent/US5668040A/en
Priority claimed from US08/601,621 external-priority patent/US5668040A/en
Publication of JPH08264481A publication Critical patent/JPH08264481A/en
Application granted granted Critical
Publication of JP2645811B2 publication Critical patent/JP2645811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の電極形成方
法に係り、特に拡散バリヤ特性及びコンタクト特性の優
れたペルボスキット(pervoskite)構造の誘電体の電極
形成方法に関する。特に、上部電極として、Pt、Pd
等を近貴金属( near noble metal )を用いる誘電体に
おいて、遷移族のIVBまたはVB族の金属と遷移族の
VIII族の金属をNH3 の雰囲気で熱処理し、結晶粒度
が大きくて結晶粒界に酸素が詰め込まれた高融点窒化膜
をそれらの間に形成することにより、拡散バリヤ特性及
びコンタクト特性の優れた下部電極を形成する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an electrode of a semiconductor device, and more particularly to a method for forming a dielectric electrode having a pervoskite structure having excellent diffusion barrier characteristics and contact characteristics. In particular, Pt, Pd
In a dielectric using a near noble metal, a transition group IVB or VB group metal and a transition group VIII group metal are heat-treated in an atmosphere of NH 3 to have a large crystal grain size and a crystal grain boundary. The present invention relates to a method for forming a lower electrode having excellent diffusion barrier characteristics and contact characteristics by forming a high melting point nitride film filled with oxygen therebetween.

【0002】[0002]

【従来の技術】銅等の金属が次世代の配線材料として、
PZT(PbZrxTi1-x3)やBST(BaSrT
iO3 )等が次世代の誘電体材料として脚光を浴びてい
る。しかしながら、これらはシリコン基板との反応から
リーク等を誘発する可能性があるため、これを防ぐため
に拡散バリヤが要求される。
2. Description of the Related Art Copper and other metals are used as next-generation wiring materials.
PZT (PbZr x Ti 1-x O 3 ) or BST (BaSrT
iO 3 ) has been spotlighted as a next-generation dielectric material. However, since these may induce a leak or the like from the reaction with the silicon substrate, a diffusion barrier is required to prevent this.

【0003】銅の拡散バリヤはCo、Cr、Pd、Ti
N、NbN等が優れたものとしてよく知られている。さ
らに、BSTやPZT等のペルボスキット(pervoskit
e)構造を有する誘電体の電極材料としては近貴金属で
あるPt、Pd等の遷移族のVIII族金属又はRuO2
の導電性酸化膜が主に用いられているが、電極と基板と
のお互いの拡散を抑制し、接着力を増加させるためには
Ti層やTiN層を電極と基板との間に形成しなければ
ならない。
[0003] Copper diffusion barriers are Co, Cr, Pd, Ti.
N, NbN and the like are well known as excellent ones. Furthermore, pervoskits such as BST and PZT
e) As a dielectric electrode material having a structure, a near-noble metal such as Pt or Pd, which is a transition group VIII metal, or a conductive oxide film such as RuO 2 is mainly used. In order to suppress the mutual diffusion and increase the adhesive force, a Ti layer or a TiN layer must be formed between the electrode and the substrate.

【0004】このような電極又は基板と電極との間に形
成される拡散バリヤは、次のような条件を満足しなけれ
ばならない。1.電極として用いられる銅又は強誘電体
と反応しないように安定でなければならず、耐酸化性が
強くて電気伝導度が優れなければならない。2.拡散バ
リヤとして用いられる物質は基板との接着力が優れてい
なければならない。従来ではキャパシタ電極として、遷
移族のVIII 族の近貴金属やクロムCrが用いられる
が、これら金属は耐酸化性が強いし、反応力が小さくて
安定的であり、電気伝導度が優れるという特性はある
が、バリヤ特性が弱いという短所があった。
A diffusion barrier formed between such an electrode or a substrate and the electrode must satisfy the following conditions. 1. It must be stable so as not to react with copper or a ferroelectric used as an electrode, and must have high oxidation resistance and excellent electric conductivity. 2. The material used as the diffusion barrier must have good adhesion to the substrate. Conventionally, near noble metals of transition group VIII or chromium Cr are used as capacitor electrodes. These metals have strong oxidation resistance, low reactivity, are stable, and have excellent electrical conductivity. However, there was a disadvantage that the barrier properties were weak.

【0005】遷移族のVB族又はIVB族の高融点金属
はシリコン基板又はシリコン酸化膜との接着力が優れ、
高融点金属の窒化物は拡散バリヤ特性及び電気伝導度の
特性が優れる。
[0005] The transition group VB or IVB group high melting point metal has excellent adhesion to a silicon substrate or a silicon oxide film.
Refractory metal nitrides have excellent diffusion barrier properties and electrical conductivity properties.

【0006】図9は従来のペルボスキット誘電体を用い
たキャパシタ電極の構造を示す。図9を参照すると、従
来のペルボスキット誘電体を用いたキャパシタ電極は、
シリコン基板又はシリコン酸化膜91上に拡散バリヤ用
Ti膜92が堆積され、Ti膜92上にはペルボスキッ
トの誘電体膜94が形成され、誘電体膜の上・下には下
部電極93と上部電極95として近貴金属のPt膜が形
成された構造を有する。
FIG. 9 shows a structure of a conventional capacitor electrode using a Perboss kit dielectric. Referring to FIG. 9, a capacitor electrode using a conventional Pelboss kit dielectric is:
A Ti barrier film 92 for a diffusion barrier is deposited on a silicon substrate or a silicon oxide film 91, a dielectric film 94 of a Perboss kit is formed on the Ti film 92, and a lower electrode 93 and an upper electrode are formed above and below the dielectric film. 95 has a structure in which a Pt film of a near noble metal is formed.

【0007】従来の熱処理工程は図8に示すように、プ
レパージ段階、加熱段階、アニーリング段階、冷却段階
及びパージ段階に分けられるが、熱処理工程を行う方法
はプレパージ段階からパージ段階までN2 の雰囲気で行
う方法と、アニーリング段階でのみNH3 の雰囲気で行
い、その他の段階ではN2 の雰囲気で行う方法がある。
The conventional heat treatment process is divided into a pre-purge stage, a heating stage, an annealing stage, a cooling stage, and a purge stage as shown in FIG. 8, and the heat treatment process is performed in an N 2 atmosphere from the pre-purge stage to the purge stage. And in an annealing step only in an NH 3 atmosphere, and in other steps in an N 2 atmosphere.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記の二つの
方法ともプレパージ段階においてはN2 の雰囲気で行う
が、図9に示す従来のキャパシタ構造はプレパージ段階
においてN2 の雰囲気で熱処理工程を行うと、下部電極
93のPt膜と拡散バリヤ用Ti膜92との境界にチタ
ン窒化膜が形成されることなく、図6に示すように窒素
が境界で混合されて上部のPtの高温拡散を防止できる
拡散バリヤとしての役割は充分果たせないという問題点
があった。
However, both of the above two methods are performed in an N 2 atmosphere in the pre-purge step, but the conventional capacitor structure shown in FIG. 9 performs a heat treatment step in an N 2 atmosphere in the pre-purge step. Also, without forming a titanium nitride film at the boundary between the Pt film of the lower electrode 93 and the diffusion barrier Ti film 92, nitrogen is mixed at the boundary as shown in FIG. 6 to prevent high-temperature diffusion of the upper Pt. There has been a problem that a role as a possible diffusion barrier cannot be sufficiently fulfilled.

【0009】これはキャパシタ電極がシリコン酸化膜上
に形成される場合にも同様であるが、プレパージ段階に
おいてN2 の雰囲気で熱処理工程が行われると、図7に
示すように、下部電極93とTi膜92との境界にチタ
ン窒化膜が形成されることなく、窒素が境界で混合され
るために拡散バリヤとしての充分な役割が果たせないと
いう問題点があった。なお、従来のキャパシタ電極はP
t、Pd等を電極として用いる場合には貴金属(希貴金
属)を使用することになり、価格の上昇をもたらし、R
uO2 等を電極として使用する場合にはRuO2 が不安
定なのでパターニング工程等の難しさがあった。
This is the same as when the capacitor electrode is formed on the silicon oxide film. However, when the heat treatment is performed in the N 2 atmosphere in the pre-purge step, as shown in FIG. Since a titanium nitride film is not formed at the boundary with the Ti film 92 and nitrogen is mixed at the boundary, there is a problem that a sufficient role as a diffusion barrier cannot be achieved. The conventional capacitor electrode is P
When t, Pd, or the like is used as an electrode, a noble metal (dilute noble metal) is used, resulting in an increase in price and
When uO 2 or the like is used as an electrode, there is a difficulty in a patterning step or the like because RuO 2 is unstable.

【0010】本発明の目的は通常のキャパシタ電極形成
の装置を用いて、拡散バリヤ特性に優れるばかりではな
く、コンタクト特性に優れた半導体素子のキャパシタ電
極を形成する方法を提供することにある。
It is an object of the present invention to provide a method for forming a capacitor electrode of a semiconductor device having not only excellent diffusion barrier characteristics but also excellent contact characteristics using a usual apparatus for forming a capacitor electrode.

【0011】本発明の他の目的は通常のキャパシタ電極
形成の装置を用いて、拡散バリヤ特性が優れるばかりで
はなく、基板との接着力に優れた半導体素子のキャパシ
タ電極を形成する方法を提供することにある。
Another object of the present invention is to provide a method for forming a capacitor electrode of a semiconductor device having not only excellent diffusion barrier properties but also excellent adhesion to a substrate by using an ordinary apparatus for forming a capacitor electrode. It is in.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の本発明の拡散バリヤ機能を有する電極形成方法は、シ
リコン基板上にTi、Zr、Hf等の遷移族のIVB族
の高融点金属膜と、Fe、Co、Ni、Ru、Rh、P
d、Os、Ir、Pt等の遷移族のVIII 族の近貴金属
膜を順次堆積するステップと、プレパージ段階からアン
モニア雰囲気で熱処理工程を行って遷移族のIVB族の
金属膜と遷移族のVIII 族の金属膜との境界には窒化膜
を形成し、遷移族のIVB族の金属膜と基板との間に高
融点シリサイドを形成して下部電極を形成するステップ
と、下部電極の遷移族のVIII 族の金属膜上に誘電体膜
を形成するステップと、誘電体膜上に遷移族のVIII 族
の金属膜を堆積して上部電極を形成するステップと、を
含む。
According to the present invention, there is provided a method of forming an electrode having a diffusion barrier function, comprising the steps of: forming a transition group IVB refractory metal film such as Ti, Zr, or Hf on a silicon substrate; And Fe, Co, Ni, Ru, Rh, P
sequentially depositing a transition group VIII near noble metal film such as d, Os, Ir, Pt, etc., and performing a heat treatment process in an ammonia atmosphere from a pre-purge stage to a transition group IVB metal film and a transition group VIII group. Forming a nitride film at the boundary with the metal film of the transition group, forming a high melting point silicide between the metal film of the transition group IVB group and the substrate to form a lower electrode, and forming a transition electrode VIII of the lower electrode. Forming a dielectric film on the group III metal film; and depositing a transition group VIII metal film on the dielectric film to form an upper electrode.

【0013】[0013]

【作用】遷移族のIVB族の金属膜と遷移族のVIII 族
の金属膜との境界に形成された窒化膜は拡散バリヤとし
て作用し、シリサイドはコンタクト特性を向上させる役
割を果たす。遷移族のIVB族の高融点金属の代わりに
V、Nb、Ta等の遷移族のVB族の高融点金属が用い
られたりもする。高融点金属膜と近貴金属膜をシリコン
酸化物上に堆積する場合には、高融点金属膜と近貴金属
膜との間に窒化膜を形成して拡散バリヤ特性を向上さ
せ、高融点金属膜とシリコン酸化膜との間には高融点金
属酸化物を形成してシリコン酸化膜との接着力を向上さ
せる役をする。
The nitride film formed at the boundary between the transition group IVB metal film and the transition group VIII metal film acts as a diffusion barrier, and silicide plays a role in improving contact characteristics. In place of the transition group IVB group high melting point metal, a transition group VB group high melting point metal such as V, Nb, or Ta may be used. When depositing a high melting point metal film and a near noble metal film on silicon oxide, a nitride film is formed between the high melting point metal film and the near noble metal film to improve diffusion barrier characteristics, and A refractory metal oxide is formed between the silicon oxide film and the silicon oxide film to improve the adhesive strength with the silicon oxide film.

【0014】[0014]

【実施例】以下、本発明の実施例による拡散バリヤの機
能を有する半導体素子のキャパシタ電極の形成方法を図
面とともに説明する。図1(A)と(B)は、本発明の
一実施例による拡散バリヤ機能を有する半導体素子の電
極形成工程図である。図1(A)を参照すると、シリコ
ン基板11上に遷移族のIVB族又はVB族の高融点金
属12を堆積し、その上に遷移族のVIII 族の近貴金属
13を堆積する。Ti、Zr、Hf等の遷移族のIVB
族金属またはV、Nb、Ta等の遷移族のVB族金属は
高融点金属であり、Fe、Co、Ni、Ru、Rh、P
d、Os、Ir、Pt等の遷移族のVIII 族金属は近貴
金属である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for forming a capacitor electrode of a semiconductor device having a diffusion barrier function according to an embodiment of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B are diagrams illustrating an electrode forming process of a semiconductor device having a diffusion barrier function according to an embodiment of the present invention. Referring to FIG. 1A, a transition group IVB or VB group high melting point metal 12 is deposited on a silicon substrate 11, and a transition group VIII group noble metal 13 is deposited thereon. IVB of transition group such as Ti, Zr, Hf
Group metals or transition group VB metals such as V, Nb and Ta are refractory metals, and include Fe, Co, Ni, Ru, Rh, and P.
Transition group VIII metals such as d, Os, Ir, and Pt are near noble metals.

【0015】図1(B)を参照すると、前記のように高
融点金属膜12と近貴金属膜13を基板11上に順次堆
積した後、アンモニアNH3 の雰囲気で熱処理工程を行
う。本発明では従来の方法とは異なってプレパージ段階
からNH3 の雰囲気で行う。熱処理工程の結果、高融点
金属12と近貴金属13との境界には高融点金属の窒化
膜15が形成される。この際、高融点金属膜と近貴金属
膜は各々10〜1000Å厚に堆積し、熱処理温度は5
00〜1000℃である。近貴金属は窒化膜がよく形成
されない金属であり、高融点金属は窒化膜がよく形成さ
れる金属なので、高融点金属膜12と近貴金属膜13と
の境界にはアンモニア雰囲気での熱処理工程時、窒素が
近貴金属膜13を通じて高融点金属12に拡散して高融
点金属の窒化膜15が形成される。
Referring to FIG. 1B, after the high melting point metal film 12 and the near noble metal film 13 are sequentially deposited on the substrate 11 as described above, a heat treatment process is performed in an ammonia NH 3 atmosphere. In the present invention, unlike the conventional method, the process is performed in an NH 3 atmosphere from the pre-purge stage. As a result of the heat treatment step, a nitride film 15 of the high melting point metal is formed at the boundary between the high melting point metal 12 and the near noble metal 13. At this time, the refractory metal film and the near noble metal film are each deposited to a thickness of 10 to 1000 °, and the heat treatment temperature is 5
00-1000 ° C. The near noble metal is a metal on which a nitride film is not well formed, and the high melting point metal is a metal on which a nitride film is well formed. Therefore, a boundary between the high melting point metal film 12 and the near noble metal film 13 is formed during a heat treatment process in an ammonia atmosphere. Nitrogen diffuses into the refractory metal 12 through the near-noble metal film 13 to form the refractory metal nitride film 15.

【0016】図3は遷移族のIVB、VB及びVIB族
の高融点金属の窒化物形成エネルギーと比抵抗を示すグ
ラフである。ここで、高融点金属は窒化物形成エネルギ
ーが大きければ大きい程安定性が大きく、比抵抗が小さ
ければ小さい程コンタクト特性、即ち、電気伝導度が優
れる。
FIG. 3 is a graph showing the nitride formation energy and specific resistance of transition-group IVB, VB and VIB refractory metals. Here, the higher the melting point of the refractory metal, the greater the stability, and the smaller the specific resistance, the better the contact characteristics, that is, the electrical conductivity.

【0017】図3を参照すると、IVB及びVB族の高
融点金属の窒化物形成エネルギーは大きいので安定であ
り、比抵抗が低いのでコンタクト特性は優れる。特に、
Ti、Zr、Hfは安定性と比抵抗特性とが優れる。こ
れに反してVIII 族の近貴金属は窒化物形成エネルギー
が正の値をもつので、前記で説明したように窒化膜が良
く形成されない。そして、高融点金属膜12と基板11
との境界では熱処理工程後、高誘電金属とシリコンとの
反応により高誘電シリサイド14が形成される。シリコ
ン基板11と高融点金属膜12との境界に高誘電シリサ
イド14が形成されてコンタクト抵抗が低くなるのでコ
ンタクト特性が向上する。従って、図1に示す工程をキ
ャパシタの電極形成工程に用いる場合には、前記高融点
金属膜12、高融点金属窒化膜15及び近貴金属膜13
の多層膜がキャパシタの下部電極として用いられる。
Referring to FIG. 3, the nitride forming energy of the refractory metals of the IVB and VB groups is large and stable, and the contact resistance is excellent since the specific resistance is low. Especially,
Ti, Zr, and Hf are excellent in stability and specific resistance characteristics. On the other hand, a group VIII near noble metal has a positive nitride formation energy, so that a nitride film is not formed well as described above. Then, the refractory metal film 12 and the substrate 11
After the heat treatment step, the high dielectric silicide 14 is formed by the reaction between the high dielectric metal and silicon. Since the high dielectric silicide 14 is formed at the boundary between the silicon substrate 11 and the high melting point metal film 12 to lower the contact resistance, the contact characteristics are improved. Therefore, when the process shown in FIG. 1 is used for the electrode forming process of the capacitor, the refractory metal film 12, the refractory metal nitride film 15 and the near noble metal film 13 are used.
Is used as the lower electrode of the capacitor.

【0018】前記工程により下部電極を形成し、通常の
工程により下部電極上にペルボスキット誘電体膜を形成
し、その上に近貴金属やクロム等で上部電極を形成する
と、本発明の実施例によるキャパシタ電極が得られる。
この際、キャパシタ電極は基板との境界に高融点金属シ
リサイドが形成されてコンタクト抵抗が減少するのでコ
ンタクト特性が向上し、下部電極を構成する高融点金属
窒化膜により拡散バリヤ特性及び電気伝導度の特性が向
上する。前記特性を得るためには熱処理工程時、必ずプ
レパージ段階からアンモニアを装置内に流さなければな
らない。
When a lower electrode is formed by the above-described process, a pervoskit dielectric film is formed on the lower electrode by a normal process, and an upper electrode is formed thereon by a noble metal, chromium, or the like, a capacitor according to an embodiment of the present invention is obtained. An electrode is obtained.
At this time, since the high melting point metal silicide is formed at the boundary with the substrate and the contact resistance is reduced, the contact characteristics are improved, and the diffusion barrier characteristics and the electric conductivity are improved by the high melting point metal nitride film constituting the lower electrode. The characteristics are improved. In order to obtain the above characteristics, ammonia must be flowed into the apparatus from the pre-purge stage during the heat treatment process.

【0019】本発明のようにプレパージ段階においてN
3 の雰囲気で熱処理工程を行った場合と、従来のよう
にプレパージ段階においてN2 の雰囲気で熱処理工程を
行った場合とを比較して説明する。例えば、基板11上
に高融点金属膜12と近貴金属膜13としてCoとZr
を各々堆積した後、プレパージ段階からN2 雰囲気で熱
処理工程を行った場合とプレパージ段階からNH3 雰囲
気で熱処理工程を行った場合とを図5及び図6を参照し
て説明すると、次の通りである。
According to the present invention, N
The case where the heat treatment process is performed in the atmosphere of H 3 and the case where the heat treatment process is performed in the atmosphere of N 2 in the pre-purge stage as in the related art will be described in comparison. For example, Co and Zr are used as the refractory metal film 12 and the near noble metal film 13 on the substrate 11.
After each deposition, the case where the heat treatment process is performed in the N 2 atmosphere from the pre-purge stage and the case where the heat treatment process is performed in the NH 3 atmosphere from the pre-purge stage will be described with reference to FIGS. It is.

【0020】図5はシリコン基板上に堆積されたCo/
Zr二重薄膜のAESの深さ分析図で、図(A)は堆積
後の熱処理前に、図(B)は500℃で、N2 の雰囲気
で熱処理した後、図5(C)は600℃、N2 の雰囲気
で熱処理後の深さ分析図を各々示す。図5(B)と
(C)を参照すると、シリコン基板上にCo/Zrを堆
積した後、500℃、N2 の雰囲気又は600℃、N2
の雰囲気で各々熱処理工程を行うと、Co/Zr層間の
混合が生じる。
FIG. 5 shows Co / deposited on a silicon substrate.
FIG. 5A is an AES depth analysis diagram of the Zr double thin film. FIG. 5A is a heat treatment after deposition at 500 ° C. in an N 2 atmosphere, and FIG. Depth analysis diagrams after heat treatment in an atmosphere of ° C. and N 2 are shown. Referring to FIGS. 5B and 5C, after depositing Co / Zr on a silicon substrate, an atmosphere of 500 ° C. and N 2 or 600 ° C. and N 2
When the heat treatment process is performed in each atmosphere, mixing between the Co / Zr layers occurs.

【0021】しかし、本発明のように、基板上にCo/
Zrの二重薄膜を堆積した後、プレパージ段階からNH
3 を流した状態で700℃にて熱処理工程を行うと、図
6に示すように、窒素が上部の近貴金属膜13を通じて
拡散して下部の高融点金属膜12のZrと反応する。従
って、高融点金属膜12の表面は窒素と反応して高融点
金属窒化膜15になり、シリコン基板11と高融点金属
膜12との境界では高融点金属シリサイド14が形成さ
れることが分かる。なお、従来の方法では500℃の熱
処理工程時にも層間の混合が発生するが、本発明では従
来より高い700℃の熱処理温度で熱処理工程を行って
も層間の混合が全く生じない。
However, as in the present invention, Co /
After depositing a double thin film of Zr, the pre-purge stage starts with NH
When a heat treatment step is performed at 700 ° C. with the flow of 3 , nitrogen is diffused through the upper noble metal film 13 and reacts with Zr of the lower refractory metal film 12 as shown in FIG. Therefore, it can be seen that the surface of the refractory metal film 12 reacts with nitrogen to become the refractory metal nitride film 15 and the refractory metal silicide 14 is formed at the boundary between the silicon substrate 11 and the refractory metal film 12. In the conventional method, inter-layer mixing occurs even during the heat treatment at 500 ° C., but in the present invention, inter-layer mixing does not occur at all even when the heat treatment is performed at a heat treatment temperature of 700 ° C., which is higher than before.

【0022】図2(A)と(B)は本発明の他の実施例
による拡散バリヤ機能を有する半導体素子の電極形成工
程図を示す。図2(A)を参照すると、シリコン基板1
2上にシリコン酸化膜22が形成され、遷移族のIVB
族またはVB族の金属膜23を堆積し、その上に遷移族
のVIII 族の金属膜24を堆積する。ここでも同様に、
Ti、Zi、Hf等の遷移族のIVB族の金属または
V、Nb、Ta等の遷移族のVB族の金属膜23は高融
点金属であり、Fe、Co、Ni、Ru、Rh、Pd、
Os、Ir、Pt等の遷移族のVIII 族の金属膜24は
近貴金属である。
FIGS. 2A and 2B are views showing a process of forming an electrode of a semiconductor device having a diffusion barrier function according to another embodiment of the present invention. Referring to FIG. 2A, the silicon substrate 1
2, a silicon oxide film 22 is formed on
A group VIII or VB group metal film 23 is deposited, and a transition group VIII group metal film 24 is deposited thereon. Again,
A transition group IVB group metal such as Ti, Zi, and Hf or a transition group VB group metal film 23 such as V, Nb, and Ta is a high melting point metal, and includes Fe, Co, Ni, Ru, Rh, Pd,
The transition group VIII group metal film 24 such as Os, Ir, and Pt is a near noble metal.

【0023】図2(B)を参照すると、前記のように高
融点金属膜23と近貴金属膜24とを堆積した後、アン
モニアNH3 の雰囲気で熱処理工程を行う。熱処理工程
時、プレパージ段階からアンモニアを装置内に流す。熱
処理工程の結果、高融点金属膜23と近貴金属膜24と
の境界には近貴金属膜24を通じて窒素が拡散して高融
点金属と反応するので、高融点金属膜23の表面には高
融点金属窒化膜26が形成される。高融点金属窒化膜2
6は伝導度が優れるばかりではなく、拡散バリヤとして
優れた特性を有する。この際、近貴金属膜24は窒素と
反応して容易に窒化膜となる金属でないので、窒素が近
貴金属膜24を通じて拡散して高融点金属膜と反応す
る。そして、高融点金属膜23とシリコン酸化膜22と
の境界では高融点金属とシリコン酸化膜が反応して高融
点金属酸化膜25が形成される。
Referring to FIG. 2B, after the high melting point metal film 23 and the near noble metal film 24 are deposited as described above, a heat treatment process is performed in an ammonia NH 3 atmosphere. During the heat treatment process, ammonia flows into the apparatus from the pre-purge stage. As a result of the heat treatment process, nitrogen diffuses through the near-noble metal film 24 at the boundary between the high-melting point metal film 23 and the near-noble metal film 24 and reacts with the high-melting point metal. A nitride film 26 is formed. Refractory metal nitride film 2
No. 6 not only has excellent conductivity, but also has excellent properties as a diffusion barrier. At this time, since the near-noble metal film 24 is not a metal that easily reacts with nitrogen to become a nitride film, nitrogen diffuses through the near-noble metal film 24 and reacts with the high melting point metal film. At the boundary between the refractory metal film 23 and the silicon oxide film 22, the refractory metal and the silicon oxide film react to form a refractory metal oxide film 25.

【0024】図4はIVB、VB、VIB族の高融点金
属の酸化物形成エネルギーと酸素の溶解度に対するグラ
フである。図4を参照すると、IVB族及びVB族の酸
化膜がシリコン酸化膜より一層安定的なので、高融点金
属により還元されて高融点金属酸化膜25が形成され、
この高融点金属酸化膜25はシリコン酸化膜22との接
着力に優れている。近貴金属の酸化物形成エネルギー
(絶対値)はシリコン酸化膜より小さいために、近貴金
属24はシリコン酸化物との接着力に優れていない。従
って、近貴金属のみを電極として用いる場合にはシリコ
ン酸化膜との接着力が優れていないという短所があった
が、本発明のような高融点金属膜23を近貴金属膜24
の下部に形成して熱処理工程を行うことにより、高融点
金属酸化膜25を形成して境界間の接着力を向上させる
ことができる。
FIG. 4 is a graph showing the oxide formation energy and the solubility of oxygen of the refractory metals belonging to the groups IVB, VB and VIB. Referring to FIG. 4, since the oxide films of the IVB group and the VB group are more stable than the silicon oxide film, they are reduced by the refractory metal to form the refractory metal oxide film 25,
This refractory metal oxide film 25 has excellent adhesion to the silicon oxide film 22. Since the oxide formation energy (absolute value) of the near noble metal is smaller than that of the silicon oxide film, the near noble metal 24 is not excellent in the adhesive force with the silicon oxide. Therefore, when only the near noble metal is used as the electrode, there is a disadvantage that the adhesive force with the silicon oxide film is not excellent, but the high melting point metal film 23 as in the present invention is replaced with the near noble metal film 24.
By performing a heat treatment step after forming the metal oxide film 25 at a lower portion, the high-melting-point metal oxide film 25 can be formed to improve the adhesive strength between the boundaries.

【0025】図7はシリコン酸化膜上にCo/Zrの二
重薄膜を堆積し、熱処理した後のCo/Zr二重薄膜の
AESの深さ分析図を示す。図7(A)は600℃、N
2 の雰囲気で、図7(B)は600℃、NH3 の雰囲気
で各々熱処理工程を行った場合であり、N2 雰囲気での
熱処理工程時には図5と同様にCo/Zr膜間の混合が
生じ、NH3 の雰囲気での熱処理工程時にはCo/Zr
の境界でZrNが形成されて拡散バリヤとして作用し、
シリコン酸化膜との境界ではZrSixYが形成されて
シリコン酸化膜との接着力を向上させる。
FIG. 7 shows an AES depth analysis diagram of a Co / Zr double thin film after a Co / Zr double thin film is deposited on a silicon oxide film and heat-treated. FIG. 7 (A) shows 600 ° C., N
2 atmosphere, FIG. 7 (B) 600 ° C., a case of performing each heat treatment step in an atmosphere of NH 3, at the time of the heat treatment step in N 2 atmosphere mixing between Likewise Co / Zr film as in FIG. 5 Co / Zr during the heat treatment process in an NH 3 atmosphere.
ZrN is formed at the boundary of and acts as a diffusion barrier,
ZrSi x O Y is formed at the boundary with the silicon oxide film to improve the adhesive strength with the silicon oxide film.

【0026】前記熱処理工程後、シリコン酸化膜上に形
成された高融点金属膜23、高融点金属窒化膜26と近
貴金属膜24がキャパシタ電極の下部電極として作用す
る。従って、前記の下部電極を構成する近貴金属膜24
上にペルボスキット誘電体膜を形成し、白金のような近
貴金属膜を上部電極として形成すると、キャパシタ電極
が得られる。図5乃至図7に示した本発明のCo/Zr
二重薄膜の特性はCo/Zrの二重薄膜にのみ限らず、
近貴金属/高融点金属の二重薄膜の全てに適用すること
ができる。
After the heat treatment step, the refractory metal film 23, refractory metal nitride film 26 and near noble metal film 24 formed on the silicon oxide film function as lower electrodes of the capacitor electrodes. Therefore, the near noble metal film 24 constituting the lower electrode
When a Perboss Kit dielectric film is formed thereon and a near noble metal film such as platinum is formed as an upper electrode, a capacitor electrode is obtained. The Co / Zr of the present invention shown in FIGS.
The characteristics of the double thin film are not limited to the Co / Zr double thin film,
The present invention can be applied to all of the near-noble metal / high melting point metal double thin films.

【0027】[0027]

【発明の効果】上述した本発明によれば、近貴金属膜/
高融点金属膜の二重薄膜をシリコン基板上に堆積した
後、プレパージ段階よりアンモニアの雰囲気で熱処理す
ることにより、優れた拡散バリヤ機能を有するとともに
良好なコンタクト特性を有する電極を形成することがで
きる。さらに、近貴金属膜/高融点金属膜の二重薄膜を
シリコン酸化膜上に堆積した後、プレパージ段階からア
ンモニアの雰囲気で熱処理することにより、優れた拡散
バリヤ機能を有するとともに優れた接着力が得られる電
極を形成することができる。
According to the present invention described above, the near noble metal film /
By depositing a double thin film of a high melting point metal film on a silicon substrate and then performing heat treatment in an atmosphere of ammonia from a pre-purge step, an electrode having an excellent diffusion barrier function and good contact characteristics can be formed. . Furthermore, by depositing a double thin film of a near noble metal film / a high melting point metal film on a silicon oxide film and then performing a heat treatment in an atmosphere of ammonia from the pre-purge stage, it has an excellent diffusion barrier function and excellent adhesive strength. Electrodes can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による拡散バリヤ機能を有
する半導体素子の電極形成工程図である。
FIG. 1 is a diagram illustrating an electrode forming process of a semiconductor device having a diffusion barrier function according to an embodiment of the present invention.

【図2】 本発明の他の実施例による拡散バリヤ機能を
有する半導体素子の電極形成工程図である。
FIG. 2 is a process diagram of forming an electrode of a semiconductor device having a diffusion barrier function according to another embodiment of the present invention;

【図3】 遷移族のIVB、VB、VIB族の高融点金
属の窒化物形成エネルギー及び比抵抗を示すグラフであ
る。
FIG. 3 is a graph showing nitride formation energy and specific resistance of transition-group IVB, VB, and VIB-group refractory metals.

【図4】 遷移族のIVB、VB、VIB族の高融点金
属の酸化膜形成エネルギーを示すグラフである。
FIG. 4 is a graph showing oxide film formation energies of transition group IVB, VB, and VIB group refractory metals.

【図5】 Co/Zr二重薄膜のAESの深さ分析図
で、(A)は堆積後の深さ分析図、(B)は500℃、
2 の雰囲気で熱処理した後の深さ分析図、(C)は6
00℃、N2 の雰囲気で熱処理した後の深さ分析図であ
る。
5A and 5B are AES depth analysis diagrams of a Co / Zr double thin film, wherein FIG. 5A is a depth analysis diagram after deposition, and FIG.
Depth analysis after heat treatment in N 2 atmosphere, (C) shows 6
FIG. 5 is a depth analysis diagram after heat treatment in an atmosphere of N 2 at 00 ° C.

【図6】 Co/Zr二重薄膜をプレパージ(pre purg
e )段階からNH3をフローした状態で700℃にて熱
処理した後のAESの深さ分析図である。
FIG. 6 shows a pre-purgation of a Co / Zr double thin film.
FIG. 7B is a depth analysis diagram of AES after heat treatment at 700 ° C. in a state where NH 3 flows from the stage e).

【図7】 SiO2 基板上に堆積されたCo/Zr二重
薄膜を600℃で熱処理した後のAESの深さ分析図
で、(A)はN2 の雰囲気で熱処理した後の深さ分析
図、(B)はNH3 雰囲気で熱処理した後の深さ分析図
である。
FIG. 7 is a depth analysis diagram of AES after heat treatment of a Co / Zr double thin film deposited on a SiO 2 substrate at 600 ° C. FIG. 7A shows a depth analysis after heat treatment in an N 2 atmosphere. FIG. 3B is a depth analysis diagram after heat treatment in an NH 3 atmosphere.

【図8】 図1及び図2の電極形成のための熱処理工程
の順序図である。
FIG. 8 is a flowchart showing a heat treatment process for forming the electrodes of FIGS. 1 and 2;

【図9】 従来のペルボスキット誘電体を用いたキャパ
シタ電極構造図である。
FIG. 9 is a structural diagram of a capacitor electrode using a conventional Perboss kit dielectric.

【符号の説明】[Explanation of symbols]

11、21…シリコン基板、12、23…高融点金属、
12、24…近貴金属、14…高融点金属シリサイド、
15、26…高融点金属窒化膜、22…シリコン酸化
膜、25…高融点金属酸化膜。
11, 21: silicon substrate, 12, 23: refractory metal,
12, 24: near noble metal, 14: refractory metal silicide,
15, 26: high melting point metal nitride film, 22: silicon oxide film, 25: high melting point metal oxide film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H01L 27/04

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン基板上に遷移族のIVB族の金
属膜と遷移族のVIII 族の金属膜を順次堆積するステッ
プと、 アンモニア雰囲気で熱処理工程を行って遷移族のIVB
族の金属膜と遷移族のVIII 族の金属膜との境界には窒
化膜を形成し、遷移族のIVB族の金属膜と基板との間
にシリサイドを形成して下部電極を形成するステップ
と、 下部電極の遷移族のVIII族の金属膜上に誘電体膜を形
成するステップと、 誘電体膜上に遷移族のVIII族の金属膜を堆積して上部
電極を形成するステップと、 を含むことを特徴とする拡散バリヤ機能を有する半導体
素子の電極形成方法。
A step of sequentially depositing a transition group IVB metal film and a transition group VIII metal film on a silicon substrate; and performing a heat treatment process in an ammonia atmosphere to form the transition group IVB metal film.
Forming a nitride film on a boundary between the group III metal film and the transition group metal group VIII, forming silicide between the transition group IVB metal film and the substrate to form a lower electrode; Forming a dielectric film on a transition group VIII metal film of the lower electrode; and depositing a transition group VIII metal film on the dielectric film to form an upper electrode. A method for forming an electrode of a semiconductor device having a diffusion barrier function, characterized by comprising:
【請求項2】 前記遷移族のIVB族の金属膜と遷移族
のVIII 族の金属膜は、各々10〜1000Å厚に堆積
することを特徴とする請求項1記載の拡散バリヤ機能を
有する半導体素子の電極形成方法。
2. The semiconductor device having a diffusion barrier function according to claim 1, wherein the transition group IVB metal film and the transition group VIII metal film are each deposited to a thickness of 10 to 1000 °. Electrode forming method.
【請求項3】 前記熱処理工程は500〜1000℃で
行うことを特徴とする請求項1記載の拡散バリヤ機能を
有する半導体素子の電極形成方法。
3. The method according to claim 1, wherein the heat treatment is performed at a temperature of 500 to 1000 ° C.
【請求項4】 遷移族のIVB族の金属として、Ti、
Zr、Hf等の高融点金属のうちいずれか一つを用いる
ことを特徴とする請求項1記載の拡散バリヤ機能を有す
る半導体素子の電極形成方法。
4. The transition group IVB group metal, Ti,
2. The method for forming an electrode of a semiconductor device having a diffusion barrier function according to claim 1, wherein one of refractory metals such as Zr and Hf is used.
【請求項5】 遷移族のVIII 族の金属として、Fe、
Co、Ni、Ru、Rh、Pd、Os、Ir、Pt等の
近貴金属のうちいずれか一つを用いることを特徴とする
請求項1記載の拡散バリヤ機能を有する半導体素子の電
極形成方法。
5. The transition group VIII metal, Fe,
2. The method according to claim 1, wherein one of near noble metals such as Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt is used.
【請求項6】 遷移族のIVB族の金属の代わりに遷移
族のVB族の金属を用いることを特徴とする請求項1記
載の拡散バリヤ機能を有する半導体素子の電極形成方
法。
6. The method for forming an electrode of a semiconductor device having a diffusion barrier function according to claim 1, wherein a transition group VB group metal is used instead of the transition group IVB group metal.
【請求項7】 遷移族のVB族の金属として、V、N
b、Ta等の近貴金属のうちいずれか一つを用いること
を特徴とする請求項6記載の半導体素子の電極形成方
法。
7. V, N are selected from the group VB metals of the transition group.
7. The method for forming an electrode of a semiconductor element according to claim 6, wherein one of near noble metals such as b and Ta is used.
【請求項8】 遷移族のIVB族金属を堆積する前に、
シリコン酸化膜を堆積するステップがさらに含まれるこ
とを特徴とする請求項1記載の拡散バリヤ機能を有する
半導体素子の電極形成方法。
8. Prior to depositing a transition group IVB metal,
2. The method of claim 1, further comprising depositing a silicon oxide film.
【請求項9】 熱処理工程後、遷移族のIVB族金属の
還元によりシリコン酸化膜と遷移族のIVB金属膜との
境界には高融点金属酸化膜が形成されることを特徴とす
る請求項8記載の拡散バリヤ機能を有する半導体素子の
電極形成方法。
9. A refractory metal oxide film is formed at a boundary between the silicon oxide film and the transition group IVB metal film by reduction of the transition group IVB metal after the heat treatment step. A method for forming an electrode of a semiconductor device having the diffusion barrier function described above.
JP7085909A 1995-03-20 1995-03-20 Method for forming electrode of semiconductor device having diffusion barrier function Expired - Fee Related JP2645811B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7085909A JP2645811B2 (en) 1995-03-20 1995-03-20 Method for forming electrode of semiconductor device having diffusion barrier function
US08/601,621 US5668040A (en) 1995-03-20 1996-02-14 Method for forming a semiconductor device electrode which also serves as a diffusion barrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7085909A JP2645811B2 (en) 1995-03-20 1995-03-20 Method for forming electrode of semiconductor device having diffusion barrier function
US08/601,621 US5668040A (en) 1995-03-20 1996-02-14 Method for forming a semiconductor device electrode which also serves as a diffusion barrier

Publications (2)

Publication Number Publication Date
JPH08264481A JPH08264481A (en) 1996-10-11
JP2645811B2 true JP2645811B2 (en) 1997-08-25

Family

ID=26426917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085909A Expired - Fee Related JP2645811B2 (en) 1995-03-20 1995-03-20 Method for forming electrode of semiconductor device having diffusion barrier function

Country Status (1)

Country Link
JP (1) JP2645811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG74643A1 (en) 1997-07-24 2000-08-22 Matsushita Electronics Corp Semiconductor device and method for fabricating the same
US7560392B2 (en) * 2006-05-10 2009-07-14 Micron Technology, Inc. Electrical components for microelectronic devices and methods of forming the same

Also Published As

Publication number Publication date
JPH08264481A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3055791B2 (en) Electrodes for electrical ceramic oxide equipment
JP3132750B2 (en) Multilayer structure, semiconductor structure, capacitor of semiconductor device, method of preventing oxidation of silicon structure, and method of preventing diffusion of dopant
US5191510A (en) Use of palladium as an adhesion layer and as an electrode in ferroelectric memory devices
US6274454B1 (en) Method for fabricating dielectric capacitor
JPH05183106A (en) Semiconductor device and manufacture thereof
JPH0673375B2 (en) Method for manufacturing semiconductor device
US6682995B2 (en) Iridium conductive electrode/barrier structure and method for same
JP3304541B2 (en) Method of forming ohmic electrode
JP2645811B2 (en) Method for forming electrode of semiconductor device having diffusion barrier function
JPS584975A (en) Manufacture of semiconductor device
JP2930102B2 (en) Wiring structure for semiconductor device and method of manufacturing the same
KR0144167B1 (en) Method of forming electrode in semiconductor device
JP2751864B2 (en) Oxygen diffusion barrier electrode and its manufacturing method
JPH11204757A (en) Manufacturing semiconductor device
JP3248475B2 (en) Method of manufacturing ferroelectric nonvolatile memory cell structure
JPH08293581A (en) Ferroelectric thin film capacitor
JP3489660B2 (en) Method for precious metal electrode contacts with silicon
JPH10214944A (en) Method for manufacturing semiconductor device
JPH0654807B2 (en) Method of forming ohmic contact for hydrogenated amorphous silicon
JPH04364759A (en) Semiconductor device and manufacture thereof
JPH10107218A (en) Electrode wiring
JP3514940B2 (en) Method of forming ferroelectric thin film
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPH05326314A (en) Thin film capacitor
JP2555754B2 (en) Thin film formation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees