JP3514940B2 - Method of forming ferroelectric thin film - Google Patents
Method of forming ferroelectric thin filmInfo
- Publication number
- JP3514940B2 JP3514940B2 JP09569597A JP9569597A JP3514940B2 JP 3514940 B2 JP3514940 B2 JP 3514940B2 JP 09569597 A JP09569597 A JP 09569597A JP 9569597 A JP9569597 A JP 9569597A JP 3514940 B2 JP3514940 B2 JP 3514940B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- temperature
- heat treatment
- ferroelectric thin
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 21
- 239000010409 thin film Substances 0.000 title claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 30
- 229910052797 bismuth Inorganic materials 0.000 claims description 14
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 13
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000010408 film Substances 0.000 claims description 7
- 229910052712 strontium Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 230000010287 polarization Effects 0.000 description 17
- 239000007789 gas Substances 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005621 ferroelectricity Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Formation Of Insulating Films (AREA)
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体装置等に適
用される強誘電体薄膜の形成方法に関するものであり、
さらに詳しくは、ストロンチウム、ビスマス、およびタ
ンタルを含有するペロブスカイト系ビスマス層状構造化
合物強誘電体薄膜の形成方法に関するものである。
【0002】
【従来の技術】誘電体材料の新しい用途として強誘電性
を使って半導体基板上へ不揮発性メモリを作り込む研究
が進められている。一例に、トランジスタ1個と強誘電
体キャパシタ1個とを用いてメモリセルを構成する方法
がある。記憶情報は、強誘電体キャパシタの分極反転と
非反転に対応して流れる電流量の差として検出される。
他の1方法は、電界効果トランジスタのゲート絶縁膜に
強誘電体材料を用いるもので、分極状態の違いによりト
ランジスタのチャネルの抵抗を変えてドレイン電流の差
を検出するものである。これらの応用では強誘電体材料
としてPb(Zr,Ti)O3やSrBi2Ta2O9が研
究・開発されている。
【0003】従来技術でストロンチウム、ビスマス、タ
ンタルを含有するペロブスカイト系の1つのSrBi2
Ta2O9薄膜を用いる場合には、この薄膜を堆積した
後、応用に必要な強誘電性を発現させるために通常酸素
ガス中で800℃の高温処理を加える。この温度は、S
rBi2Ta2O9薄膜を堆積する前の工程でウエハ上に
あらかじめ形成したトランジスタや周辺回路素子に過酷
な熱履歴を加えることになる。特に、メモリ用キャパシ
タに該薄膜を適用する場合には、事前の工程で作り込ん
だ電界効果トランジスタと該キャパシタの導体による接
続部で、該高温熱処理によりタングステン、白金、多結
晶シリコン等の導体構成物間の界面で構成原子の相互拡
散が発生して該接続部の導電性が劣化するという不具合
を発生することが知られている。この対策として接続界
面に構成原子の拡散阻止のために窒化チタン薄膜等種々
の材料を挿入する方法が検討されているが、工程が複雑
になる欠点を有し、効果も十分ではなかった。最も信頼
できる方法は該高温熱処理を低温化することである。し
かし、従来、この方法には、温度を下げると強誘電体の
残留分極値が十分には得られないという問題があった。
【0004】低温化の試みとして最近発表されたもの
は、酸素ガス中での高温熱処理を5Torrの減圧環境
で行なうことにより600℃の熱処理温度でも残留分極
が2Pr =16μC/cm2と、熱処理温度800℃の
場合と変わらぬ値が得られるというものである(牛久
保、横山、伊藤、松永、厚木、米澤、小木:第43回応
用物理学関係連合講演会予稿集、第2分冊、p.45
8、1996年3月)。しかしながら、減圧雰囲気で高
温熱処理を行なうためには従来とは異なる減圧酸化炉を
用意する必要があり、設備投資額を増大させる欠点があ
る。また、高温の酸素ガスを減圧排気するためには、防
爆のために高温酸素ガスを油回転ポンプ等の真空シール
用の油に接触させない工夫を必要とするため、設備コス
トを押し上げ、量産技術にはなりにくいという問題があ
った。
【0005】
【発明が解決しようとする課題】本発明の目的は、スト
ロンチウム、ビスマス、およびタンタルを含有するペロ
ブスカイト系のビスマス層状構造化合物の強誘電体薄膜
の製造において、高温熱処理工程に変更を加えることに
より、残留分極特性を必要程度に保ったまま低コストで
工程の温度を下げるという課題を解決することにある。
【0006】
【課題を解決するための手段】本発明は、ストロンチウ
ム、ビスマス、およびタンタルを含有するペロブスカイ
ト系のビスマス層状構造化合物の強誘電体薄膜形成にお
いて、酸化性ガス雰囲気中での450℃を超える温度で
の高温熱処理工程に、窒素または希ガス雰囲気中で45
0℃を超える温度で200秒以内の熱処理工程を加える
ことを特徴とする。この手段が従来技術と異なる点は、
従来の酸化性ガス雰囲気とは異なる非酸化性ガス雰囲
気、例えば、窒素または希ガス雰囲気中で、高温短時間
熱処理工程を付加したことにある。
【0007】上記の手段により、従来に比べて残留分極
特性を必要にして十分なレベルに保ちながら高温熱処理
の温度を数10℃以上の温度幅で下げることができるた
め、強誘電体薄膜形成以前にウエハ上に形成していたト
ランジスタ等の素子や周辺回路素子に及ぼす熱履歴を軽
減でき、配線等の導体接続部分の劣化を低減できる利点
がある。また、ガスの種類を変更した熱処理工程を新た
に1つ付加するのみで、従来の製造設備をそのまま利用
でき、かつ新たな設備投資を必要としない等低コストで
改善効果が得られる利点もある。
【0008】
【発明の実施の形態】図1は、テスト・サンプルとして
強誘電体キャパシタを製作した場合の工程の主要部分の
一部を示したものである。この工程は、実用のキャパシ
タを単体で形成する場合または半導体装置上に形成する
場合と要素工程としては変わらない。Siから成る基板
1を用意して、酸素ガス中での熱酸化によりSiO2か
らなる非晶質絶縁体層2を形成する(図1(a))。該
非晶質絶縁体層2の上面に電子ビーム蒸着法を用いて厚
さ0.03μmの下部Ti層3と厚さ0.2μmの下部
Pt層4を連続して堆積して下部電極5を形成する(図
1(b))。この上に金属アルコキシドを出発原料とす
るゾル−ゲル法によりスピンコーティング、150℃で
15分の脱溶媒処理、さらに450℃で15分の仮焼成
の工程を4回繰り返してSrBi2Ta2O9の組成を持
つ厚さ0.2μmの強誘電体薄膜6を形成する(図1
(c))。これに本発明によるところのアルゴンガス中
での高温短時間処理を行なう。ガス圧は大気圧、温度は
700℃、ランプ加熱機構を用いて熱処理時間を5〜6
0秒の短時間とする。その後、従来と同様に、この高温
短時間熱処理に続けて同一の炉内で温度を下げることな
くガス種のみを変更して第一の焼成を行なう。条件は、
700℃、酸素ガス中、大気圧、30分である。次に、
この上に厚さ0.2μm、直径100μmの白金から成
る上部電極7を金属製シャドーマスクを通して蒸着法で
形成する(図1(d))。さらにこの試料に第一の焼成
と同じ条件で第二の焼成を行なう。このようにしてキャ
パシタ構造を形成する。なお、膜構成元素の組成は、原
子比で±20%の範囲で原子組成比からずれた種々の値
を取りうる。また、本発明によるところの高温短時間熱
処理は従来の酸化性ガス中での熱処理と順序が前後して
も同様の効果が得られる。
【0009】図2は、この実施例で形成した金属/強誘
電体/金属の3層構造を有する2端子のテスト・サンプ
ルのキャパシタについて、残留分極2Prと印加電圧と
の関係を示した特性図である。この場合に、残留分極の
値として、分極反転に伴う分局の変化すなわち一方向の
分極(Pr)の2倍を用いている。従来技術における酸
素中800℃の高温処理に比べて、処理温度を700℃
に下げた場合には、残留分極の値がおよそ2/3に減少
することが示されている。この条件で形成した膜で記憶
セルを構成した場合には、印加電圧をさらに増大する等
の対策が必要であるが、過度の増大は素子のリーク電流
を増大させる等の他の問題を発生させ、事実上、応用を
困難にしている。一方、本発明によるところのアルゴン
ガス中で700℃、5〜60秒の高温短時間熱処理を加
えた場合には残留分極の増大が得られ、印加電圧の増大
等の対策により従来の800℃の場合に近い値に回復さ
せることが可能である。また、印加電圧を変えない場合
には、トランジスタ1個と強誘電体キャパシタ1個とで
メモリセルを構成した場合において残留分極の減少に相
当する分だけ”0”、”1”信号間の回路マージンが減
少するものの、このセルを記憶セルとして利用すること
が可能である。熱処理時間をさらに増大させた場合に、
200秒を境として加熱処理の効果は逆転し、240秒
にまで増大させた場合には、従来の700℃の場合より
も残留分極は減少することが示されており、本発明の効
果は得られない。
【0010】以上説明したように、本実施例によって、
特性の著しい劣化を引き起こすことなく、熱処理温度を
従来の800℃から本実施例の700℃に低下させるこ
とができることが示された。
【0011】なお、本実施例では高温短時間熱処理を7
00℃、5から60秒としたが、従来から熱処理前の膜
堆積工程で450℃程度の温度を要していたため、温度
は450℃を超える高温にしないと熱処理工程としての
効果が得られない。また、図2の実施例でも示したよう
に、時間は200秒を超えると逆に残留分極特性に劣化
が現われ、本発明の効果は得られない。また、熱処理雰
囲気ガスをアルゴンとしたが、ガスとしては非酸化性な
らば良く、他の希ガスまたは窒素ガスを用いても本発明
の効果が得られる。要は、薄膜中のビスマスを中心とす
る構成原子に対して非酸化性ガス雰囲気中での熱処理に
より、酸素原子との結合を一時的に弱めて該構成原子を
より安定な格子位置に配置した後、再度酸素原子と十分
に結合させることにより、不対電子、格子間原子等の結
晶欠陥を低減させ、結晶構造を敏感に反映する強誘電性
特性を良好ならしめようとするものである。
【0012】また、本実施例ではトランジスタ1個と強
誘電体キャパシタ1個でメモリセルを構成する応用例を
説明したが、本発明を電界効果トランジスタのゲート絶
縁膜に応用する事も可能である。また、さらに分極ドメ
インを用いた走査探針型の記録装置への応用等も可能で
ある。
【0013】
【発明の効果】以上説明したように、本発明による方法
で半導体装置に適用するストロンチウム、ビスマス、お
よびタンタルを含有するペロブスカイト系のビスマス層
状構造化合物の薄膜を形成すれば、従来より熱処理温度
を数10℃以上低温化することが可能となり、強誘電体
薄膜形成以前にウエハ上に形成していたトランジスタ等
の素子や周辺回路素子に及ぼす熱履歴を軽減できるた
め、配線等の導体接続部分の劣化を低減できるという利
点が生まれる。また、ガスの種類を変更した熱処理工程
を新たに1つ付加するのみなので、従来の製造設備をそ
のまま使用でき、かつ新たな設備投資を必要としない等
低コストで低温化の効果が得られる利点がある。
【0014】なお、実施例ではSiウエハを基板として
用いたが、本発明は基板材料に制限されることなく、G
aAs等の化合物半導体やセラミック板、半導体装置実
装用の高分子材料基板等にも応用できることは明らかで
ある。
【0015】また、上記の実施例ではSrBi2Ta2O
9の組成を有する膜について述べたが、要はSrとBi
とTaとを主成分とするペロブスカイト系のビスマス層
状構造化合物の薄膜であれば本発明の効果は得られるの
であって、本発明はSrBi2Ta2O9に限定されるも
のではない。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method for forming a ferroelectric thin film applied to a semiconductor device or the like.
More specifically, the present invention relates to a method for forming a perovskite-based bismuth layered structure compound ferroelectric thin film containing strontium, bismuth, and tantalum. 2. Description of the Related Art As a new use of a dielectric material, a study for forming a nonvolatile memory on a semiconductor substrate by using ferroelectricity has been conducted. As an example, there is a method of forming a memory cell using one transistor and one ferroelectric capacitor. The stored information is detected as a difference in the amount of current flowing corresponding to the polarization inversion and non-inversion of the ferroelectric capacitor.
Another method uses a ferroelectric material for the gate insulating film of the field-effect transistor, and detects the difference in drain current by changing the channel resistance of the transistor depending on the polarization state. In these applications, Pb (Zr, Ti) O 3 and SrBi 2 Ta 2 O 9 have been studied and developed as ferroelectric materials. In the prior art, one of the perovskite-based SrBi 2 containing strontium, bismuth and tantalum is used.
When a Ta 2 O 9 thin film is used, after the thin film is deposited, a high-temperature treatment at 800 ° C. is usually performed in oxygen gas in order to develop ferroelectricity required for application. This temperature is S
In the step before depositing the rBi 2 Ta 2 O 9 thin film, severe thermal history is added to the transistors and peripheral circuit elements formed in advance on the wafer. In particular, when the thin film is applied to a memory capacitor, a conductor structure of tungsten, platinum, polycrystalline silicon, or the like is formed by the high-temperature heat treatment at a connection between the field-effect transistor formed in a previous process and the conductor of the capacitor. It has been known that mutual diffusion of constituent atoms occurs at an interface between objects, causing a problem that the conductivity of the connection portion is deteriorated. As a countermeasure, a method of inserting various materials such as a titanium nitride thin film into the connection interface to prevent diffusion of constituent atoms has been studied, but it has a drawback that the process becomes complicated and the effect is not sufficient. The most reliable method is to lower the high temperature heat treatment. However, conventionally, this method has a problem that when the temperature is lowered, the residual polarization value of the ferroelectric cannot be sufficiently obtained. [0004] What has been recently announced as an attempt low temperature, the residual polarization is also a high-temperature heat treatment in oxygen gas at a heat treatment temperature that the 600 ° C. performed in a reduced pressure environment of 5Torr is the 2P r = 16μC / cm 2, a heat treatment The same value as in the case of a temperature of 800 ° C. can be obtained (Ushikubo, Yokoyama, Ito, Matsunaga, Atsugi, Yonezawa, Ogi: Proceedings of the 43rd Joint Lecture on Applied Physics, 2nd volume, p. 45
8, March 1996). However, in order to perform a high-temperature heat treatment in a reduced-pressure atmosphere, it is necessary to prepare a reduced-pressure oxidation furnace different from the conventional one, and there is a drawback that the capital investment is increased. Also, in order to exhaust high-pressure oxygen gas under reduced pressure, it is necessary to devise measures to prevent high-temperature oxygen gas from coming into contact with oil for vacuum sealing such as an oil rotary pump for explosion prevention. There was a problem that it was difficult to become. SUMMARY OF THE INVENTION An object of the present invention is to modify the high-temperature heat treatment step in the production of a ferroelectric thin film of a perovskite-based bismuth layer structure compound containing strontium, bismuth and tantalum. Accordingly, an object of the present invention is to solve the problem of lowering the process temperature at low cost while maintaining the remanent polarization characteristics to a necessary degree. SUMMARY OF THE INVENTION The present invention provides a method for forming a ferroelectric thin film of a perovskite-based bismuth layer structure compound containing strontium, bismuth, and tantalum at 450 ° C. in an oxidizing gas atmosphere. High-temperature heat treatment process at a temperature exceeding 45 ° C in a nitrogen or rare gas atmosphere.
A heat treatment step at a temperature exceeding 0 ° C. and within 200 seconds is added. The difference between this means and the prior art is that
This is to add a high-temperature short-time heat treatment step in a non-oxidizing gas atmosphere different from the conventional oxidizing gas atmosphere, for example, a nitrogen or rare gas atmosphere. By the above means, the temperature of the high-temperature heat treatment can be lowered within a temperature range of several tens of degrees Celsius or more while maintaining the remanent polarization characteristic at a sufficient level as compared with the conventional method. In addition, there is an advantage that it is possible to reduce the heat history applied to elements such as transistors and peripheral circuit elements formed on the wafer, and to reduce deterioration of conductor connection parts such as wiring. In addition, there is an advantage that the conventional manufacturing equipment can be used as it is, and an improvement effect can be obtained at a low cost such that no new equipment investment is required only by adding one new heat treatment step in which the type of gas is changed. . FIG. 1 shows a part of a main part of a process when a ferroelectric capacitor is manufactured as a test sample. This step is not different from a case where a practical capacitor is formed alone or a case where it is formed on a semiconductor device as an element step. By preparing a substrate 1 made of Si, to form an amorphous insulating layer 2 made of SiO 2 by thermal oxidation in oxygen gas (Figure 1 (a)). A lower electrode 5 is formed by continuously depositing a lower Ti layer 3 having a thickness of 0.03 μm and a lower Pt layer 4 having a thickness of 0.2 μm on the upper surface of the amorphous insulator layer 2 by using an electron beam evaporation method. (FIG. 1B). SrBi 2 Ta 2 O 9 was repeated four times by spin coating using a metal alkoxide as a starting material by a sol-gel method, desolvating at 150 ° C. for 15 minutes, and calcining at 450 ° C. for 15 minutes four times. A ferroelectric thin film 6 having a composition of 0.2 .mu.m thick is formed as shown in FIG.
(C)). This is followed by a high-temperature short-time treatment in argon gas according to the present invention. The gas pressure is atmospheric pressure, the temperature is 700 ° C., and the heat treatment time is 5 to 6 using a lamp heating mechanism.
It is a short time of 0 second. After that, as in the conventional case, the first baking is performed following the high-temperature short-time heat treatment and changing only the gas type without lowering the temperature in the same furnace. condition is,
700 ° C., oxygen gas, atmospheric pressure, 30 minutes. next,
An upper electrode 7 made of platinum having a thickness of 0.2 μm and a diameter of 100 μm is formed thereon by a vapor deposition method through a metal shadow mask (FIG. 1D). Further, the sample is subjected to a second firing under the same conditions as the first firing. Thus, a capacitor structure is formed. Note that the composition of the film constituent elements can take various values deviating from the atomic composition ratio in the range of ± 20% in atomic ratio. Further, the same effect can be obtained even if the order of the high-temperature and short-time heat treatment according to the present invention is reversed from that of the conventional heat treatment in an oxidizing gas. [0009] Figure 2, the capacitor of the test samples of the two terminals having a three-layer structure of metal / ferroelectric / metal formed in this embodiment, the characteristics showing the relationship between the residual polarization 2P r and the applied voltage FIG. In this case, as the value of the remanent polarization, a change in localization due to polarization reversal, that is, twice the one-way polarization (P r ) is used. The processing temperature is set to 700 ° C. compared to the high temperature processing of 800 ° C. in oxygen in the prior art.
It is shown that the value of the remanent polarization decreases to about 2/3 when the value is reduced to. When a memory cell is formed from a film formed under these conditions, it is necessary to take measures such as further increasing the applied voltage. However, an excessive increase causes other problems such as an increase in leakage current of the element. In effect, it makes application difficult. On the other hand, when a high-temperature and short-time heat treatment at 700 ° C. for 5 to 60 seconds is applied in the argon gas according to the present invention, an increase in remanent polarization is obtained. It is possible to recover to a value close to the case. When the applied voltage is not changed, when a memory cell is formed by one transistor and one ferroelectric capacitor, a circuit between "0" and "1" signals corresponding to a decrease in remanent polarization. Although the margin is reduced, this cell can be used as a storage cell. If the heat treatment time is further increased,
It is shown that the effect of the heat treatment is reversed after 200 seconds, and that the effect of the present invention is obtained when the temperature is increased to 240 seconds, and the remanent polarization is reduced as compared with the conventional case of 700 ° C. I can't. As described above, according to this embodiment,
It has been shown that the heat treatment temperature can be reduced from 800 ° C. in the related art to 700 ° C. in the present example without causing significant deterioration of the characteristics. In this embodiment, the high-temperature short-time heat treatment is performed for 7 minutes.
Although the temperature was set at 00 ° C. for 5 to 60 seconds, a temperature of about 450 ° C. was conventionally required in the film deposition step before the heat treatment, and the effect of the heat treatment step cannot be obtained unless the temperature is higher than 450 ° C. . Further, as shown in the embodiment of FIG. 2, if the time exceeds 200 seconds, the remanent polarization characteristic is conversely deteriorated, and the effect of the present invention cannot be obtained. The heat treatment atmosphere gas is argon, but the gas may be non-oxidizing, and the effect of the present invention can be obtained by using other rare gas or nitrogen gas. In short, by heat treatment in a non-oxidizing gas atmosphere for the constituent atoms centered on bismuth in the thin film, the bond with the oxygen atoms was temporarily weakened, and the constituent atoms were arranged at more stable lattice positions. Thereafter, by sufficiently bonding again with oxygen atoms, crystal defects such as unpaired electrons and interstitial atoms are reduced, and the ferroelectric characteristics sensitively reflecting the crystal structure are improved. In this embodiment, an application example in which a memory cell is constituted by one transistor and one ferroelectric capacitor has been described. However, the present invention can be applied to a gate insulating film of a field effect transistor. . Further, application to a scanning probe type recording apparatus using a polarization domain is also possible. As described above, when a thin film of a perovskite-based bismuth layer structure compound containing strontium, bismuth, and tantalum, which is applied to a semiconductor device by the method according to the present invention, is formed, a conventional heat treatment is achieved. It is possible to lower the temperature by several tens of degrees Celsius or more and to reduce the heat history applied to elements such as transistors and peripheral circuit elements formed on the wafer before the formation of the ferroelectric thin film. There is an advantage that the deterioration of the portion can be reduced. Also, since only one new heat treatment step with a different type of gas is added, the conventional manufacturing equipment can be used as it is, and the effect of lowering the temperature can be obtained at low cost, such as no new capital investment is required. There is. Although a Si wafer is used as a substrate in the embodiment, the present invention is not limited to a substrate material,
It is apparent that the present invention can be applied to a compound semiconductor such as aAs, a ceramic plate, a polymer material substrate for mounting a semiconductor device, and the like. In the above embodiment, SrBi 2 Ta 2 O
The film with the composition of 9 was described, but the point is that Sr and Bi
The effect of the present invention can be obtained by using a thin film of a perovskite-based bismuth layered structure compound containing Ti and Ta as main components, and the present invention is not limited to SrBi 2 Ta 2 O 9 .
【図面の簡単な説明】
【図1】本発明を用いたところのテスト・サンプルとし
てのキャパシタの形成工程の主要部分を示す断面図であ
る。
【図2】従来技術あるいは本発明の方法で製作した強誘
電体薄膜のキャパシタ構造を有するテスト・サンプルの
残留分極2Prと印加電圧との関係を示す特性図であ
る。
【符号の説明】
1…基板、2…非晶質絶縁体層、3…下部Ti層、4…
下部Pt層、5…3と4とからなる下部電極、6…強誘
電体薄膜、7…上部電極。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a main part of a process of forming a capacitor as a test sample using the present invention. 2 is a characteristic diagram showing the relationship between the residual polarization 2P r and the applied voltage of the test sample with a prior art or capacitor structure of the ferroelectric thin film fabricated by the method of the present invention. [Description of Signs] 1 ... Substrate, 2 ... Amorphous insulator layer, 3 ... Lower Ti layer, 4 ...
Lower Pt layer, lower electrode composed of 5 ... 3 and 4, 6 ... ferroelectric thin film, 7 ... upper electrode.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 27/108 H01L 29/78 301G 29/78 (58)調査した分野(Int.Cl.7,DB名) C01G 35/00 H01L 27/10 451 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 identification code FI H01L 27/108 H01L 29/78 301G 29/78 (58) Investigated field (Int.Cl. 7 , DB name) C01G 35/00 H01L 27/10 451
Claims (1)
ルを含有するペロブスカイト系ビスマス層状構造化合物
強誘電体薄膜の形成方法であって、該薄膜を非酸化性ガ
ス雰囲気中で450℃を超える温度に200秒以内加熱
する工程と、該薄膜を酸化性ガス雰囲気中で450℃を
超える温度に加熱する工程とを有することを特徴とする
強誘電体薄膜の形成方法。(57) [Claim 1] A method for forming a perovskite-based bismuth layered compound ferroelectric thin film containing strontium, bismuth, and tantalum, wherein the thin film is formed in a non-oxidizing gas atmosphere. A method for forming a ferroelectric thin film, comprising: heating the film to a temperature exceeding 450 ° C. within 200 seconds, and heating the thin film to a temperature exceeding 450 ° C. in an oxidizing gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09569597A JP3514940B2 (en) | 1997-04-14 | 1997-04-14 | Method of forming ferroelectric thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09569597A JP3514940B2 (en) | 1997-04-14 | 1997-04-14 | Method of forming ferroelectric thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10287425A JPH10287425A (en) | 1998-10-27 |
JP3514940B2 true JP3514940B2 (en) | 2004-04-05 |
Family
ID=14144643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09569597A Expired - Fee Related JP3514940B2 (en) | 1997-04-14 | 1997-04-14 | Method of forming ferroelectric thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3514940B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL156979A0 (en) * | 2001-01-18 | 2004-02-08 | Watanabe M & Co Ltd | Ferroelectric thin film, metal thin film or oxide thin film, and method and apparatus for preparation thereof, and electric or electronic device using said thin film |
-
1997
- 1997-04-14 JP JP09569597A patent/JP3514940B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10287425A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5923056A (en) | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials | |
JP3383188B2 (en) | Ferroelectric capacitor device and method of manufacturing the same | |
JP3188179B2 (en) | Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element | |
JP3319994B2 (en) | Semiconductor storage element | |
JP3363301B2 (en) | Ferroelectric thin film-coated substrate, method of manufacturing the same, and nonvolatile memory constituted by ferroelectric thin-film-coated substrate | |
JP2003532275A (en) | Recovery by voltage cycling of ferroelectric film damaged by process | |
JP2000040800A (en) | Ferroelectric storage element and manufacture thereof | |
JP2002530862A (en) | Inert gas recovery annealing of hydrogen damaged ferroelectric films | |
JPH11297867A (en) | Electronic component having doped metal oxide dielectric material and manufacturing process of electronic component having doped metal oxide dielectric material | |
JP2820930B2 (en) | Semiconductor device capacitor manufacturing method | |
JP3247023B2 (en) | Dielectric capacitor, non-volatile memory and method of manufacturing the same | |
US6245580B1 (en) | Low temperature process for fabricating layered superlattice materials and making electronic devices including same | |
US7545625B2 (en) | Electrode for thin film capacitor devices | |
US20020024074A1 (en) | Semiconductor device including ferroelectric capacitor and method of manufacturing the same | |
US6608339B2 (en) | Ferroelectric memory element | |
JPH11307736A (en) | Manufacture of semiconductor memory element | |
JP3276351B2 (en) | Method for manufacturing semiconductor device | |
JP3514940B2 (en) | Method of forming ferroelectric thin film | |
KR100362169B1 (en) | Non-destructive read-out (NDRO) type Field Effect Transistor (FET) and Method for Fabricating The Same | |
KR100282459B1 (en) | Manufacturing method of ferroelectric ram capacitor | |
JPH11233734A (en) | Semiconductor memory element and its manufacture | |
JPH1012751A (en) | Ferroelectric memory device | |
JP3014014B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2003179212A5 (en) | ||
JP3718943B2 (en) | Method for forming ferroelectric film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100123 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |