JP2642031B2 - Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate - Google Patents

Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate

Info

Publication number
JP2642031B2
JP2642031B2 JP4033693A JP4033693A JP2642031B2 JP 2642031 B2 JP2642031 B2 JP 2642031B2 JP 4033693 A JP4033693 A JP 4033693A JP 4033693 A JP4033693 A JP 4033693A JP 2642031 B2 JP2642031 B2 JP 2642031B2
Authority
JP
Japan
Prior art keywords
substrate
single crystal
compound semiconductor
liquid phase
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4033693A
Other languages
Japanese (ja)
Other versions
JPH0637024A (en
Inventor
哲也 井上
誠 大槻
哲一 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26379787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2642031(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4033693A priority Critical patent/JP2642031B2/en
Publication of JPH0637024A publication Critical patent/JPH0637024A/en
Priority to TW083101677A priority patent/TW230822B/zh
Priority to KR1019940003946A priority patent/KR0156486B1/en
Priority to US08/400,271 priority patent/US5514903A/en
Priority to US08/451,572 priority patent/US5639299A/en
Application granted granted Critical
Publication of JP2642031B2 publication Critical patent/JP2642031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は液相エピタキシャル成
長に用いる化合物半導体単結晶基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor single crystal substrate used for liquid phase epitaxial growth.

【0002】[0002]

【従来の技術】従来化合物半導体のエピタキシャル成長
用基板としては、表面を鏡面状に研磨したものが使用さ
れている。その表面の粗さは、1mm線上毎に1μm未
満が一般的である。このような鏡面状または鏡面に近い
基板は、単結晶インゴットをスライスした後必要により
円形加工し、その表面をラッピングおよび必要によりポ
リッシュ加工することにより得られる。基板の表面を鏡
面または鏡面に近い面に仕上げることは当業者において
常識とされていた。理由は、その上に成長するエピタキ
シャル層の平坦性、厚みの均一性、電気的光学的特性の
安定性等の重要な特性を損なわないためである。
2. Description of the Related Art Conventionally, as a substrate for epitaxial growth of a compound semiconductor, a substrate having a mirror-polished surface has been used. The surface roughness is generally less than 1 μm per 1 mm line. Such a mirror-like or near-mirror-like substrate is obtained by slicing a single crystal ingot, processing it as necessary into a circular shape, lapping the surface, and polishing as necessary. It has been common knowledge in the art to finish the surface of the substrate to a mirror surface or a surface close to the mirror surface. The reason is that important characteristics such as flatness, uniformity of thickness and stability of electric and optical characteristics of the epitaxial layer grown thereon are not impaired.

【0003】エピタキシャル成長の方法は気相成長、液
相成長、分子線エピタキシャル成長等種々あるが、従来
どの成長手法においても鏡面または鏡面に近い表面を有
する基板が使用されている。実際に、発光ダイオード用
液相エピタキシャルウエハの基板としても、表面粗さの
粗いものを使うという発想は従来なかったということが
できる。
There are various methods of epitaxial growth, such as vapor phase growth, liquid phase growth, and molecular beam epitaxial growth. Conventionally, in any growth method, a substrate having a mirror surface or a surface close to the mirror surface is used. In fact, it can be said that there has not been an idea of using a substrate having a rough surface as a substrate of a liquid phase epitaxial wafer for a light emitting diode.

【0004】[0004]

【発明が解決しようとする課題】このような従来の鏡面
状または鏡面に近い基板は、スライス、ラップ、ポリッ
シュという加工工程が必要であるため、製造に時間と手
間を要しコストが高いという問題があった。また、Ga
As基板のサイズが直径76mm、厚み600μm程度
のものでは重量が1枚当たり約14gとなり、表面が鏡
面状であると輸送の際に滑って落下しやすいという問題
もあった。この発明は上記の問題点を解決し、比較的安
価でかつ輸送の際の滑りも少ない実用的に優れた液相エ
ピタキシャル成長用化合物半導体単結晶基板を提供する
ことを目的とする。
Such a conventional mirror-like or near-mirror substrate requires processing steps such as slicing, wrapping and polishing, so that it takes a lot of time and labor to manufacture, and the cost is high. was there. Also, Ga
When the size of the As substrate is about 76 mm in diameter and about 600 μm in thickness, the weight is about 14 g per sheet. If the surface is mirror-like, there is also a problem that it slips and drops easily during transportation. An object of the present invention is to solve the above-mentioned problems and to provide a practically excellent compound semiconductor single crystal substrate for liquid phase epitaxial growth which is relatively inexpensive and has little slip during transportation.

【0005】[0005]

【課題を解決するための手段】この発明は、基板表面の
1cm2毎に1点ずつの表面の粗さが、1mm線上での
測定値のうち50%以上が1μm以上で20μm以下の
範囲になるように単結晶インゴットをスライスした後
に、前記基板表面を鏡面状に研磨加工することなく、前
記基板表面の上にエピタキシャル層を形成することを特
徴とする化合物半導体の液相エピタキシャル成長方法で
ある。また、この発明は、基板表面の1cm2毎に1点
ずつ表面の粗さを1mm線上で測定し、各測定点での測
定値のうち50%以上が1μm以上で10μm以下の範
囲にあり、前記基板がGaAsであり、前記基板上のエ
ピタキシャル層がGaAsであることを特徴とする液相
エピタキシャル成長用半導体単結晶基板である。さら
に、その基板が赤外線または可視光の発光ダイオード用
エピタキシャルウェハの基板として使用されることを特
徴とする。ここで表面粗さとは、先端の曲率半径が1〜
50μmの触針を基板の表面に当てて、1mmの長さの
線上を測定したとき、この間の最高部と最低部との高さ
の差である。
According to the present invention, the surface roughness of one point per 1 cm 2 of the substrate surface is within a range of 1 μm or more and 20 μm or less of 50% or more of the measured values on a 1 mm line. A liquid phase epitaxial growth method for a compound semiconductor, characterized in that after slicing a single crystal ingot, an epitaxial layer is formed on the substrate surface without polishing the substrate surface to a mirror surface. In addition, the present invention measures the surface roughness on a 1 mm line at one point every 1 cm 2 of the substrate surface, and 50% or more of the measured values at each measurement point is in a range of 1 μm or more and 10 μm or less, A semiconductor single crystal substrate for liquid phase epitaxial growth, wherein the substrate is GaAs, and the epitaxial layer on the substrate is GaAs. Further, the substrate is used as a substrate of an epitaxial wafer for an infrared or visible light emitting diode. Here, the surface roughness means that the radius of curvature of the tip is 1 to
When a 50 μm stylus is applied to the surface of the substrate and measured on a line having a length of 1 mm, the difference between the height of the highest portion and the height of the lowest portion is measured.

【0006】表面粗さは、基板表面上でほぼ1cm2
とに1点ずつ測定し、各測定点での測定値のうちの50
%以上が、1μm以上20μm以下好ましくは1μm以
上10μm以下である。
The surface roughness is measured on the substrate surface one point at a time approximately every 1 cm 2 , and 50% of the measured values at each measurement point is measured.
% Is 1 μm or more and 20 μm or less, preferably 1 μm or more and 10 μm or less.

【0007】[0007]

【作用】基板の表面粗さが1mm線上毎に1μm以上2
0μm以下好ましくは1μm以上10μm以下であるか
ら、製造工程においてラッピングおよびポリッシュが不
要である。したがって、製造に要する時間と手間を少な
くすることができ、比較的安価に基板を得ることが出来
る。また鏡面状の基板に比べて表面が粗いので、輸送の
際の滑りの問題も軽減される。この発明の半導体単結晶
基板は、赤外線または可視光の発光ダイオード用エピタ
キシャルウエハ、特にGaAs単結晶基板において有用
である。
The surface roughness of the substrate is at least 1 μm per 1 mm line.
Since it is 0 μm or less, preferably 1 μm or more and 10 μm or less, lapping and polishing are not required in the manufacturing process. Therefore, the time and labor required for manufacturing can be reduced, and the substrate can be obtained relatively inexpensively. Further, since the surface is rougher than that of a mirror-like substrate, the problem of slippage during transportation is reduced. INDUSTRIAL APPLICABILITY The semiconductor single crystal substrate of the present invention is useful for an epitaxial wafer for an infrared or visible light emitting diode, particularly a GaAs single crystal substrate.

【0008】これらの発光ダイオードに用いられるエピ
タキシャル層は通常10μm以上の厚みを有する。この
ような厚みを有するエピタキシャル層を液相成長法によ
って成長する場合に、基板結晶の表面は鏡面または鏡面
に近い状態である必要はないことを本発明者は見いだし
たのである。液相エピタキシャル成長法において適切な
成長条件を設定することにより、この発明の基板を効果
的に使用することが出来る。ちなみに、気相成長法や分
子線エピタキシャル成長法により成長される電子デバイ
ス用等のエピタキシャル層の厚みは10μm未満が一般
的であって、しかもこれらの成長法では基板表面の凹凸
が忠実にエピタキシャル成長層の表面に反映する傾向が
ある。したがって、気相成長法や分子線エピタキシャル
成長法には表面粗さの粗い基板を使用することは出来な
い。
The epitaxial layer used in these light emitting diodes usually has a thickness of 10 μm or more. The present inventor has found that when an epitaxial layer having such a thickness is grown by the liquid phase growth method, the surface of the substrate crystal does not need to be a mirror surface or a state close to the mirror surface. By setting appropriate growth conditions in the liquid phase epitaxial growth method, the substrate of the present invention can be used effectively. Incidentally, the thickness of an epitaxial layer for an electronic device or the like grown by a vapor phase epitaxy method or a molecular beam epitaxy method is generally less than 10 μm, and in these growth methods, the unevenness of the substrate surface is faithful to the epitaxial growth layer. It tends to reflect on the surface. Therefore, a substrate having a rough surface cannot be used for the vapor phase growth method or the molecular beam epitaxial growth method.

【0009】[0009]

【実施例】【Example】

(実施例1) ボート法により成長したGaAs単結晶
インゴットをスライスして厚み530μmのウエハを切
り出した。各ウエハを直径76mmの円形に加工して液
相エピタキシャル成長用基板を得た。スライスには、通
常のダイヤモンド砥粒を電着した内周刃砥石を使用し
た。ただし、スライサ各部の機械的精度を改善するとと
もに、ダイヤモンド砥粒の粒度および形状を最適化する
ことにより、表面粗さを改善した。スライス後のウエハ
の表面粗さを、ウエハ表面のほぼ1cm2毎に1点ずつ
1mmの長さの線上で測定した。測定点のうち50%以
上で表面粗さは1〜4μmであった。表面粗さの測定結
果の一例を図1に示す。
Example 1 A 530 μm thick wafer was cut out by slicing a GaAs single crystal ingot grown by the boat method. Each wafer was processed into a circle having a diameter of 76 mm to obtain a substrate for liquid phase epitaxial growth. For slicing, an inner peripheral grindstone on which ordinary diamond abrasive grains were electrodeposited was used. However, the surface roughness was improved by improving the mechanical accuracy of each part of the slicer and optimizing the grain size and shape of the diamond abrasive grains. The surface roughness of the wafer after slicing was measured on a line having a length of 1 mm, one point approximately every 1 cm 2 of the wafer surface. At 50% or more of the measurement points, the surface roughness was 1-4 μm. FIG. 1 shows an example of the measurement results of the surface roughness.

【0010】このGaAs単結晶基板の上に、赤外線発
光ダイオード用のSiドープGaAsエピタキシャル層
を液相成長法により形成した。エピタキシャル層の厚み
はp型層、n型層合計で180μmで、厚みの均一性は
ウエハ面内およびウエハ間で±5%以内であった。また
エピタキシャル層の表面は異常成長等のない良好な状態
であった。成長を開始する前には基板の表面をメルトバ
ックする(原料溶液中に基板表面を一部溶解させる)こ
とが好ましい。メルトバックの条件を最適化することに
よって表面が平坦で厚みの均一なエピタキシャル層を得
ることが出来る。このエピタキシャルウエハから作製し
た発光ダイオードは、良好な電気的、光学的特性を有し
ていた。
On this GaAs single crystal substrate, a Si-doped GaAs epitaxial layer for an infrared light emitting diode was formed by a liquid phase growth method. The thickness of the epitaxial layer was 180 μm in total for the p-type layer and the n-type layer, and the uniformity of the thickness was within ± 5% within the wafer surface and between the wafers. The surface of the epitaxial layer was in a good state without abnormal growth or the like. Before starting the growth, it is preferable to melt back the surface of the substrate (partially dissolve the substrate surface in the raw material solution). By optimizing the conditions for melt back, an epitaxial layer having a flat surface and a uniform thickness can be obtained. The light emitting diode manufactured from this epitaxial wafer had good electrical and optical characteristics.

【0011】(実施例2) ボート法により成長したG
aAs単結晶インゴットをスライスして厚み370μm
のウエハを切り出した。各ウエハを直径50mmの円形
に加工して液相エピタキシャル成長用基板を得た。スラ
イスには、通常のダイヤモンド砥粒を電着した内周刃砥
石を使用した。ただし、スライサ各部の機械的精度を改
善するとともに、ダイヤモンド砥粒の粒度および形状を
最適化することにより、表面粗さを改善した。スライス
後のウエハの表面粗さを、ウエハ表面のほぼ1cm2
に1点ずつ1mmの長さの線上で測定した。測定点のう
ち50%以上で表面粗さは5〜13μmであった。
(Example 2) G grown by the boat method
aAs single crystal ingot sliced to 370μm thick
Was cut out. Each wafer was processed into a circle having a diameter of 50 mm to obtain a substrate for liquid phase epitaxial growth. For slicing, an inner peripheral grindstone on which ordinary diamond abrasive grains were electrodeposited was used. However, the surface roughness was improved by improving the mechanical accuracy of each part of the slicer and optimizing the grain size and shape of the diamond abrasive grains. The surface roughness of the wafer after slicing was measured on a line having a length of 1 mm, one point approximately every 1 cm 2 of the wafer surface. The surface roughness was 5 to 13 μm at 50% or more of the measurement points.

【0012】このGaAs単結晶基板の上に、赤外線発
光ダイオード用のSiドープGaAsエピタキシャル層
を液相成長法により形成した。エピタキシャル層の厚み
はp型層、n型層合計で180μmで、厚みの均一性は
ウエハ面内およびウエハ間で±5%以内であった。また
エピタキシャル層の表面は異常成長等のない良好な状態
であった。成長を開始する前には基板の表面をメルトバ
ックする(原料溶液中に基板表面を一部溶解させる)こ
とが好ましい。メルトバックの条件を最適化することに
よって表面が平坦で厚みの均一なエピタキシャル層を得
ることが出来る。このエピタキシャルウエハから作製し
た発光ダイオードは、良好な電気的、光学的特性を有し
ていた。
On this GaAs single crystal substrate, a Si-doped GaAs epitaxial layer for an infrared light emitting diode was formed by a liquid phase growth method. The thickness of the epitaxial layer was 180 μm in total for the p-type layer and the n-type layer, and the uniformity of the thickness was within ± 5% within the wafer surface and between the wafers. The surface of the epitaxial layer was in a good state without abnormal growth or the like. Before starting the growth, it is preferable to melt back the surface of the substrate (partially dissolve the substrate surface in the raw material solution). By optimizing the conditions for melt back, an epitaxial layer having a flat surface and a uniform thickness can be obtained. The light emitting diode manufactured from this epitaxial wafer had good electrical and optical characteristics.

【0013】(実施例3) ボート法により成長したZ
nドープGaAs単結晶インゴットをスライスして厚み
600μmのウエハを切り出した。各ウエハを直径76
mmの円形に加工して液相エピタキシャル成長用基板を
得た。ウエハの表面粗さをウエハ表面のほぼ1cm2
に1点ずつ1mmの長さの線上で測定した。測定点のう
ち50%以上で表面粗さは5〜7μmであった。この基
板上に厚み10μmのAl0.65Ga0.35Asエピタキシ
ャル層を液相成長法により形成した。エピタキシャル層
の厚みの均一性はウエハ面内およびウエハ間で±3%以
内であった。またエピタキシャル層の表面は異常成長等
のない良好な状態であった。
(Example 3) Z grown by the boat method
An n-doped GaAs single crystal ingot was sliced to cut out a wafer having a thickness of 600 μm. Each wafer has a diameter of 76
This was processed into a circular shape of mm to obtain a substrate for liquid phase epitaxial growth. The surface roughness of the wafer was measured on a line having a length of 1 mm, one point approximately every 1 cm 2 of the wafer surface. The surface roughness was 5 to 7 μm at 50% or more of the measurement points. An Al 0.65 Ga 0.35 As epitaxial layer having a thickness of 10 μm was formed on the substrate by a liquid phase growth method. The uniformity of the thickness of the epitaxial layer was within ± 3% within the wafer surface and between the wafers. The surface of the epitaxial layer was in a good state without abnormal growth or the like.

【0014】(実施例4) ボート法により成長したZ
nドープGaAs単結晶インゴットをスライスして厚み
370μmのウエハを切り出した。各ウエハを直径50
mmの円形に加工して液相エピタキシャル成長用基板を
得た。ウエハの表面粗さをウエハ表面のほぼ1cm2
に1点ずつ1mmの長さの線上で測定した。測定点のう
ち50%以上で表面粗さは9〜16μmであった。この
基板上に厚み10μmのAl0.65Ga0.35Asエピタキ
シャル層を液相成長法により形成した。エピタキシャル
層の厚みの均一性はウエハ面内およびウエハ間で±3%
以内であった。またエピタキシャル層の表面は異常成長
等のない良好な状態であった。
(Example 4) Z grown by the boat method
An n-doped GaAs single crystal ingot was sliced to cut out a 370 μm thick wafer. Each wafer has a diameter of 50
This was processed into a circular shape of mm to obtain a substrate for liquid phase epitaxial growth. The surface roughness of the wafer was measured on a line having a length of 1 mm, one point approximately every 1 cm 2 of the wafer surface. The surface roughness was 9 to 16 μm at 50% or more of the measurement points. An Al 0.65 Ga 0.35 As epitaxial layer having a thickness of 10 μm was formed on the substrate by a liquid phase growth method. Epitaxial layer thickness uniformity is ± 3% within wafer plane and between wafers
Was within. The surface of the epitaxial layer was in a good state without abnormal growth or the like.

【0015】上記の4つの実施例で、GaAsをエピタ
キシャル成長する場合に比べてAlGaAsを成長する
場合には基板の表面粗さは多少粗くてもよいという傾向
が見受けられた。AlGaAsの方がGaAsに比べて
成長表面が平坦になりやすいという性質によるものと推
定できる。
In the above four examples, it was found that the surface roughness of the substrate may be slightly larger when AlGaAs is grown than when GaAs is epitaxially grown. It can be estimated that AlGaAs has a property that the growth surface is more likely to be flatter than GaAs.

【0016】(比較実験例1) 基板の表面粗さが1μ
m未満の各種のウエハについて、輸送時に落下した枚数
を調べた。表面粗さが0.2μmから2μmの間の6水
準について各1000枚のウエハを、樹脂性の先端部を
有するピンセットで保持・輸送した。結果は図2のとお
りで、表面粗さが1μm未満では3〜6枚の落下があっ
たが、1μm以上ではウエハの落下はなかった。
Comparative Example 1 The surface roughness of the substrate was 1 μm.
The number of wafers dropped during transportation was examined for various wafers less than m. 1000 wafers were held and transported with tweezers having a resinous tip for six levels of surface roughness between 0.2 μm and 2 μm. The results are as shown in FIG. 2. When the surface roughness was less than 1 μm, 3 to 6 sheets dropped, but when the surface roughness was 1 μm or more, no wafer dropped.

【0017】(比較実験例2) 表面粗さが1μm〜3
0μmの各種のウエハを基板として用いて、厚み約20
μmのGaAsエピタキシャル層を成長させた。表面粗
さが1μmから30μmの間の10水準について各10
0枚の基板を使用し、基板の表面粗さと、成長したエピ
タキシャル層の表面異常の発生の程度との関係を調べ
た。結果は図3に示すとおりで、表面粗さが20μm以
下ではエピタキシャル層表面の異常発生は少なかった
が、20μmを越えると異常の発生が急増した。1μm
以上10μm未満の範囲では特に異常発生が少なかっ
た。
(Comparative Experimental Example 2) Surface roughness of 1 μm to 3
Using various types of wafers having a thickness of about 20 μm,
A μm GaAs epitaxial layer was grown. 10 levels for each of 10 levels with a surface roughness between 1 μm and 30 μm.
Using zero substrates, the relationship between the surface roughness of the substrate and the degree of occurrence of surface abnormality of the grown epitaxial layer was examined. The results are as shown in FIG. 3. When the surface roughness was 20 μm or less, the occurrence of abnormalities on the epitaxial layer surface was small, but when it exceeded 20 μm, the occurrence of abnormalities increased rapidly. 1 μm
Above the range of less than 10 μm, the occurrence of abnormalities was particularly small.

【0018】[0018]

【発明の効果】この発明の化合物半導体単結晶基板は、
表面粗さが1μm以上20μm以下、好ましくは1μm
以上10μm以下であるので、製造工程においてラップ
およびポリッシュの工程が不要である。したがって基板
を輸送する際の滑りによる落下を防止できるとともに、
比較的安価に液相エピタキシャル成長用基板を提供する
ことが可能である。
The compound semiconductor single crystal substrate of the present invention
Surface roughness of 1 μm or more and 20 μm or less, preferably 1 μm
Since it is not less than 10 μm, lapping and polishing steps are unnecessary in the manufacturing process. Therefore, it is possible to prevent falling due to slip when transporting the substrate,
It is possible to provide a substrate for liquid phase epitaxial growth relatively inexpensively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の化合物半導体単結晶基板の表面粗さの
一例を示すグラフである。
FIG. 1 is a graph showing an example of the surface roughness of a compound semiconductor single crystal substrate of the present invention.

【図2】基板の表面粗さと落下枚数の実験結果を示すグ
ラフである。
FIG. 2 is a graph showing experimental results of the surface roughness of a substrate and the number of dropped substrates.

【図3】基板の表面粗さとエピタキシャル層表面の異常
発生枚数の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the surface roughness of a substrate and the number of abnormalities on the surface of an epitaxial layer.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板表面の1cm2毎に1点ずつの表面の粗
さが、1mm線上での測定値のうち50%以上が1μm
以上で20μm以下の範囲になるように単結晶インゴッ
トをスライスした後に、前記基板表面を鏡面状に研磨加
工することなく、前記基板表面の上にエピタキシャル層
を形成することを特徴とする化合物半導体の液相エピタ
キシャル成長方法。
1. The surface roughness of one point per 1 cm 2 of the substrate surface is 1 μm at least 50% of the measured value on a 1 mm line.
After slicing the single crystal ingot so as to be in the range of 20 μm or less, an epitaxial layer is formed on the substrate surface without polishing the substrate surface to a mirror-like shape. Liquid phase epitaxial growth method.
【請求項2】基板表面の1cm2毎に1点ずつ表面の粗
さを1mm線上で測定し、各測定点での測定値のうち5
0%以上が1μm以上で10μm以下の範囲にあり、前
記基板がGaAsであり、前記基板上のエピタキシャル
層がGaAsであることを特徴とする液相エピタキシャ
ル成長用半導体単結晶基板。
2. The surface roughness is measured on a 1 mm line at one point for each 1 cm 2 of the substrate surface.
A semiconductor single crystal substrate for liquid phase epitaxial growth, wherein 0% or more is in the range of 1 μm to 10 μm, the substrate is GaAs, and the epitaxial layer on the substrate is GaAs.
【請求項3】赤外線または可視光の発光ダイオード用エ
ピタキシャルウェハの基板として使用される請求項2に
記載の化合物半導体単結晶基板。
3. The compound semiconductor single crystal substrate according to claim 2, which is used as a substrate for an epitaxial wafer for an infrared or visible light emitting diode.
JP4033693A 1992-05-19 1993-03-02 Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate Expired - Lifetime JP2642031B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4033693A JP2642031B2 (en) 1992-05-19 1993-03-02 Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate
TW083101677A TW230822B (en) 1993-03-02 1994-02-28
KR1019940003946A KR0156486B1 (en) 1993-03-02 1994-03-02 Compound semiconductor single crystalline substrate for liquid phase epitaxial growth
US08/400,271 US5514903A (en) 1993-03-02 1995-03-03 Compound semiconductor single-crystalline substrate for liquid phase epitaxial growth
US08/451,572 US5639299A (en) 1993-03-02 1995-05-26 Method of making compound semiconductor single-crystalline substrate for liquid phase epitaxial growth

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12607992 1992-05-19
JP4-126079 1992-05-19
JP4033693A JP2642031B2 (en) 1992-05-19 1993-03-02 Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate

Publications (2)

Publication Number Publication Date
JPH0637024A JPH0637024A (en) 1994-02-10
JP2642031B2 true JP2642031B2 (en) 1997-08-20

Family

ID=26379787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033693A Expired - Lifetime JP2642031B2 (en) 1992-05-19 1993-03-02 Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate

Country Status (1)

Country Link
JP (1) JP2642031B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475591B2 (en) * 2008-08-15 2013-07-02 Varian Semiconductor Equipment Associates, Inc. Method of controlling a thickness of a sheet formed from a melt

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7311470A (en) * 1973-08-21 1975-02-25 Philips Nv METHOD OF DEPOSITING AN EPITAXIAL

Also Published As

Publication number Publication date
JPH0637024A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
JP5607781B2 (en) Large area and uniform low dislocation density GaN substrate and its manufacturing process
US8012882B2 (en) Method of manufacturing nitride substrate for semiconductors
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
US9431489B2 (en) β-Ga2O3-based single crystal substrate
US9349915B2 (en) β-Ga2O3-based single crystal substrate
JP4380294B2 (en) Group III-V nitride semiconductor substrate
CN113207310A (en) Indium phosphide substrate, semiconductor epitaxial wafer, and method for producing indium phosphide substrate
CN113207308A (en) Indium phosphide substrate, semiconductor epitaxial wafer, and method for producing indium phosphide substrate
CN113207309A (en) Indium phosphide substrate, semiconductor epitaxial wafer, and method for producing indium phosphide substrate
US5514903A (en) Compound semiconductor single-crystalline substrate for liquid phase epitaxial growth
JP4583060B2 (en) Method for manufacturing single crystal sapphire substrate and method for manufacturing nitride semiconductor light emitting device
JP2642031B2 (en) Liquid phase epitaxial growth method of compound semiconductor and compound semiconductor single crystal substrate
US8853672B2 (en) Gallium nitride substrate and epitaxial wafer
TW202226354A (en) Indium phosphide substrate, method for manufacturing indium phosphide substrate, and semiconductor epitaxial wafer
JP2016074553A (en) Method for manufacturing group iii nitride semiconductor single crystal substrate
EP1791171B1 (en) Epitaxial crystal growing method
JP2001253800A (en) Thin sapphire substrate
JP3531205B2 (en) Substrate for epitaxial growth and epitaxial wafer
JP2015164162A (en) semiconductor laminated structure and semiconductor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 16

EXPY Cancellation because of completion of term