JP2638620B2 - Method for producing anhydrous neodymium fluoride - Google Patents

Method for producing anhydrous neodymium fluoride

Info

Publication number
JP2638620B2
JP2638620B2 JP63210103A JP21010388A JP2638620B2 JP 2638620 B2 JP2638620 B2 JP 2638620B2 JP 63210103 A JP63210103 A JP 63210103A JP 21010388 A JP21010388 A JP 21010388A JP 2638620 B2 JP2638620 B2 JP 2638620B2
Authority
JP
Japan
Prior art keywords
ndf
ndof
heating
neodymium fluoride
producing anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63210103A
Other languages
Japanese (ja)
Other versions
JPH0259424A (en
Inventor
英雄 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63210103A priority Critical patent/JP2638620B2/en
Publication of JPH0259424A publication Critical patent/JPH0259424A/en
Application granted granted Critical
Publication of JP2638620B2 publication Critical patent/JP2638620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は最近高性能磁石として注目されているNd−Fe
−B系磁石用の原料となるNdおよびNd合金の製造に好適
な無水NdF3の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to Nd-Fe which has recently attracted attention as a high-performance magnet.
The present invention relates to a method for producing anhydrous NdF 3 suitable for producing Nd and Nd alloy as raw materials for a B-based magnet.

〔従来の技術〕 一般にNdまたはNd合金は無水NdF3(以下NdF3という)
を原料としてCa還元法、或いは溶融塩電解法によって製
造されており、NdF3は通常NdCl3等のNd化合物にフッ酸
を反応させてNdF3−nH2Oとし、これを加熱してつくられ
ているが、詳細については記載された文献がない。
[Prior art] Generally, Nd or Nd alloy is anhydrous NdF 3 (hereinafter referred to as NdF 3 ).
NdF 3 is usually produced by reacting Nd compounds such as NdCl 3 with hydrofluoric acid to produce NdF 3 -nH 2 O, which is then heated to produce NdF 3 -nH 2 O. However, there is no document describing the details.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、本発明者等は先に上記いずれの方法において
も、市販の無水NdF3を原料として使用すると、Ndの収率
が理論値をはるかに下まわるばかりでなく、さらに製造
過程で種々なトラブルが発生することを知見し発表し
た。(Ca還元法については特開昭60−77943号公報、溶
融塩電解については、特願昭63−173487)。
However, the present inventors have found that, in any of the above methods, when commercially available anhydrous NdF 3 is used as a raw material, not only does the yield of Nd fall far below the theoretical value, but also various troubles in the production process. I noticed that it occurred and announced it. (Japanese Unexamined Patent Publication No. Sho 60-77943 for the Ca reduction method and Japanese Patent Application No. 63-173487 for molten salt electrolysis).

本発明者らは、その原因を究明すべく鋭意研究を行っ
た結果、市販の無水NdF3には3〜10wt%のNdOFが含有さ
れており、これが収率の低下、或いはトラブルの原因と
なっていることを発現した。すなわち、 (a)Ca等の金属還元法でNdまたはNd合金を製造する工
程における反応は、下記(1)式によって行われる。
The present inventors have conducted intensive studies to determine the cause, and as a result, commercially available anhydrous NdF 3 contains 3 to 10% by weight of NdOF, which reduces the yield or causes trouble. That was expressed. That is, (a) the reaction in the step of producing Nd or an Nd alloy by a metal reduction method of Ca or the like is performed according to the following equation (1).

(1)式の反応においてCaCL2は生成したCaF2を溶解
し、Nd化合物をCaCl2−CaF2との分離をよくするために
添加されるものである。
In the reaction of the formula (1), CaCL 2 is added to dissolve generated CaF 2 and to improve the separation of the Nd compound from CaCl 2 -CaF 2 .

しかし、NdOFが存在すると、(1)の還元反応がNdOF
の量だけ進行しないばかりでなく、NdOFはCaCl2との溶
解がスムースに行われず、生成した合金の中に残留する
ため、生成合金の品位を低下させる。
However, if NdOF is present, the reduction reaction of (1)
In addition, NdOF does not dissolve with CaCl 2 smoothly and remains in the formed alloy, thus deteriorating the quality of the formed alloy.

(b)NdF3を用いる溶融塩電解法としては、LiF−NdF3
系でNdF3を電解する方法とLiF−NdF3−Nd2O3系でNd2O3
を電解する方法とがある。
(B) As a molten salt electrolysis method using NdF 3 , LiF—NdF 3
Nd 2 O 3 in the manner as LiF-NdF 3 -Nd 2 O 3 based electrolyzing NdF 3 in the system
And electrolysis.

上記電解法において、NdOFが存在するとNdOFは電気分
解されないのでNdF3中のNdOF相当分だけコストアップす
る。
In the electrolytic method, the NdOF there NdOF to cost only NdOF equivalent in NdF 3 of since it is not electrolyzed.

また、NdOFが存在する浴は比重が大きく粘性が大で、
溶解度が小さいため、正常な電解浴の下部に析出する。
したがって生成した溶融Nd合金に懸濁し易く、Ca還元法
と同様に合金の品位を低下させることになる。
Also, the bath in which NdOF exists has a large specific gravity and a large viscosity,
Due to its low solubility, it precipitates below the normal electrolytic bath.
Therefore, the alloy is easily suspended in the produced molten Nd alloy, and the quality of the alloy is reduced as in the case of the Ca reduction method.

さらに溶融塩電解法は、その特性上連続運転が行われ
るものであるため、NdF3が電解されてNdOFが電解されな
いと電解浴中のNdOF濃度は次第に高くなる。したがっ
て、長時間運転を行うと、NdOF蓄積により正常の運転が
維持出来なくなり、中断せざるを得ない。
Furthermore, since the molten salt electrolysis method is a continuous operation due to its characteristics, if NdF 3 is electrolyzed and NdOF is not electrolyzed, the NdOF concentration in the electrolytic bath gradually increases. Therefore, if the operation is performed for a long time, the normal operation cannot be maintained due to the accumulation of NdOF, and the operation must be interrupted.

したがってNdまたはNd合金を効率よくつくるには、Nd
OF含有量の少ない無水NdF3を使用することが必要で、Nd
F3中にNdOFが混入する原因について研究を行った結果次
のことが判明した。
Therefore, to make Nd or Nd alloy efficiently, Nd
It is necessary to use anhydrous NdF 3 with a low OF content,
F 3 results NdOF has studied the cause of contamination during the next it was found.

無水NdF3の製造は、前記のようにNd化合物にフッ酸
(HF)を反応させ、NdF3・nH2Oをつくりこれを加熱して
得られる。
The production of anhydrous NdF 3 can be obtained by reacting an Nd compound with hydrofluoric acid (HF) as described above to produce NdF 3 .nH 2 O and heating it.

Nd化合物としてNdCl2を例として化学反応式を示すと NdCl3+3HF+nH2O→NdF3・nH2O+3HCl …(2) 上記の反応で(2)式で得られた水を含んだNdF3・nH
2Oを加熱して(3)式の反応によって無水NdF3をつくれ
れば問題はない。
When NdCl 2 is used as an example of the Nd compound, the chemical reaction formula is as follows: NdCl 3 + 3HF + nH 2 O → NdF 3 · nH 2 O + 3HCl (2) NdF 3 .nH containing water obtained by the above reaction by the formula (2)
By heating the 2 O (3) no problem if Tsukurere anhydrous NdF 3 by reaction formula.

しかし加熱条件が適切でないと、空気中の水分や酸素
と(4)(5)式によって反応し、NdOFが生成し、これ
が混入されたNdF3となる。すなわち、(3)の3反応で
加熱温度が低過ぎると水分が残留し、高すぎると(4)
(5)の反応によってNdOFを含んだNdF3となり、さらに
加熱温度が高いと全てがNdOFとなる。
However, if the heating conditions are not appropriate, it reacts with the moisture and oxygen in the air according to the equations (4) and (5) to generate NdOF, which becomes NdF 3 mixed with NdOF. That is, if the heating temperature is too low in the three reactions (3), moisture remains, and if the heating temperature is too high, (4)
By the reaction of (5), NdF 3 containing NdOF is formed, and when the heating temperature is further increased, all become NdOF.

このことは、市販のNdF3中のNdOFの量が各ロットによ
って、大きく変化していることも一致する。
This is consistent with the fact that the amount of NdOF in commercially available NdF 3 varies greatly from lot to lot.

本発明は上記の事情に鑑み、NdF3・nH2Oを加熱して、
NdOFの含有量の少ないNdF3が得られる製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, to heat the NdF 3 · nH 2 O,
An object of the present invention is to provide a production method capable of obtaining NdF 3 having a small content of NdOF.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、加熱条件を種々検討した
結果、本発明の方法においては、大気中で加熱する場合
には、加熱温度を100〜800℃とし、10-1mmHg以下の減圧
下で加熱する場合には、加熱温度を50〜1100℃とする条
件が適することを見出した。
In order to achieve the above object, as a result of various examinations of the heating conditions, in the method of the present invention, when heating in the air, the heating temperature is 100 to 800 ° C., and under a reduced pressure of 10 -1 mmHg or less. In the case of heating, it has been found that a condition in which the heating temperature is 50 to 1100 ° C. is suitable.

〔作用〕[Action]

本発明の方法は上記の構成となっているので、(4)
(5)式で示した反応がいずれも抑制される。
Since the method of the present invention has the above configuration, (4)
Any of the reactions represented by the formula (5) is suppressed.

NdF3・nH2Oを加熱してNdF3を得る方法としては、 i) 大気中で加熱する方法 ii) 減圧下で加熱する方法 iii) 不活性ガス雰囲気で加熱する方法 iv) i)〜iii)を組を組み合わせる方法 が考えられるが、iv)の方法は、i)〜iii)の条件が
決まれば選択できるので、i)〜iii)の条件について
説明する。
The method of heating NdF 3 · nH 2 O to obtain NdF 3 includes: i) heating in air ii) heating under reduced pressure iii) heating in an inert gas atmosphere iv) i) to iii The method of iv) can be selected if the conditions of i) to iii) are determined. The conditions of i) to iii) will be described.

i) 大気中において加熱する方法 上記(3)式の反応が進行して(4)(5)式の反応
が起こらない温度選定とすると、(3)式の反応は、Nd
F3・nH2Oを100℃に保持することによって完了する。
(4)(5)の反応は大気中の水分、O2の影響を受ける
ので、同じ条件で加熱しても容器に入れた試料の大気に
接触している上部と、接触していない下部とでは異な
り、上部が650℃程度から徐々にNdOFの生成が認められ
るのに対し、下部では、800℃程度になってはじめてNdO
Fの生成が認められる。
i) Method of heating in the atmosphere If the temperature is selected so that the reaction of the above formula (3) proceeds and the reactions of the formulas (4) and (5) do not occur, the reaction of the formula (3) becomes Nd
Complete by maintaining F 3 .nH 2 O at 100 ° C.
(4) Since the reaction of (5) is affected by moisture and O 2 in the atmosphere, the upper part of the sample placed in the container and the lower part not in contact with the atmosphere even when heated under the same conditions. Unlike the above, NdOF formation is gradually observed at about 650 ° C in the upper part, whereas NdO is not seen until about 800 ° C in the lower part.
The formation of F is observed.

したがって大気中における加熱温度範囲は100〜800
℃、特に100〜650℃が好ましい。
Therefore, the heating temperature range in the atmosphere is 100 to 800
° C, especially 100-650 ° C.

ii) 減圧下における加熱方法 減圧下においては、加熱されるNdF3・nH2Oと接する雰
囲気中の水分、O2が少なく、さらに発生するH2Oは、真
空ポンプ等の減圧手段によって逐次除去されるので、さ
らに可酷な加熱条件下でもNdOFの生成が抑制されるが、
その加熱条件は、減圧度とのかね合いによって決まる。
ii) Heating method under reduced pressure Under reduced pressure, moisture and O 2 in the atmosphere in contact with NdF 3 · nH 2 O to be heated are small, and further generated H 2 O is sequentially removed by a pressure reducing means such as a vacuum pump. Therefore, the generation of NdOF is suppressed even under severer heating conditions,
The heating conditions are determined by the balance with the degree of pressure reduction.

例えば容易に到達できる10-1mmHg程度の真空度におけ
る加熱温度は、50〜1100℃、特に100〜800℃が好まし
い。
For example, the heating temperature at a degree of vacuum of about 10 -1 mmHg, which can be easily reached, is preferably 50 to 1100 ° C, particularly preferably 100 to 800 ° C.

一般に、大気中で焼成した方が経済的であるが減下で
焼成すると適正温度範囲が広くなり短時間で焼成でき
る。
In general, firing in the air is more economical, but firing at a reduced temperature will broaden the appropriate temperature range and can be fired in a short time.

また、加熱中にNdF3・nH2Oが撹拌される例えばロータ
リーキルン等わ用いれば均一でバラつきの少ないNdF3
られ、特に大気中の焼成に有効である。
Further, if a NdF 3 .nH 2 O is stirred during heating, for example, a rotary kiln or the like can be used to obtain NdF 3 with uniformity and little variation, which is particularly effective for baking in the atmosphere.

iii) 不活性ガス雰囲気で加熱する方法 この方法は、(3)の反応が進行するとH2Oが発生
し、これがNdF3と反応してNdOFが生成する(4)の反応
が起こるので、本発明の方法としては不適当である。
iii) Method of heating in an inert gas atmosphere In this method, H 2 O is generated when the reaction of (3) proceeds, and this reacts with NdF 3 to generate NdOF, thereby causing the reaction of (4). It is not suitable as the method of the invention.

実施例1 NdCl3とHFとを反応させて得たNdF3・nH2Oを容器に入
れ、大気中で1時間、種々な温度で加熱焼成した。各温
度で加熱したNdF3について、気発損失量を測定して残存
水分を求め、またNdF3N中のNdOF量を容器中の上部およ
び下部の試料について測定し、NdOF/NdF3の重量比を求
めた。
Example 1 NdF 3 .nH 2 O obtained by reacting NdCl 3 and HF was put in a container and calcined by heating at various temperatures in the air for 1 hour. For NdF 3 heated at each temperature, the amount of air loss was measured to determine the residual moisture, and the amount of NdOF in NdF 3 N was measured for the upper and lower samples in the container, and the weight ratio of NdOF / NdF 3 was measured. I asked.

気発損失量 サンプルを大気中で200℃で1時間乾燥した。NdF3
のNdOF量の測定 CuのKα線を用いて回折X線のNdF3ピークとNdOFピー
クを求めた。定量に使用したピークは、NdF3は2θ=2
8.3゜、NdOFは2θ=27.2゜である。
Air loss The sample was dried in air at 200 ° C. for 1 hour. It was determined NdF 3 peak and NdOF peak of diffracted X-rays using the Kα line of measurement Cu of NdOF amount in NdF 3. The peak used for quantification was 2θ = 2 for NdF 3
8.3 ° and NdOF are 2θ = 27.2 °.

結果を第1図に示す。図より100〜800℃特に100〜650
℃の温度で焼成すると、NdOFが殆どなく、また水分を含
有しないNdF3が得られることがわかる。
The results are shown in FIG. 100 ~ 800 ℃, especially 100 ~ 650
It can be seen that when calcined at a temperature of ° C., NdF 3 containing almost no NdOF and containing no water can be obtained.

また、400℃で焼成したNdF3の回折X線のパターンを
第2図に示し、対象として市販のNdF3の回折X線のパタ
ーンを第3図に示した。図中Aは、NdF3のピーク、Bは
NdOFのピークを示すもので、本発明の方法によってつく
られたNdF3にはNdOFのピークが現れていない。
FIG. 2 shows the diffraction X-ray pattern of NdF 3 fired at 400 ° C., and FIG. 3 shows the diffraction X-ray pattern of commercially available NdF 3 as a target. In the figure, A is the peak of NdF 3 and B is
This shows the peak of NdOF, and NdF 3 produced by the method of the present invention has no peak of NdOF.

実施例2 10-1mmHgで焼成した他は実施例1と同じにした。結果
を第4図に示す。図より明らかなように、大気中の焼成
に比して広い範囲の温度域でNdOFを含有量の殆どないNd
F3が得られ、かつ短時間で製品が得られることがわか
る。また600℃で焼成して得たNdF3の回折X線は第2図
と同様のパターンを示した。
Example 2 Example 2 was the same as Example 1 except that it was fired at 10 -1 mmHg. The results are shown in FIG. As is clear from the figure, Nd with almost no NdOF content over a wide temperature range compared to firing in the atmosphere
F 3 is obtained and it is found that the product can be obtained in a short time. The diffraction X-ray of NdF 3 obtained by firing at 600 ° C. showed the same pattern as in FIG.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明のNdF3製造方法はNdOFが殆
ど含有しないNdF3が得られるので、これを原料としてNd
或いはNd合金を製造する際、Ca還元法、溶融電解法のい
ずれにおいても、収率が大幅に増大し、またトラブルの
発生が解消されるので、運転が簡単となって省力化さ
れ、設備の維持が容易となるなど多くの効果が発揮され
る。
As described above, since the NdF 3 production method of the present invention is NdF 3 of NdOF hardly contain obtained, Nd this as a raw material
Alternatively, when producing an Nd alloy, in any of the Ca reduction method and the molten electrolysis method, the yield is greatly increased and troubles are eliminated, so that operation is simplified and labor is saved, and Many effects such as easy maintenance are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、大気中で焼成した場合の各種温度における脱
水率および上部および下部における試料のNdOF/NdF3
重量比を示す図、第2図は大気中で400℃の温度で焼成
したNdF3の回折X線の図、第3図は市販NdF3の回折X線
の図、第4図は10-1mmHgの減圧下で焼成した試料の各温
度における脱水率、および上部、下部の試料のNdOF/NdF
3の重量比を示す図である。
FIG. 1 is a diagram showing the dehydration rates at various temperatures and the weight ratio of NdOF / NdF 3 of the sample in the upper and lower parts when fired in air, and FIG. 2 is a graph showing NdF fired in air at 400 ° C. Figure of diffracted X-rays 3, FIG. 3 is diagram of the diffracted X-rays of commercial NdF 3, dehydration rate in Figure 4 is the temperature of the fired samples under a reduced pressure of 10 -1 mmHg, and top, bottom sample NdOF / NdF
FIG. 3 is a diagram showing a weight ratio of 3 .

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NdF3・nH2Oを加熱焼成してNdOFが2wt%以
下の無水フッ化ネオジムを製造する方法であって、大気
中で100〜800℃の温度で焼成することを特徴とする無水
フッ化ネオジムの製造方法。
1. A method for producing anhydrous neodymium fluoride having NdOF of 2% by weight or less by heating and calcining NdF 3 .nH 2 O, characterized by calcining at 100 to 800 ° C. in the atmosphere. To produce anhydrous neodymium fluoride.
【請求項2】NdF3・nH2Oを加熱焼成してNdOFが2wt%以
下の無水フッ化ネオジムを製造する方法であって、10-1
mmHg以下の減圧下、50〜1100℃の温度で焼成することを
特徴とする無水フッ化ネオジムの製造方法。
2. A method for producing anhydrous neodymium fluoride having NdOF of 2% by weight or less by heating and calcining NdF 3 .nH 2 O, comprising: 10 -1.
A method for producing anhydrous neodymium fluoride, comprising calcination at a temperature of 50 to 1100 ° C. under reduced pressure of not more than mmHg.
JP63210103A 1988-08-24 1988-08-24 Method for producing anhydrous neodymium fluoride Expired - Lifetime JP2638620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210103A JP2638620B2 (en) 1988-08-24 1988-08-24 Method for producing anhydrous neodymium fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210103A JP2638620B2 (en) 1988-08-24 1988-08-24 Method for producing anhydrous neodymium fluoride

Publications (2)

Publication Number Publication Date
JPH0259424A JPH0259424A (en) 1990-02-28
JP2638620B2 true JP2638620B2 (en) 1997-08-06

Family

ID=16583864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210103A Expired - Lifetime JP2638620B2 (en) 1988-08-24 1988-08-24 Method for producing anhydrous neodymium fluoride

Country Status (1)

Country Link
JP (1) JP2638620B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2074752A1 (en) 1991-07-29 1993-01-30 Tadakazu Yamauchi Process and device for specific binding assay
JP5594747B2 (en) * 2012-10-29 2014-09-24 学校法人東京理科大学 Method for producing fine particle dispersion solution and method for producing LnOX-LnX3 composite particles

Also Published As

Publication number Publication date
JPH0259424A (en) 1990-02-28

Similar Documents

Publication Publication Date Title
JP2987713B2 (en) Method for producing high-purity hexafluorophosphoric acid compound
CN103298742B (en) A kind of technique manufacturing titanium chloride
Daane et al. Preparation of yttrium and some heavy rare earth metals
JPS63134686A (en) Method for refining lithium-containing aluminum scrap
NO862234L (en) PROCEDURE FOR PREPARING CALCIUM AND HIGH-PURITY Alloys.
JP2638620B2 (en) Method for producing anhydrous neodymium fluoride
JPH01313322A (en) Production of rare earth element boride
CN109913901B (en) Preparation method of metallic uranium
EP0671487A1 (en) Method for producing disilanes
US2880156A (en) Production of metals
JPH0438826B2 (en)
Moriarty Jr The industrial preparation of the rare earth metals by metallothermic reduction
US3130010A (en) Process for production of high purity cesium metal and cesium compounds
JP6772299B2 (en) Method of manufacturing metallic lithium
JPH06173065A (en) Method for refining ti
KR920007932B1 (en) Making process for rare metals-fe alloy
JPH0781903A (en) Production of inorganic fluoride being in gaseous state at ordinary temperature
US2777809A (en) Preparation of uranium
US3203881A (en) Production of metallic halides
JPH06173064A (en) Method for refining ti
Gregory et al. Production of ductile vanadium by calcium reduction of vanadium trioxide
RU1826998C (en) Method of preparing of aluminium-silicon alloy in electrolyzer for aluminium production
JP2856636B2 (en) Production method of ammonium cryolite
JP7368802B2 (en) Heavy metal separation method and metal recovery method
Hashimoto Thermal decomposition of ammonium hexafluorovanadate (III)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12