JPH0438826B2 - - Google Patents

Info

Publication number
JPH0438826B2
JPH0438826B2 JP21177884A JP21177884A JPH0438826B2 JP H0438826 B2 JPH0438826 B2 JP H0438826B2 JP 21177884 A JP21177884 A JP 21177884A JP 21177884 A JP21177884 A JP 21177884A JP H0438826 B2 JPH0438826 B2 JP H0438826B2
Authority
JP
Japan
Prior art keywords
platinum group
oxide
chloride
group metal
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21177884A
Other languages
Japanese (ja)
Other versions
JPS6191335A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59211778A priority Critical patent/JPS6191335A/en
Publication of JPS6191335A publication Critical patent/JPS6191335A/en
Publication of JPH0438826B2 publication Critical patent/JPH0438826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は白金族金属を回収する方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for recovering platinum group metals.

(従来技術とその問題点) 近年酸化チタン、酸化コバルト、酸化銅、酸化
すず、アルミナ、シリカ等の金属酸化物基体上
に、ルテニウム酸化物等の白金族金属酸化物被覆
を設けた不溶性金属電極や酸化触媒が、種々の電
気化学の分野、特に食塩電解工業における不溶性
電極として大量に使用されている。またチタン酸
化物等に白金族金属も被覆した磁性材、半導体材
料が広く使用されている。
(Prior art and its problems) In recent years, insoluble metal electrodes have been developed in which a platinum group metal oxide coating such as ruthenium oxide is provided on a metal oxide substrate such as titanium oxide, cobalt oxide, copper oxide, tin oxide, alumina, or silica. Oxidation catalysts are used in large quantities as insoluble electrodes in various fields of electrochemistry, especially in the salt electrolysis industry. Furthermore, magnetic materials and semiconductor materials in which titanium oxide or the like is coated with a platinum group metal are widely used.

このような金属電極や触媒等は、かなりの長寿
命を有するものであるが、使用中に白金族金属酸
化物被覆が徐々に消耗、低活性化し、一定の性能
を維持できなくなつた際には、新しい電極等に取
り替える必要がある。こうした使用済の金属電極
等には、尚相当量の高価なルテニウム等の白金族
金属成分が被覆中に残存し、これを回収し有効利
用することは工業上重要である。
Although these metal electrodes and catalysts have a fairly long lifespan, the platinum group metal oxide coating gradually wears out and becomes less active during use, and when they are no longer able to maintain a certain level of performance. must be replaced with a new electrode, etc. In such used metal electrodes, a considerable amount of expensive platinum group metal components such as ruthenium still remain in the coating, and it is industrially important to recover and effectively utilize this.

従来、この種の技術に関連するものとして特開
51−68493には、ルテニウム又はその化合物を含
む難溶性物質の可溶化法が、特開51−68499号に
はルテニウム又はその化合物を含む難溶性物質を
処理してルテニウムを回収する方法が示されてい
る。しかし、これらの方法は、剥離物に対するア
ルカリ溶融塩処理、酸化溶液解工程に複雑かつ長
時間の処理を要する。また、基体金属酸化物をも
溶融するための大型の高温加熱装置が必要とな
り、さらに白金族金属と基体金属を分離する際、
基体金属酸化物が析出し、効率が悪く工業的に最
適なルテニウム等の白金族金属の回収方法とは言
えない。
Previously, patent publications related to this type of technology
No. 51-68493 discloses a method for solubilizing a poorly soluble substance containing ruthenium or its compounds, and JP-A No. 51-68499 discloses a method for recovering ruthenium by treating a sparingly soluble substance containing ruthenium or its compounds. ing. However, these methods require complicated and time-consuming processes for the alkali molten salt treatment and oxidizing solution dissolution process for the peeled material. In addition, large-scale high-temperature heating equipment is required to melt the base metal oxide, and when separating the platinum group metal and the base metal,
The base metal oxide precipitates out, making it inefficient and cannot be said to be an industrially optimal method for recovering platinum group metals such as ruthenium.

(発明の目的) 本発明は、叙上の事情に鑑みてなされたもの
で、その目的は、白金族金属又はその酸化物と基
体金属酸化物を含む回収物から簡便かつ効率良く
ルテニウム等の白金族金属を回収する方法を提供
することにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and its object is to easily and efficiently produce platinum such as ruthenium from recovered materials containing platinum group metals or their oxides and base metal oxides. The object of the present invention is to provide a method for recovering group metals.

(発明の構成) 本発明は、白金族金属を回収する方法において
白金族金属又はその酸化物と基体金属酸化物を含
む回収物をカーボンの存在下で塩素を流しながら
加熱することにより、基体金属酸化物及び白金族
金属又はその酸化物を塩素化物に変えた後、白金
族金属塩素化物を分離、回収することを特徴とす
る。
(Structure of the Invention) The present invention provides a method for recovering platinum group metals by heating a recovered material containing a platinum group metal or its oxide and a base metal oxide in the presence of carbon while flowing chlorine. The method is characterized in that after converting the oxide and platinum group metal or its oxide into a chloride, the platinum group metal chloride is separated and recovered.

以下本発明をより詳細に説明する。 The present invention will be explained in more detail below.

本発明の方法は、(1)塩素化工程、(2)塩素化物分
離工程に分けられる。
The method of the present invention is divided into (1) a chlorination step and (2) a chloride separation step.

(1) 塩素化工程においては、白金族金属又はその
酸化物と基体金属化物を含む回収物をカーボン
粉末と混合した後塩素を流しながら加熱して白
金族金属又はその酸化物と基体金属酸化物を塩
素化物に変える。
(1) In the chlorination process, the collected material containing the platinum group metal or its oxide and the base metal oxide is mixed with carbon powder and then heated while flowing chlorine to form the platinum group metal or its oxide and the base metal oxide. Converts to chloride.

白金族金属又はその酸化物及び基体金属酸化
物はすべてに塩素化され、蒸発する。なお、基
体金属酸化物だけでなく、未酸化の基体金属が
あつても塩素化され蒸発する。加熱は800℃〜
1000℃で行なうのが好ましい。これより低い温
度では、塩素化に長時間要したり、塩素化が完
全に行われないことがあり、又、これより高い
温度では不要な高温設備が新たに必要となるか
らである。
The platinum group metal or its oxide and the base metal oxide are all chlorinated and evaporated. Note that not only the base metal oxide but also the unoxidized base metal is chlorinated and evaporated. Heating is from 800℃
Preferably it is carried out at 1000°C. If the temperature is lower than this, chlorination may take a long time or may not be completed completely, and if the temperature is higher than this, unnecessary high-temperature equipment will be required.

カーボン粉末は金属酸化物の酸素を塩素と置
換するのに不可欠であり、カーボン粉末が存在
しないと基体金属酸化物を塩素化物に変えるこ
とができない。
Carbon powder is essential for replacing oxygen in metal oxides with chlorine, and without carbon powder, the base metal oxide cannot be converted to chloride.

これにより白金族金属又はその酸化物及び基
体金属酸化物ないし基体金属は完全に塩素化さ
れて蒸発し、反応溶器中には何ら残留物は認め
られなかつた。
As a result, the platinum group metal or its oxide and the base metal oxide or base metal were completely chlorinated and evaporated, and no residue was found in the reaction vessel.

なお、白金族金属及び基体金属の代表的な塩
素化物の諸性質は以下の通りである。
The properties of typical chlorinated products of platinum group metals and base metals are as follows.

PtCl2 435〜531℃塩素中で安定。PtCl 2 Stable in 435-531℃ chlorine.

PtCl4 370℃で分解。PtCl 4 Decomposes at 370℃.

PdCl2 600℃で昇華、分解。解離圧は920℃で
760mmHg。
PdCl 2 Sublimates and decomposes at 600℃. Dissociation pressure is 920℃
760mmHg.

RuCl3 解離圧は450℃で24mmHg、740℃で389
mmHg。
RuCl 3 dissociation pressure is 24mmHg at 450℃ and 389 at 740℃
mmHg.

IrCl3 100〜763℃で安定。470℃で揮発。763
℃で分解してIrCl2へ。
IrCl 3 Stable at 100-763℃. Volatizes at 470℃. 763
Decomposes to IrCl2 at °C.

IrCl2 解離圧は711℃で241mmHg、771℃で731
mmHg。773℃で分解してIrClへ。
IrCl 2 dissociation pressure is 241 mmHg at 711 °C and 731 at 771 °C
mmHg. Decomposes to IrCl at 773℃.

IrCl 解離圧は698℃……153mmHg、799℃……
771mmHg。
IrCl dissociation pressure is 698℃...153mmHg, 799℃...
771mmHg.

AlCl3 沸点182.7℃、TaCl5 沸点242℃、 TiCl4 沸点136.4℃、SiCl4 沸点57.57℃、 ZrCl4 沸点331℃、SnCl4 沸点114.1℃、 (2) 塩化物分離工程においては前記塩素化工程で
得られた白金族金属塩素化物を一定温度に保つ
た捕集容器中に捕集する。捕集容器は基体金属
塩素化物の沸点以上、白金族金属塩素化物の沸
点もしくは分解温度以下の一定温度に保つこと
が捕集する上から好ましい。基体金属塩素化物
の沸点以下の温度では捕集容器中に基体金属塩
素化物も同時に捕集され、白金族金属塩素化物
との分離が不完全になり又、白金族金属塩素化
物の沸点もしくは分解温度以上の温度では、白
金族金属塩素化物の捕集が完全に行われず、回
収率が低下してしまうためである。これにより
白金族金属塩素化物だけが捕集容器中に結晶と
して得られる。
AlCl 3 boiling point 182.7℃, TaCl 5 boiling point 242℃, TiCl 4 boiling point 136.4℃, SiCl 4 boiling point 57.57℃, ZrCl 4 boiling point 331℃, SnCl 4 boiling point 114.1℃, (2) In the chloride separation process, in the chlorination process The obtained platinum group metal chloride is collected in a collection container maintained at a constant temperature. From the standpoint of collection, it is preferable to maintain the collection container at a constant temperature that is above the boiling point of the base metal chloride and below the boiling point or decomposition temperature of the platinum group metal chloride. At temperatures below the boiling point of the base metal chloride, the base metal chloride is also collected in the collection container, and separation from the platinum group metal chloride is incomplete, and the boiling point or decomposition temperature of the platinum group metal chloride is This is because, at temperatures above, the platinum group metal chlorides are not completely collected, resulting in a decrease in recovery rate. As a result, only platinum group metal chlorides are obtained as crystals in the collection vessel.

こうして得られた白金族金属塩素化物は、高
純度であり、また可溶性であるため効率良く、
容易に精製することができる。
The platinum group metal chloride obtained in this way has high purity and is soluble, so it can be efficiently
Can be easily purified.

以下、図面にもとずいて実施例と従来例につい
て説明する。
Hereinafter, embodiments and conventional examples will be described based on the drawings.

実施例 1 二酸化チタン10.0kg、二酸化ルテニウム1.0kg、
カーボン粉末6.0kgを混合しこの混合物1を混合
物導入管2より塩素化容器3中に入れ、塩素を塩
素ガス導入管4から流しながら900℃に容器3を
加熱し、捕集容器5は400℃に保つて2時間塩素
化して、ルテニウム塩素化物を分離、回収した。
捕集容器5ははんだ浴槽6中にガラスウール7を
つめたガラス容器8よりなる。塩素化容器2中に
残留物は認められず、塩素化は完全に行われた。
分離したルテニウム塩素化物の純度は99%以上
で、回収率も99%以上であつた。
Example 1 Titanium dioxide 10.0kg, ruthenium dioxide 1.0kg,
Mix 6.0 kg of carbon powder, put this mixture 1 into the chlorination container 3 through the mixture introduction pipe 2, heat the container 3 to 900°C while flowing chlorine from the chlorine gas introduction pipe 4, and heat the collection container 5 to 400°C. The mixture was kept at a constant temperature for chlorination for 2 hours, and the ruthenium chloride was separated and recovered.
The collection container 5 consists of a glass container 8 in which glass wool 7 is filled in a solder bath 6. No residue was found in chlorination container 2, and chlorination was completed.
The purity of the separated ruthenium chloride was over 99%, and the recovery rate was also over 99%.

実施例 2 実施例1と同様にして、1重量%の白金を担持
したアルミナ10kgを粉砕し、7.2kgのカーボン粉
末と混合し、この混合物1を混合物導入管2より
塩素化容器3中に入れ、塩素を流しながら900℃
に加熱し、捕集容器5は300℃に保つて2時間塩
素化して白金塩素化物を分離、回収した。
Example 2 In the same manner as in Example 1, 10 kg of alumina carrying 1% by weight of platinum was crushed and mixed with 7.2 kg of carbon powder, and this mixture 1 was introduced into the chlorination container 3 through the mixture introduction pipe 2. , 900℃ while flowing chlorine
The collection container 5 was kept at 300°C and chlorinated for 2 hours to separate and recover platinum chloride.

回収物は完全に塩素化され、分離した白金塩素
化物の純度は99%以上で、回収率も99%以上であ
つた。
The recovered material was completely chlorinated, and the purity of the separated platinum chloride was over 99%, and the recovery rate was also over 99%.

(従来例) 二酸化チタン36.7kg、二酸化ルテニウム4.0kg
を混合したものをKOH+KNO3を用い800℃で融
解したところ、KOH58.4kg、KNO36.1kgを要
し、ルテニウムの回収率は90%であつた。
(Conventional example) Titanium dioxide 36.7kg, Ruthenium dioxide 4.0kg
When a mixture of KOH and KNO 3 was melted at 800°C, 58.4 kg of KOH and 6.1 kg of KNO 3 were required, and the recovery rate of ruthenium was 90%.

上記実施例及び従来例で明らかなように本発明
は回収効率が99%以上であるのに対し、従来例は
90%と低いことがわかる。また、従来例では溶融
塩処理工程、酸性溶液溶解工程等の複雑かつ、長
時間の処理を必要としていた。
As is clear from the above examples and conventional examples, the present invention has a recovery efficiency of 99% or more, whereas the conventional example has a recovery efficiency of 99% or more.
It can be seen that it is as low as 90%. Further, the conventional method requires complicated and long-time processing such as a molten salt treatment step and an acidic solution dissolution step.

(発明の効果) 以上詳述したように、本発明によれば従来例に
比し効率良く、白金族金属を金属基体酸化物から
分離、回収することができしかも従来のように多
段の湿式処理工程を必要としないため、経済的に
しかも短時間で回収することができるという効果
がある。
(Effects of the Invention) As described in detail above, according to the present invention, platinum group metals can be separated and recovered from metal base oxides more efficiently than conventional methods, and in addition, multi-stage wet treatment is required compared to conventional methods. Since no process is required, it is economical and can be recovered in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の回収装置の一実施例を示す模式
図である。
The figure is a schematic diagram showing an embodiment of the recovery device of the present invention.

Claims (1)

【特許請求の範囲】 1 白金族金属又はその酸化物と基体金属酸化物
を含む回収物をカーボンの存在下で塩素を流しな
がら加熱することにより基体金属酸化物及び白金
族金属又はその酸化物を塩素化物に変えた後、白
金族金属塩素化物を白金族金属塩素化物の沸点も
しくは分解温度以下の温度、かつ基体金属塩化物
の沸点以上の温度で、分離、回収することを特徴
とする白金族金属を回収する方法。 2 回収物の塩素流通下での加熱を800℃〜1000
℃で行う、特許請求の範囲第1項記載の方法。
[Claims] 1. The base metal oxide and the platinum group metal or its oxide are heated by heating the recovered material containing the platinum group metal or its oxide and the base metal oxide in the presence of carbon while flowing chlorine. A platinum group metal chloride characterized by separating and recovering the platinum group metal chloride after converting it into a chloride at a temperature below the boiling point or decomposition temperature of the platinum group metal chloride and above the boiling point of the base metal chloride. How to recover metals. 2 Heating the recovered material under chlorine flow to 800℃~1000℃
2. The method according to claim 1, which is carried out at <0>C.
JP59211778A 1984-10-09 1984-10-09 Method for recovering platinum group metal Granted JPS6191335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211778A JPS6191335A (en) 1984-10-09 1984-10-09 Method for recovering platinum group metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211778A JPS6191335A (en) 1984-10-09 1984-10-09 Method for recovering platinum group metal

Publications (2)

Publication Number Publication Date
JPS6191335A JPS6191335A (en) 1986-05-09
JPH0438826B2 true JPH0438826B2 (en) 1992-06-25

Family

ID=16611437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211778A Granted JPS6191335A (en) 1984-10-09 1984-10-09 Method for recovering platinum group metal

Country Status (1)

Country Link
JP (1) JPS6191335A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280337A (en) * 1986-05-28 1987-12-05 Tanaka Kikinzoku Kogyo Kk Recovering method for ir
JPS62280330A (en) * 1986-05-28 1987-12-05 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum
JPS62280332A (en) * 1986-05-28 1987-12-05 Tanaka Kikinzoku Kogyo Kk Method for recovering pd
JPS62280338A (en) * 1986-05-28 1987-12-05 Tanaka Kikinzoku Kogyo Kk Recovering method for rh
JPS62280331A (en) * 1986-05-28 1987-12-05 Tanaka Kikinzoku Kogyo Kk Method for recovering au
JPS62280336A (en) * 1986-05-28 1987-12-05 Tanaka Kikinzoku Kogyo Kk Recovering method for ruthenium
JPS63243230A (en) * 1987-03-31 1988-10-11 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum group from waste catalyst
JPS63243228A (en) * 1987-03-31 1988-10-11 Tanaka Kikinzoku Kogyo Kk Separation of platinum group element
JP2653660B2 (en) * 1987-11-30 1997-09-17 田中貴金属工業株式会社 How to recover platinum group metals
WO2023106244A1 (en) * 2021-12-06 2023-06-15 セントラル硝子株式会社 Platinum group element resource recovery device, film formation system, platinum group element resource recovery tube, and platinum group element resource recovery method
CN114540623B (en) * 2022-01-28 2023-11-21 佛山汇真科技有限公司 Intelligent rare noble metal separation and purification system and method

Also Published As

Publication number Publication date
JPS6191335A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
KR910006946B1 (en) Production of metals by metallotherma
CN102656287B (en) Treatment of titanium ores
JPH0438826B2 (en)
JPH0339494A (en) Method for obtaining uranium by using chloride method
EP0360792A4 (en) Process for making zero valent titanium from an alkali metal fluotitanate
JPS6179736A (en) Recovering method of platinum group metal
JPH0524207B2 (en)
JPH0569043B2 (en)
EP1140702B1 (en) Method of producing zinc bromide
JPH0657610B2 (en) How to recover Ru
JPS62256931A (en) Method for recovering ruthenium
US4038066A (en) Method of stripping base metals from fused salts
US3271277A (en) Refractory metal production
JPH01142040A (en) Method for recovering ru
JPH0325492B2 (en)
JPS62280336A (en) Recovering method for ruthenium
JPS62280337A (en) Recovering method for ir
US3288561A (en) Chlorination of electrolytic copper refinery slimes in a molten salt bath
JPS63222020A (en) Production of chlororhodium acid
JPH0355415B2 (en)
JPH09227965A (en) Refined metal ruthenium powder and its production
JP2698424B2 (en) Liquefaction method of iridium
US2844462A (en) Recovery of zinc
JPH01142039A (en) Method for recovering ru
JPH01225730A (en) Method for recovering ruthenium from ruthenium resistant body