JP2653660B2 - How to recover platinum group metals - Google Patents
How to recover platinum group metalsInfo
- Publication number
- JP2653660B2 JP2653660B2 JP62302551A JP30255187A JP2653660B2 JP 2653660 B2 JP2653660 B2 JP 2653660B2 JP 62302551 A JP62302551 A JP 62302551A JP 30255187 A JP30255187 A JP 30255187A JP 2653660 B2 JP2653660 B2 JP 2653660B2
- Authority
- JP
- Japan
- Prior art keywords
- platinum group
- metal
- chloride
- chlorine
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明の方法は、反応部分において白金族金属を塩化
物にして揮発し、その白金族金属塩化物を塩素化合物の
錯塩形成剤で捕集回収することによる白金族金属の回収
方法に係るものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The method of the present invention is designed to volatilize a platinum group metal into a chloride in a reaction portion and volatilize the platinum group metal, and collect the platinum group metal chloride with a complex salt forming agent of a chlorine compound. The present invention relates to a method of recovering a platinum group metal by recovering.
(従来技術とその問題点) 酸化チタン、酸化コバルト、アルミナ、シリカ、ジル
コニア、マグネシア、ムライト、コージェライト等の金
属酸化物基体上にPt、Pd、Rh、Ir、Ruなどの白金族金属
を担持した触媒や白金族金属を基体金属酸化物上に被覆
したものが、自動車排ガス工業、化学工業、電子工業等
で大量に使用されている。(Prior art and its problems) Pt, Pd, Rh, Ir, Ru and other platinum group metals are supported on metal oxide substrates such as titanium oxide, cobalt oxide, alumina, silica, zirconia, magnesia, mullite and cordierite. A large amount of the catalyst or platinum group metal coated on a base metal oxide is used in the automobile exhaust gas industry, the chemical industry, the electronic industry and the like.
このような触媒は、使用中に白金族金属の活性が低下
し、一定の性能が維持できなくなった際には新しい触媒
に取り替える必要がある。Such a catalyst needs to be replaced with a new catalyst when the activity of the platinum group metal decreases during use and a certain performance cannot be maintained.
また、電子材料についても、装置ならびに部品の寿命
になると取り替えられる。In addition, electronic materials are also replaced at the end of the life of the device and parts.
こうした使用済の材料中には、尚相当量の高価な白金
族金属(白金族金属の酸化物も含む、以下、同じ。)が
残存し、これを回収し、有効利用することは工業上重要
である。In such used materials, a considerable amount of expensive platinum group metals (including oxides of platinum group metals, the same applies hereinafter) remain, and it is industrially important to recover and effectively use these metals. It is.
従来の方法としては、硫酸、王水などの溶解法や塩化
揮発法があるが、これらの方法は溶解工程に長時間の処
理を要する。Conventional methods include a method of dissolving sulfuric acid and aqua regia, and a method of volatilizing chloride, but these methods require a long treatment in the dissolving step.
また、基体金属酸化物と白金族金属を分離する際、基
体金属酸化物が析出することや、洗浄に大量の水を必要
とするなどの問題があった。Further, when the base metal oxide is separated from the platinum group metal, there are problems that the base metal oxide is precipitated and that a large amount of water is required for cleaning.
また、塩化物にして揮発する方法においても、白金族
塩化物の捕集法として、活性炭吸着捕集や、スクラバー
による洗浄捕集などがあるが、活性炭吸着は、温度を下
げて捕集する必要があるばかりでなく、捕集後の処理が
面倒であるという問題。スクラバー洗浄法は乾式法で次
られる無水貴金属塩化物はその殆んどが酸またはアルカ
リに対して不溶であるため、大量の洗浄液を濾過しなけ
ればならないことや、洗浄液中に溶け出した少々の白金
族塩化物を回収しなければならない等の問題に加え、塩
素ガスを再利用するために乾燥工程を設ける必要があっ
た。Also, in the method of volatilizing chlorides, as a method of collecting platinum group chlorides, there are activated carbon adsorption collection and scrubber washing collection, but activated carbon adsorption requires lowering the temperature and collecting. Not only is there a problem, but the process after collection is troublesome. Scrubber cleaning method is a dry method.Since most of the anhydrous noble metal chlorides are insoluble in acid or alkali, it is necessary to filter a large amount of cleaning solution, and a small amount of dissolved solution in the cleaning solution is required. In addition to the problem of having to recover the platinum group chloride, it was necessary to provide a drying step in order to reuse chlorine gas.
また使用中触媒にNaCl水溶液等を含浸、乾燥させ、塩
化物にさせる方法(特開昭56−160331号)もあるが、担
体中に付着している貴金属錯塩を水または酸抽出する必
要があり、担体中に貴金属含有液がしみ込んでしまい、
高回収率を得るために大量の水または酸を使った洗浄が
必要となる。There is also a method (JP-A-56-160331) in which a catalyst is impregnated with an aqueous NaCl solution, etc. during use and dried to form a chloride, but it is necessary to extract the precious metal complex salt adhering to the carrier with water or an acid. , The precious metal-containing liquid permeates the carrier,
Washing with large amounts of water or acid is required to obtain high recoveries.
(発明の目的) 本発明は叙上の事情に鑑みなされたもので、その目的
は、基体金属酸化物に白金族金属を保持せしめた材料よ
り白金族金属を簡便かつ効率良く回収する方法を提供す
ることにある。(Object of the Invention) The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for easily and efficiently recovering a platinum group metal from a material in which a platinum metal is held in a base metal oxide. To do.
(発明の構成) 本発明は、白金族金属を回収する方法において、白金
族金属と基体金属酸化物を含む回収物を加熱しながら塩
素を流すことにより白金族金属を塩化物にして揮発させ
る。他方一般的に使用される基体金属酸化物は塩化物に
なりにくく、白金族金属塩化物と共に移動しない。この
ことを本発明において利用した。(Structure of the Invention) In the method for recovering a platinum group metal, the present invention volatilizes the platinum group metal into chloride by flowing chlorine while heating the recovered material containing the platinum group metal and the base metal oxide. On the other hand, commonly used substrate metal oxides are less likely to become chlorides and do not migrate with platinum group metal chlorides. This was utilized in the present invention.
反応部の温度は、300〜1200℃であることが好まし
い。The temperature of the reaction part is preferably 300 to 1200 ° C.
これは、この温度以下になると白金族化合物の揮発が
良好に行えなくなる為である。また1200℃よりも高い温
度では、白金族塩化物が白金族金属と塩素とに解離して
しまい揮発効率が大きく低下する。This is because the platinum group compound cannot be volatilized well below this temperature. At a temperature higher than 1200 ° C., the platinum group chloride is dissociated into the platinum group metal and chlorine, and the volatilization efficiency is greatly reduced.
揮発してくる白金族塩化物は、回収物の層に続くアル
カリ金属又はアルカリ土類金属の塩素化合物の錯塩形成
剤の層によって捕集される。アルカリ金属又はアルカリ
土類金属の塩素化合物により錯塩を形成する理由は、塩
素化合物は塩素雰囲気中で反応や変質がないことと、錯
塩を形成させることにより白金族塩化物の捕集効率が他
のものと比べて飛躍的に良いものとなることのためであ
る。The platinum group chloride that volatilizes is collected by a layer of a complex salt forming agent of a chlorine compound of an alkali metal or an alkaline earth metal, which follows the layer of the recovered material. The reason for forming a complex salt with a chlorine compound of an alkali metal or an alkaline earth metal is that the chlorine compound has no reaction or alteration in a chlorine atmosphere and that the collection efficiency of the platinum group chloride is increased by forming a complex salt. This is because it will be dramatically better than anything.
また、これにより形成された白金族金属錯塩は、水、
アルコールなどの溶媒に対して可溶性であるという副次
的効果も持っている。Further, the platinum group metal complex salt formed by this, water,
It also has a secondary effect of being soluble in a solvent such as alcohol.
なお塩素化合物の錯塩形成剤の代表的なものは以下の
通りである。Typical examples of complex salt forming agents of chlorine compounds are as follows.
NaCl 融点800℃ KCl 融点776℃ CaCl2 融点772℃ MgCl2 融点712℃ BaCl2 融点962℃ (実施例1) 触媒用ペレット(ガンマ−アルミナ)にRu(2wt%)
を担持した材料500gを第1図に示す如くこの回収物1を
塩化物化容器4中に入れ、電気炉2により塩化物化容器
4を900℃に加熱し、塩素ガスを塩素ガス導入管3から
3/min流すことによりRuを塩化物にして揮発させ、そ
れを塩素化合物の錯塩形成層5に装填したKClにより捕
捉した。NaCl melting point 800 ° C. KCl melting point 776 ° C. CaCl 2 melting point 772 ° C. MgCl 2 melting point 712 ° C. BaCl 2 melting point 962 ° C. (Example 1) Ru (2 wt%) was added to catalyst pellets (gamma-alumina).
As shown in FIG. 1, 500 g of the material carrying the above is placed in the chlorination container 4, the chlorination container 4 is heated to 900 ° C. by the electric furnace 2, and chlorine gas is introduced from the chlorine gas introduction pipes 3 to 3 / min to make Ru chloride and volatilize it, and it was captured by KCl charged in the complex salt forming layer 5 of a chlorine compound.
これを6時間続けた後、KClを取り出し、水で溶解
し、ホウ酸水素ナトリウム(SBH)で還元し回収したと
ころ回収率は97%であった。After continuing this for 6 hours, KCl was taken out, dissolved in water, reduced with sodium hydrogen borate (SBH) and recovered, and the recovery rate was 97%.
(実施例2) 触媒用ハニカム(コージェライト)にPt(1wt%)を
担持した材料500gを第1図に示す如くこの回収物1を塩
化物化容器4中に入れ、電気炉2により塩化物化容器4
を1000℃に加熱し、塩素ガスを塩素ガス導入管3から3
/min流すことによりPtを塩化物にして揮発させ、それ
を塩素化合物の錯塩形成層5に装填したNaClより捕捉し
た。(Example 2) As shown in FIG. 1, 500 g of a material in which Pt (1 wt%) is supported on a honeycomb for catalyst (cordierite) is put into the chlorination container 4 as shown in FIG. 4
Is heated to 1000 ° C and chlorine gas is introduced from the chlorine gas inlet pipes 3 to 3
/ min to make Pt a chloride and volatilize, and it was captured by NaCl loaded in the complex salt forming layer 5 of a chlorine compound.
これを4時間続けた後、NaClを取り出し水で溶解し、
ホウ酸水素ナトリウム(SBH)で還元し回収したところ
回収率は98%であった。After continuing this for 4 hours, take out NaCl and dissolve in water,
When recovered by reduction with sodium hydrogen borate (SBH), the recovery was 98%.
(実施例3) 触媒用ハニカム(ムライト)にRh(1wt%)を担持し
た材料500gを第1図に示す如く、この回収物1を塩化物
化容器4中に入れ、電気炉2により塩化物化容器4を10
50℃に加熱し、塩素ガスを塩素ガス導入管3から3/m
in流すことによりRhを塩化物に揮発させ、それを塩素化
合物の錯塩形成層5に装填したMgCl2により捕捉した。(Example 3) As shown in FIG. 1, 500 g of a material in which Rh (1 wt%) is supported on a honeycomb for catalyst (mullite) is put into a chlorination container 4 as shown in FIG. 4 to 10
Chlorine gas is heated to 50 ℃ and chlorine gas is introduced from the chlorine gas inlet pipe 3 / m
By flowing in, Rh was volatilized into chloride, which was captured by MgCl 2 loaded in the complex salt forming layer 5 of a chlorine compound.
これを8時間続けた後、MgCl2を取り出し水で溶解
し、ホウ酸水素ナトリウム(SBH)で還元し回収したと
ころ回収率は93%であった。After continuing this for 8 hours, MgCl 2 was taken out, dissolved in water, reduced with sodium hydrogen borate (SBH) and recovered, and the recovery was 93%.
上記実施例における塩素化合物の錯塩形成剤による白
金族金属の捕捉反応は次のようなものと考えられる。The platinum group metal scavenging reaction by the chlorine compound complex salt-forming agent in the above examples is considered to be as follows.
P・MClx+αMaCly→Maα〔P・MClx+αy〕 ここでP・Mは白金族金属、Maは錯塩形成剤の陽イオ
ン、αは自然数、x、yは価数である。P · MCl x + αMaCl y → Maα [P · MCl x + α y ] where P · M is a platinum group metal, Ma is a cation of a complex salt-forming agent, α is a natural number, and x and y are valences.
(従来例1) 触媒用ペレット(ガンマ−アルミナ)にRu(2wt%)
を担持した材料500gを実施例同様の操作でRu塩化物を揮
発させ、スクラバーで水洗してRu塩化物を捕捉した。(Conventional example 1) Ru (2wt%) is added to catalyst pellets (gamma-alumina)
The Ru chloride was volatilized in the same manner as in the example with 500 g of the material carrying ## STR1 ## and washed with a scrubber to capture the Ru chloride.
これを6時間続けた後、洗浄水を全て取り出し、濾過
分離により塩化Ruを取り出し、H2還元により回収したと
ころ、回収率は91%であった。After continuing this for 6 hours, all the washing water was taken out, Ru chloride was taken out by filtration and recovered by H 2 reduction, and the recovery rate was 91%.
この際、濾過分離や、スクラバーに入る手前の洗浄液
で冷された部分の壁にRu塩化物が付着し、回収に多大な
労力を要した。At this time, Ru chloride adhered to the wall of the portion cooled by the filtration separation and the washing liquid before entering the scrubber, which required a great deal of labor for recovery.
(従来例2) 触媒用ハニカム(コージェライト)にPt(1wt%)を
担持した材料500gを王水中で浸出し、濾過によりPt王水
液を取り出しpH調整後、SBHで還元する方法で行ったと
ころ、回収率は95%であった。(Conventional Example 2) 500 g of a material supporting Pt (1 wt%) on a catalyst honeycomb (cordierite) was leached in aqua regia, and the Pt aqua regia solution was taken out by filtration, and after adjusting the pH, reduction was carried out with SBH. However, the recovery rate was 95%.
しかし、回収率を高くするために、濾過の際の洗浄等
で液量が大幅に増えるなどの問題がある。However, in order to increase the recovery rate, there is a problem that the amount of liquid is greatly increased by washing or the like at the time of filtration.
(従来例3) 触媒用ハニカム担体(ムライト)にRh(0.150wt%)
を担持した材料500gに15%NaCl溶液を含浸させ、塩素雰
囲気中800℃で8時間反応させ、反応終了後100℃になる
まで塩素ガスを流しながら冷却し、生成物を塩酸で抽出
したところ、回収率はRh86%であった。(Conventional example 3) Rh (0.150 wt%) for honeycomb carrier (mullite) for catalyst
500 g of the material carrying was impregnated with a 15% NaCl solution, reacted at 800 ° C. for 8 hours in a chlorine atmosphere, cooled with flowing chlorine gas until reaching 100 ° C. after completion of the reaction, and the product was extracted with hydrochloric acid. The recovery rate was Rh 86%.
この際800℃から100℃まで塩素気流中で温度を下げる
のに約2時間を要したこと、100℃という低い温度で塩
素雰囲気で保持された場合、N2パージ30分にもかかわら
ず取出後、塩素臭が激しいという問題があった。At this time, it took about 2 hours to lower the temperature from 800 ° C to 100 ° C in a chlorine gas flow, and when kept in a chlorine atmosphere at a temperature as low as 100 ° C, after taking out N 2 purge for 30 minutes, There was a problem that the chlorine odor was severe.
また、回収率を上げるために、塩酸抽出後の残材料に
含まれている貴金属含有液を水で何度も洗浄する必要が
あった。Further, in order to increase the recovery rate, it was necessary to wash the noble metal-containing liquid contained in the residual material after extraction with hydrochloric acid with water many times.
(従来例4) 触媒用ハニカム担体(コージェライト)にPt(1.000w
t%)を担持した材料500gに20%NaCl溶液を含浸させ塩
素雰囲気中700℃で4時間させ、反応終了後100℃になる
まで塩素ガスを流しながら冷却し生成物を王水で抽出し
たところ、回収率は96%であった。。(Conventional example 4) Pt (1.000w) was added to the honeycomb carrier for catalyst (cordierite).
t%)-supported material (500 g) was impregnated with a 20% NaCl solution and kept at 700 ° C for 4 hours in a chlorine atmosphere. After completion of the reaction, the product was extracted with aqua regia while cooling with chlorine gas until it reached 100 ° C. The recovery was 96%. .
この際700℃から100℃まで塩素気流中で温度を下げる
のに約2時間を要したこと、100℃という低い温度で塩
素雰囲気で保持された為、N2パージ30分にもかかわら
ず、取出後、塩素臭が激しいという問題があった。At this time, it took about 2 hours to lower the temperature from 700 ° C to 100 ° C in a chlorine gas flow, and because it was kept in a chlorine atmosphere at a low temperature of 100 ° C, it was taken out despite the N 2 purge for 30 minutes. Later, there was a problem that the chlorine odor was intense.
また、回収率を上げるために、王水抽出後の残材料に
含まれている貴金属含有液を水で何度も洗浄する必要が
あった。Further, in order to increase the recovery rate, it was necessary to wash the precious metal-containing liquid contained in the residual material after the aqua regia extraction with water many times.
(発明の効果) 以上詳述のように本発明によれば、従来に比し効率良
く、白金族金属を基体金属酸化物から分離回収すること
ができ、しかも従来のように多大な労力を必要としない
為、経済的にしかも短時間で回収することができるとい
う効果がある。(Effects of the Invention) As described in detail above, according to the present invention, the platinum group metal can be separated and recovered from the base metal oxide more efficiently than before, and much labor is required as in the conventional case. Therefore, there is an effect that it can be economically recovered in a short time.
第1図は本発明の方法を示す概略図である。 FIG. 1 is a schematic diagram showing the method of the present invention.
Claims (4)
を、加熱しながら塩素ガスを流すことにより白金族金属
を塩化物にして揮発分離し、アルカリ金属又はアルカリ
土類金属の塩素化合物により白金族塩化物との錯塩を形
成し白金族塩化物を捕集回収することを特徴とする白金
族金属を回収する方法。1. A chlorine compound of an alkali metal or an alkaline earth metal, wherein a recovered gas containing a platinum group metal and a base metal oxide is subjected to chlorine gas flow while heating to volatilize and separate the platinum group metal into a chloride. A complex salt with a platinum group chloride, thereby collecting and collecting the platinum group chloride.
を加熱する温度が、生成する白金族塩化物の解離又は分
離温度以下であることを特徴とする特許請求の範囲第1
項に記載の白金族金属を回収する方法。2. The method according to claim 1, wherein the temperature for heating the recovered material containing the platinum group metal and the base metal oxide is lower than the dissociation or separation temperature of the generated platinum group chloride.
A method for recovering a platinum group metal according to the above item.
を加熱する温度が、300〜1200℃であることを特徴とす
る特許請求の範囲第1項又は第2項に記載の白金族金属
を回収する方法。3. The platinum group according to claim 1 or 2, wherein the temperature for heating the recovered material containing the platinum group metal and the base metal oxide is 300 to 1200 ° C. How to recover metal.
属又はアルカリ土類金属の塩素化合物の温度が、該アル
カリ金属又はアルカリ土類金属の塩素化合物の融点以下
であることを特徴とする特許請求の範囲第1項乃至第3
項のいずれかに記載の白金族金属を回収する方法。4. The temperature of the alkali metal or alkaline earth metal chlorine compound for collecting the platinum group chloride is equal to or lower than the melting point of the alkali metal or alkaline earth metal chlorine compound. Claims 1 to 3
A method for recovering a platinum group metal according to any one of the above items.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62302551A JP2653660B2 (en) | 1987-11-30 | 1987-11-30 | How to recover platinum group metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62302551A JP2653660B2 (en) | 1987-11-30 | 1987-11-30 | How to recover platinum group metals |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01142036A JPH01142036A (en) | 1989-06-02 |
JP2653660B2 true JP2653660B2 (en) | 1997-09-17 |
Family
ID=17910332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62302551A Expired - Lifetime JP2653660B2 (en) | 1987-11-30 | 1987-11-30 | How to recover platinum group metals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2653660B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0313531A (en) * | 1989-06-08 | 1991-01-22 | Tanaka Kikinzoku Kogyo Kk | Method for solubilizing ruthenium |
JP7395257B2 (en) * | 2019-03-14 | 2023-12-11 | 株式会社エス・ディー・エス バイオテック | Pest control material using insect parasitic fungi and pest control method using the same |
JPWO2021246340A1 (en) * | 2020-06-01 | 2021-12-09 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5414571B2 (en) * | 1973-07-23 | 1979-06-08 | ||
JPS5410951B2 (en) * | 1973-08-25 | 1979-05-10 | ||
JPS6191335A (en) * | 1984-10-09 | 1986-05-09 | Tanaka Kikinzoku Kogyo Kk | Method for recovering platinum group metal |
-
1987
- 1987-11-30 JP JP62302551A patent/JP2653660B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01142036A (en) | 1989-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4323492B2 (en) | Method for recovering platinum in waste liquid containing selenium using hydrazine | |
JP4323493B2 (en) | Method for recovering platinum in waste liquid containing selenium using copper powder | |
JPS5828209B2 (en) | How to save money and save money | |
KR100209124B1 (en) | Method of platinum recovery | |
JP2653660B2 (en) | How to recover platinum group metals | |
JPH09279264A (en) | Method for continuously extracting noble metal and method for recovering the same | |
JP2692882B2 (en) | How to recover precious metals from spent catalysts | |
JP3741275B2 (en) | Precious metal recovery method | |
JPS6116326B2 (en) | ||
US20070104628A1 (en) | Apparatus and method for recovering rare-earth and noble metals from an article | |
JPH01142037A (en) | Method for recovering platinum metal | |
WO2005087375A1 (en) | Method for recovering noble metal from catalyst device having metal carrier | |
JP4595082B2 (en) | Precious metal recovery method | |
JPH01234531A (en) | Method of recovering platinum group metal | |
JP4403259B2 (en) | Method for recovering platinum group elements | |
JP6317964B2 (en) | Method for separating palladium and platinum | |
JPH10265863A (en) | Method for recovering noble metals from smelting residue | |
KR20090132672A (en) | Technology of reuse on platinum metal from waste catalyst of automobile | |
JP2009256744A (en) | Method for recovering noble metal | |
JPS6366886B2 (en) | ||
JPH01234532A (en) | Method for recovering platinum group metal | |
JPH01225730A (en) | Method for recovering ruthenium from ruthenium resistant body | |
JPS6213540A (en) | Recovering method for noble metal | |
JPS646254B2 (en) | ||
JP2022123879A (en) | Method for recovering platinum group metal |