JPH0313531A - Method for solubilizing ruthenium - Google Patents

Method for solubilizing ruthenium

Info

Publication number
JPH0313531A
JPH0313531A JP1145602A JP14560289A JPH0313531A JP H0313531 A JPH0313531 A JP H0313531A JP 1145602 A JP1145602 A JP 1145602A JP 14560289 A JP14560289 A JP 14560289A JP H0313531 A JPH0313531 A JP H0313531A
Authority
JP
Japan
Prior art keywords
ruthenium
tube
chloride
oxide
ruo4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145602A
Other languages
Japanese (ja)
Inventor
Toru Shoji
亨 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1145602A priority Critical patent/JPH0313531A/en
Publication of JPH0313531A publication Critical patent/JPH0313531A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently recover Ru from Ru scraps or Ru oxide in the form of an aq. soln. by allowing the Ru scraps or Ru oxide to react with chlorine at a high temp., capturing the resulting volatile chloride with a specified capturing agent and carrying out treatment with water. CONSTITUTION:Ru scraps or Ru oxide 1 such as RuO4 is packed into a reaction tube 2 contg. silica sand 5 for heating gaseous chlorine, porous ceramics 4 and a ceramic filter 3 on the sand 5. An outer tube 10 is set around the tube 2 and an Ru chloride capturing agent 9 such as BaCl2, KCl, NaCl or CaCl2 is filled into the tube 10. Gaseous chlorine 6 is fed into the tube 2 from the bottom, heated to 700-1,200 deg.C with an electric furnace 7 and allowed to react with the Ru or RuO4 1. The resulting volatile Ru chloride is heated with an electric furnace 7 and allowed to react with the capturing agent 9 during passing through the tube 10 to form water soluble BaRuCl5, etc. This product is treated with water and the Ru or RuO4 is separated and recovered as an aq. soln. of BaRuCl5, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ルテニウムおよび/又はその酸化物の塩化反
応と、塩化物の錯塩形成剤との錯塩形成反応とを行い、
可溶性のルテニウム錯塩を作ることを特徴とするルテニ
ウムの可溶化方法に係る。
Detailed Description of the Invention (Industrial Application Field) The present invention involves carrying out a chlorination reaction of ruthenium and/or its oxide, and a complex salt-forming reaction of the chloride with a complex salt-forming agent.
The present invention relates to a method for solubilizing ruthenium, which is characterized by producing a soluble ruthenium complex salt.

(従来技術とその問題点) 従来より、リードスイッチ等の接点材料を作る際の蒸着
用ターゲットや、抵抗用材料としてルテニウムが大量に
使用されており、ターゲットの使用残や製造工程で発生
する不良等を回収精製し有効利用する必要がある。
(Prior art and its problems) Ruthenium has traditionally been used in large quantities as a vapor deposition target for making contact materials such as reed switches, and as a resistor material. It is necessary to collect, purify, and use them effectively.

一般的にルテニウムの精製は、−旦溶液とした後、その
酸化物であるRub、の揮発性を利用した方法で他と容
易に分離され、精製できるがルテニウムの性質上、溶液
化が難しくNa(10−NaOH混合液を用いて溶解す
る通常の方法では、金属状態の固体は溶解が困難であり
、酸化物に至ってはこの方法での溶解は困難である。
Generally, ruthenium can be purified by a method that takes advantage of the volatility of its oxide, Rub, after it is first made into a solution.However, due to the nature of ruthenium, it is difficult to make it into a solution. (By the usual method of dissolving using a 10-NaOH mixture, it is difficult to dissolve metallic solids, and it is difficult to dissolve oxides using this method.

酸化物粉末などは還元を行い金属状粉末とした後上記方
法により溶解する。
Oxide powders and the like are reduced into metallic powders and then dissolved by the above method.

またKNO,−KOHなどのアルカリ溶融塩を用いた溶
解法も行われるが、金属状固体に至ってはその溶解速度
が遅く工業的には不適な方法であった。
Dissolution methods using alkali molten salts such as KNO and -KOH have also been carried out, but the dissolution rate of metallic solids is slow and is not suitable for industrial use.

(発明の目的) 本発明は、上記の問題を解決すべくなされたものであり
、その目的はルテニウムおよび/又はその酸化物を簡便
かつ効率良く可溶化する方法を提供せんとするものであ
る。
(Objective of the Invention) The present invention was made to solve the above problems, and its object is to provide a method for easily and efficiently solubilizing ruthenium and/or its oxide.

(問題点を解決するための手段) 上記問題を解決するための本発明のルテニウム可溶化方
法は、ルテニウムおよび/又はその酸化物を加熱しなが
ら塩素ガスを流すことによりルテニウムおよび/又はそ
の酸化物を塩化物にし揮発させ、その揮発物を塩化物の
錯塩形成剤層を通すことによりルテニウム塩化物と錯塩
形成剤との錯塩形成反応により可溶性のルテニウム塩化
物錯塩を作らせることを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the ruthenium solubilization method of the present invention includes heating ruthenium and/or its oxides while flowing chlorine gas. is converted into chloride and volatilized, and the volatile product is passed through a chloride complex salt forming agent layer to form a soluble ruthenium chloride complex salt through a complex salt forming reaction between ruthenium chloride and the complex salt forming agent. It is.

この際の加熱温度は700〜1200℃が好ましい。The heating temperature at this time is preferably 700 to 1200°C.

図1にルテニウムおよびその酸化物の塩化揮発量と温度
との関係を示す。図に示すように700℃以下ではルテ
ニウムの塩化反応は起こるが、揮発に充分な蒸気圧が得
られない。
FIG. 1 shows the relationship between the amount of chloride volatilization of ruthenium and its oxides and temperature. As shown in the figure, the chlorination reaction of ruthenium occurs below 700°C, but sufficient vapor pressure for volatilization cannot be obtained.

また850〜950℃に揮発量のピークがあり高温にな
る程効率は低下して行き、1200℃以上では揮発量が
少なくなるばかりでなく加熱にエネルギーを必要とし効
率的でない。
Further, there is a peak in the amount of volatilization at 850 to 950°C, and the higher the temperature, the lower the efficiency is. At 1200°C or higher, not only the amount of volatilization decreases, but also energy is required for heating, which is not efficient.

また酸化物の場合も同様であり、酸化物の場合は800
℃以上を必要とする。塩化物の捕集剤には以下のものが
適している。
The same applies to oxides, and in the case of oxides, 800
Requires temperature above ℃. Suitable chloride scavengers are:

B a Cj22 K(I aCjI Ca C12 M g C12 rc12 (実施例1) 本発明のルテニウム可溶化方法の実施例と従来例を説明
する。
B a Cj22 K(I aCjI Ca C12 M g C12 rc12 (Example 1) Examples and conventional examples of the ruthenium solubilization method of the present invention will be described.

先ず本発明のルテニウム可溶化方法の実施例について説
明すると、蒸着用ルテニウムボタン113.62g(ボ
タン24ケ)1を第2図に示す如く反応管(内管)2に
セットした。
First, an example of the ruthenium solubilization method of the present invention will be described. 113.62 g of ruthenium buttons (24 buttons) 1 for vapor deposition were set in a reaction tube (inner tube) 2 as shown in FIG.

反応管(内管)2には、塩素ガス加熱用シリカサンド5
およびその上方にガス分散の為の多孔質セラミック4と
セラミックフィルター3を有する機構になっている。そ
の後反応管(外管)10を装填した。
In the reaction tube (inner tube) 2, there is a silica sand 5 for heating chlorine gas.
The mechanism has a porous ceramic 4 and a ceramic filter 3 above it for gas dispersion. Thereafter, a reaction tube (outer tube) 10 was loaded.

反応管(外管)10は上部に捕集剤層を有しており、こ
こにBaCj!2を充填した。電気炉(A)7により9
00℃に加熱しながら塩素ガス吹込管6より塩素ガスを
101/min流し塩化反応を行わせた。
The reaction tube (outer tube) 10 has a scavenger layer on the top, and BaCj! 2 was filled. Electric furnace (A) 7 by 9
While heating to 00° C., chlorine gas was flowed through the chlorine gas blowing pipe 6 at a rate of 10 1/min to carry out a chlorination reaction.

反応ガスは電気炉(B)8により830℃に加熱された
捕集剤9に充填した13 a C12層を通し、ルテニ
ウム塩化物の捕集を行った。
The reaction gas was passed through a 13 a C12 layer packed in a collector 9 heated to 830° C. in an electric furnace (B) 8 to collect ruthenium chloride.

この反応を4時間30分行った後、捕集剤層に充填した
Ba(1!2を取り出し氷で溶かしたところ、沈澱物も
なく  (BaRuCj!sの)水溶液となった。
After this reaction was carried out for 4 hours and 30 minutes, Ba (1!2) filled in the scavenger layer was taken out and melted with ice, resulting in an aqueous solution (of BaRuCj!s) without any precipitate.

(実施例2) 抵抗ペースト用酸化ルテニウム11粉末180gを圧縮
成形し、第3図に示す如く反応管12にセットした。
(Example 2) 180 g of ruthenium oxide 11 powder for resistance paste was compression molded and set in a reaction tube 12 as shown in FIG.

また捕集剤13にはK(lを充填した。Further, the collecting agent 13 was filled with K(l).

電気炉(A)14により酸化ルテニウムを1000℃に
加熱しながら塩素ガス吹込管15より塩素ガスを2f/
min流して塩化反応を行わせた。
While heating the ruthenium oxide to 1000°C in the electric furnace (A) 14, chlorine gas is supplied at 2f/2f/2 from the chlorine gas blowing pipe 15.
The chlorination reaction was carried out at a flow rate of min.

反応ガスは電気炉(B)16により750℃に加熱され
た捕集剤13に充填したKCl層を通しルテニウム塩化
物の捕集を行った。
The reaction gas was passed through a KCl layer filled in a collector 13 heated to 750° C. in an electric furnace (B) 16 to collect ruthenium chloride.

この反応を7時間行った後、捕集剤層に充填したKCl
を取り出し水で溶かしたところ、沈澱物もなく  (K
JuCβ、の)水溶液となった。
After carrying out this reaction for 7 hours, the KCl packed in the scavenger layer
When I took it out and dissolved it in water, there was no precipitate (K
It became an aqueous solution of JuCβ.

(従来例) ルテニウムボタン151g1OをNaCl0 :Na0
H=8 : 1の溶液51に入れ60℃に加熱し、撹拌
しながら溶解を行った。
(Conventional example) Ruthenium button 151g1O NaCl0:Na0
The mixture was placed in a solution 51 of H=8:1 and heated to 60° C., and dissolved while stirring.

これを10時間続けたところ、溶解したルテニウムは2
8.30 gであった。
When this continued for 10 hours, the amount of dissolved ruthenium was 2
It was 8.30 g.

(発明の効果) 以上の説明で判るように本発明の方法によれば、ルテニ
ウムを効率良く簡便に短時間に可溶化できるというすぐ
れた効果がある。
(Effects of the Invention) As can be seen from the above explanation, the method of the present invention has the excellent effect of being able to solubilize ruthenium efficiently, easily, and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はルテニウムの塩化揮発量と温度との関係を示す
グラフ、第2図は本発明のルテニウムの可溶化法の一実
施例を示す図、 第3図は本発明の ルテニウムの可溶化方法の他の実施例を示す図である。
Figure 1 is a graph showing the relationship between the amount of ruthenium chloride volatilization and temperature, Figure 2 is a diagram showing an example of the ruthenium solubilization method of the present invention, and Figure 3 is the ruthenium solubilization method of the present invention. It is a figure showing other examples of.

Claims (1)

【特許請求の範囲】[Claims] 1、ルテニウムおよび/又はその酸化物を700〜12
00℃に加熱しながら塩素ガスを流し、ルテニウムおよ
び/又はその酸化物を塩化物に変えて揮発させ、その揮
発物を塩化物の錯塩形成剤層を通すことによりルテニウ
ム塩化物と塩化物の錯塩形成剤との錯塩形成反応により
、可溶性のルテニウム塩化物錯塩を作ることを特徴とす
るルテニウムの可溶化方法。
1. Ruthenium and/or its oxide 700-12
Ruthenium and/or its oxides are converted into chlorides and volatilized by flowing chlorine gas while heating to 00°C, and the volatiles are passed through a chloride complex salt forming agent layer to form a complex salt of ruthenium chloride and chloride. A method for solubilizing ruthenium, which comprises producing a soluble ruthenium chloride complex salt through a complex salt-forming reaction with a forming agent.
JP1145602A 1989-06-08 1989-06-08 Method for solubilizing ruthenium Pending JPH0313531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145602A JPH0313531A (en) 1989-06-08 1989-06-08 Method for solubilizing ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145602A JPH0313531A (en) 1989-06-08 1989-06-08 Method for solubilizing ruthenium

Publications (1)

Publication Number Publication Date
JPH0313531A true JPH0313531A (en) 1991-01-22

Family

ID=15388852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145602A Pending JPH0313531A (en) 1989-06-08 1989-06-08 Method for solubilizing ruthenium

Country Status (1)

Country Link
JP (1) JPH0313531A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073043A (en) * 1999-07-27 2001-03-21 Anglo American Platinum Corp Ltd Improvement in refining
EP2157198A1 (en) 2008-08-22 2010-02-24 Bayer MaterialScience AG Method for generating metallic ruthenium or ruthenium compounds from solids containing ruthenium
US7704469B2 (en) 2005-12-23 2010-04-27 Basf Aktiengesellschaft Method for the recovery of ruthenium from used ruthenium oxide-containing catalysts
WO2010076297A2 (en) 2008-12-30 2010-07-08 Basf Se Method for recovering ruthenium from spent catalysts containing ruthenium oxide
US10316388B2 (en) * 2011-12-02 2019-06-11 Stillwater Mining Company Precious metals recovery
WO2023106244A1 (en) * 2021-12-06 2023-06-15 セントラル硝子株式会社 Platinum group element resource recovery device, film formation system, platinum group element resource recovery tube, and platinum group element resource recovery method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142040A (en) * 1987-11-30 1989-06-02 Tanaka Kikinzoku Kogyo Kk Method for recovering ru
JPH01142036A (en) * 1987-11-30 1989-06-02 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum metal
JPH01142037A (en) * 1987-11-30 1989-06-02 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142040A (en) * 1987-11-30 1989-06-02 Tanaka Kikinzoku Kogyo Kk Method for recovering ru
JPH01142036A (en) * 1987-11-30 1989-06-02 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum metal
JPH01142037A (en) * 1987-11-30 1989-06-02 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073043A (en) * 1999-07-27 2001-03-21 Anglo American Platinum Corp Ltd Improvement in refining
US7704469B2 (en) 2005-12-23 2010-04-27 Basf Aktiengesellschaft Method for the recovery of ruthenium from used ruthenium oxide-containing catalysts
EP2157198A1 (en) 2008-08-22 2010-02-24 Bayer MaterialScience AG Method for generating metallic ruthenium or ruthenium compounds from solids containing ruthenium
DE102008039278A1 (en) 2008-08-22 2010-02-25 Bayer Materialscience Ag Process for recovering metallic ruthenium or ruthenium compounds from ruthenium-containing solids
WO2010076297A2 (en) 2008-12-30 2010-07-08 Basf Se Method for recovering ruthenium from spent catalysts containing ruthenium oxide
US8252253B2 (en) 2008-12-30 2012-08-28 Basf Se Process for recovering ruthenium from used ruthenium oxide-comprising catalysts
US10316388B2 (en) * 2011-12-02 2019-06-11 Stillwater Mining Company Precious metals recovery
US11788170B2 (en) 2011-12-02 2023-10-17 Stillwater Mining Company Precious metals recovery
WO2023106244A1 (en) * 2021-12-06 2023-06-15 セントラル硝子株式会社 Platinum group element resource recovery device, film formation system, platinum group element resource recovery tube, and platinum group element resource recovery method

Similar Documents

Publication Publication Date Title
JPH0313531A (en) Method for solubilizing ruthenium
RU2424183C2 (en) Method of producing iron-based complex metal oxide
US2204454A (en) Process for decomposing zirconium ore
US3875296A (en) Method of preparing metal oxide fibers
Newnham The Separation of Zirconium and Hafnium by Differential Reduction of their Tetrachlorides
JPH01275430A (en) Method for manufacturing alkaline earth metal titanate
JP2003508631A5 (en)
US1707257A (en) Production of titanium tetrachloride
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
JPH01225730A (en) Method for recovering ruthenium from ruthenium resistant body
JPH01142040A (en) Method for recovering ru
JPH0283212A (en) Synthesis of lanthanide-alkaline earth metal-copper-oxygen type superconductor material
JPH0524207B2 (en)
RU2534323C1 (en) Metallic cobalt obtaining method
JPS63274725A (en) Method for recovering nb and ti from superconductive material
JP2698424B2 (en) Liquefaction method of iridium
JPH03191029A (en) Treatment of silicomagnesium nickel ore
US3391989A (en) Preparation of volatile metal chlorides from their ores
JPS6473009A (en) Production of high purity tantalum or niobium powder
JPH02205635A (en) Method for recovering ru
JPH03187998A (en) Production of aluminum nitride whisker
US1201586A (en) Process for the production of zinc oxid.
US1807543A (en) Silicate refractory and process of forming same
US1924129A (en) Separation of iron and chromium chlorides
RU2013460C1 (en) Method of preparing of rare-earth metals yttrium and scandium