JPH06173065A - Method for refining ti - Google Patents

Method for refining ti

Info

Publication number
JPH06173065A
JPH06173065A JP35154292A JP35154292A JPH06173065A JP H06173065 A JPH06173065 A JP H06173065A JP 35154292 A JP35154292 A JP 35154292A JP 35154292 A JP35154292 A JP 35154292A JP H06173065 A JPH06173065 A JP H06173065A
Authority
JP
Japan
Prior art keywords
molten salt
alkali metal
purity
bath
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35154292A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Hideo Miyazaki
英男 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP35154292A priority Critical patent/JPH06173065A/en
Publication of JPH06173065A publication Critical patent/JPH06173065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To establish a method for refining crude Ti to high purity Ti by a molten salt electrolysis method. CONSTITUTION:When crude Ti is electrolytically refined by a molten salt electrolysis method using an alkali metal chloride as a solvent and titanium chloride as a solute, an alkali metal fluoride is added to the molten salt and electrolysis is carried out. The pref. amt. of the alkali metal fluoride added is 0.3-10wt.% of the amt. of the molten salt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融塩電解法によるT
iの精製法に関する。本発明により得られる高純度Ti
は、金属不純物が極微量まで低減されており、半導体デ
バイス製造用のタ−ゲット材等として、好適である。
BACKGROUND OF THE INVENTION The present invention relates to T by the molten salt electrolysis method.
i purification method. High-purity Ti obtained by the present invention
The metal impurities are reduced to an extremely small amount, and is suitable as a target material for manufacturing semiconductor devices.

【0002】[0002]

【従来技術】溶融塩電解法によるTiの電解精製に用い
られる電解浴として、一般に、塩化物浴(代表例:Na
Cl−KCl−TiCl2−TiCl3)、塩化物−弗化
物混浴(代表例:NaCl−K2TiF6)、弗化物浴
(代表例:NaF−K2TiF6)等が知られている。
As an electrolytic bath used for electrolytic refining of Ti by a molten salt electrolysis method, a chloride bath (typical example: Na) is generally used.
Cl-KCl-TiCl 2 -TiCl 3 ), chloride - fluoride mixed bathing (typical example: NaCl-K 2 TiF 6) , fluoride bath (typical example: NaF-K 2 TiF 6) and the like are known.

【0003】しかしながら、塩化物浴は装置の耐食性が
高く、また取り扱い易いという利点があるものの、C
u、Fe、Cr等の不純物は、塩素イオンの影響等によ
り除去されにくいのが現状である。また、弗化物浴は、
装置の耐食性、Tiに付着した塩の除去が難しい等の問
題点がある。一方、塩化物−弗化物混浴にしても、弗化
物を大量に加えなければ良好な電析物を得ることが出来
ず、また、前記弗化物浴と同様の問題点がある。
However, although the chloride bath has the advantages that the equipment has high corrosion resistance and is easy to handle, C
At present, it is difficult to remove impurities such as u, Fe and Cr due to the influence of chlorine ions. Also, the fluoride bath is
There are problems such as the corrosion resistance of the device and the difficulty in removing the salt adhering to Ti. On the other hand, even in a chloride-fluoride mixed bath, a good electrodeposit cannot be obtained unless a large amount of fluoride is added, and there are the same problems as in the above-mentioned fluoride bath.

【0004】[0004]

【問題点を解決するための手段】そこで、本発明者等
が、塩化物浴を中心に鋭意検討したところ、塩化物浴に
少量のアルカリ金属弗化物を添加することにより、上記
問題点を解決できると共に高純度のTiを得ることがで
きることを見出した。従って、本発明の目的は、溶融塩
電解法による粗TiからのTiの精製方法を提供するこ
とにある。
Then, the inventors of the present invention have conducted intensive studies mainly on chloride baths, and found that the above problems can be solved by adding a small amount of alkali metal fluoride to the chloride baths. It was found that Ti with high purity can be obtained. Therefore, an object of the present invention is to provide a method for purifying Ti from crude Ti by a molten salt electrolysis method.

【0005】[0005]

【発明の構成】即ち本発明は、 (1)アルカリ金属塩化物系の溶媒とチタン塩化物の溶
質を用いる溶融塩電解法で粗Tiを電解精製する方法に
おいて、溶融塩中にアルカリ金属弗化物を添加して電解
を行なうことを特徴とするTiの精製方法。 (2)アルカリ金属弗化物の添加量が、溶融塩に対して
0.3〜10wt%であることを特徴とする前記(1)
記載の方法。 を提供する。
The present invention comprises: (1) In a method for electrolytically refining crude Ti by a molten salt electrolysis method using an alkali metal chloride solvent and a solute of titanium chloride, an alkali metal fluoride is contained in the molten salt. A method for purifying Ti, comprising the step of adding electrolysis. (2) The addition amount of the alkali metal fluoride is 0.3 to 10 wt% with respect to the molten salt, (1)
The method described. I will provide a.

【0006】[0006]

【発明の具体的説明】次に本発明の理解を容易にするた
め具体的かつ詳細に説明する。まず、本発明の対象とな
る粗Tiの純度は、特に制限はないが、通常市販されて
いる純度99〜99.99wt%のものである。カソ−
ドとしては、電着する高純度Tiを汚染しないもの例え
ばTi,Ni,W,Mo等であり、好ましくはTi、よ
り好ましくは通常目的とする純度以上の高純度Tiであ
る。
DETAILED DESCRIPTION OF THE INVENTION Next, a specific and detailed description will be given to facilitate understanding of the present invention. First, the purity of crude Ti which is the subject of the present invention is not particularly limited, but it is usually commercially available with a purity of 99 to 99.99 wt%. Caso
As the electrode, those which do not contaminate the high-purity Ti to be electrodeposited, such as Ti, Ni, W, Mo, etc., are preferably Ti, and more preferably high-purity Ti having a purity higher than the intended purity.

【0007】次に本発明に用いられるアルカリ金属溶融
塩の溶媒としては、例えばNaCl,NaCl−KCl
(モル比=40〜60:60〜40)、LiCl−KC
l(モル比=40〜60:60〜40)等があり、溶質
として、TiCl2、TiCl3、TiCl4等がある。
以上のような塩は、通常、重金属、高融点金属、放射性
元素等の不純物の少ない純度の高いもの、具体的には、
揮発性の不純物元素除きで純度99.9wt%以上、好
ましくは純度99.99wt%以上のものを使用しなけ
ればならない。99.9wt%以下のものを用いると、
電析したTiが汚染を受けてしまうからである。
Next, as the solvent of the molten alkali metal salt used in the present invention, for example, NaCl, NaCl-KCl
(Molar ratio = 40-60: 60-40), LiCl-KC
1 (molar ratio = 40 to 60:60 to 40), and solutes such as TiCl 2 , TiCl 3 , and TiCl 4 .
The above-mentioned salts are usually high-purity salts with few impurities such as heavy metals, refractory metals and radioactive elements, specifically,
Excluding volatile impurity elements, a purity of 99.9 wt% or more, preferably a purity of 99.99 wt% or more must be used. If less than 99.9 wt% is used,
This is because the electrodeposited Ti is contaminated.

【0008】これらの塩化物浴に、アルカリ金属弗化
物、例えばNaF,KF等を添加するのが、本発明の特
徴である。これらも同様に、揮発性の不純物元素除きで
純度99.9wt%以上、好ましくは純度99.99w
t%以上のものを使用しなければならない。現在、添加
に用いる入手可能なアルカリ金属弗化物は、上記不純物
濃度が高い。そこで、アルカリ金属弗化物は、例えば、
市販で高純度のNaCl等を原料として、高純度のHF
を添加することにより、NaF等を製造することが好ま
しい。
It is a feature of the present invention that alkali metal fluorides such as NaF and KF are added to these chloride baths. Similarly, these also have a purity of 99.9 wt% or higher, preferably 99.99 w, excluding volatile impurity elements.
A t% or more must be used. Currently available alkali metal fluorides used for addition have a high concentration of the above impurities. Therefore, the alkali metal fluoride is, for example,
Commercially available high-purity NaCl, etc.
It is preferable to produce NaF and the like by adding.

【0009】これらを添加することにより、粗Ti中に
含まれる不純物(Fe、Ni、Cr等)が電解精製中に
溶出しても、その大部分が弗化物となり、Tiの弗化物
あるいは塩化物との析出電位差が、塩化物単独の場合よ
りも大きくなり、電解精製効果が従来に比べて顕著にな
り、純度99.9999wt%(以下、単に6Nと記
す)以上の高純度のTiを得ることができる。
By adding these, even if impurities (Fe, Ni, Cr, etc.) contained in crude Ti are eluted during electrolytic refining, most of them become fluorides, and fluorides or chlorides of Ti are obtained. The precipitation potential difference between and is larger than that of chloride alone, the electrolytic refining effect is more remarkable than before, and high purity Ti with a purity of 99.9999 wt% (hereinafter simply referred to as 6N) or higher is obtained. You can

【0010】アルカリ金属弗化物の添加量は、NaCl
−KCl−TiCl2−TiCl3(モル比:NaCl:
KCl=40〜60:60〜40,Ti=1〜4wt
%)等の浴に対して、0.3wt%〜10wt%、好ま
しくは0.5〜3.0wt%である。0.3wt%未満
の場合、析出電位に大きな変動がなく電解精製効果がほ
とんどない。また、10wt%を超えて加えてもその効
果に顕著な向上がみられず、装置が腐食される、Naが
析出する等の問題があり好ましくない。
The amount of alkali metal fluoride added is NaCl
-KCl-TiCl 2 -TiCl 3 (molar ratio: NaCl:
KCl = 40-60: 60-40, Ti = 1-4 wt
%) To a bath such as 0.3 wt% to 10 wt%, preferably 0.5 to 3.0 wt%. When it is less than 0.3 wt%, there is no large variation in the deposition potential and there is almost no electrolytic refining effect. Further, even if added in excess of 10 wt%, the effect is not significantly improved, and there are problems such as corrosion of the device and precipitation of Na, which is not preferable.

【0011】次にTiの溶融塩電解精製例を具体的に示
す。まず、使用する塩は、事前に十分真空乾燥脱水し、
水分等の除去を行なうことが必要である。そして、Ni
ルツボ中にNaCl−KCl(モル比=40〜60:6
0〜40)を入れ、アノ−ドである粗TiスポンジをN
iルツボの内壁に設けたバスケット中に挿入し、そして
カソ−ドとしてTi棒をNiルツボの中心に配置する。
これらは全てAr置換された密封容器中に入れられる。
Next, a specific example of molten salt electrolytic refining of Ti will be specifically shown. First, the salt to be used is thoroughly vacuum dried and dehydrated in advance,
It is necessary to remove water and the like. And Ni
NaCl-KCl (molar ratio = 40-60: 6 in crucible)
0-40) and put the crude Ti sponge which is an anode into N
Insert into a basket provided on the inner wall of the i crucible, and place a Ti rod as a cathode in the center of the Ni crucible.
All of these are placed in a sealed container with Ar substitution.

【0012】そして、加熱することにより、NaCl−
KClを溶融状態にした後、TiCl4を導入する。こ
れにより、浴中で以下の反応を進行せしめ、NaCl−
KCl浴中にTiCl2、TiCl3を生成せしめる。
が主反応である。 TiCl4+Ti→2TiCl2 …………… TiCl2+TiCl4→2TiCl3 ……… これにより、NaCl−KCl−TiCl2−TiCl3
(モル比:NaCl:KCl=40〜60:60〜4
0,Ti=1〜4wt%)の溶融塩電解浴ができる。そ
して、これにアルカリ金属弗化物0.3〜10wt%添
加した後、電解を行う。
Then, by heating, NaCl-
After bringing KCl into a molten state, TiCl 4 is introduced. This allows the following reactions to proceed in the bath, NaCl-
TiCl 2 and TiCl 3 are formed in the KCl bath.
Is the main reaction. TiCl 4 + Ti → 2TiCl 2 …………… TiCl 2 + TiCl 4 → 2TiCl 3 ……… As a result, NaCl-KCl-TiCl 2 -TiCl 3
(Molar ratio: NaCl: KCl = 40-60: 60-4
(0, Ti = 1 to 4 wt%) molten salt electrolytic bath can be formed. Then, after adding 0.3 to 10 wt% of alkali metal fluoride to this, electrolysis is performed.

【0013】溶融塩電解浴中のTi濃度は、添加するT
iCl4により決まるが、上記、の反応を考慮に入
れTi濃度として、1〜4wt%になるようにTiCl
4を添加することが好ましく、より好ましいTi濃度
は、1.5〜3wt%である。この範囲内では、電流効
率も良く、電析状態は樹枝状となり、粒の大きさも大き
い。しかし、1wt%未満であると、カソ−ド棒に電着
しなかったり、電流効率が非常に低いものとなってしま
い好ましくない。また、電着したTiの粒度も非常に小
さくなる。4wt%を超えると、電流効率が低くなり、
電析形態もスポンジ状となり、Tiに付着した溶融塩等
の分離が不十分となり、高純度のTiが得にくい。
The concentration of Ti in the molten salt electrolytic bath depends on the T added.
It depends on iCl 4 , but the Ti concentration should be 1 to 4 wt% in consideration of the above reaction.
4 is preferably added, and a more preferable Ti concentration is 1.5 to 3 wt%. Within this range, the current efficiency is good, the electrodeposition is dendritic, and the size of the particles is large. However, if it is less than 1 wt%, it is not preferable because the cathode rod is not electrodeposited or the current efficiency is very low. Also, the grain size of electrodeposited Ti is very small. If it exceeds 4 wt%, the current efficiency becomes low,
The electrodeposited form is also sponge-like, and the separation of molten salts and the like adhering to Ti is insufficient, and it is difficult to obtain high-purity Ti.

【0014】初期カソ−ド電流密度は、0.01〜2A
/cm2が好ましく、より好ましくは0.1〜1.0A
/cm2である。電流密度が、上記の電流密度より低い
場合は、電流効率が低く、時間もかかるため生産性が低
く、好ましくない。一方、2.0A/cm2より高い場
合は、粒が小さくなるため、カソ−ドに付着することが
少なく、仮りに得られたとしても、スポンジ状であるた
め好ましくない。
The initial cathode current density is 0.01 to 2 A.
/ Cm 2 is preferable, more preferably 0.1 to 1.0 A
/ Cm 2 . When the current density is lower than the above current density, the current efficiency is low and it takes time, so that the productivity is low, which is not preferable. On the other hand, if it is higher than 2.0 A / cm 2 , the particles are small and the particles are less likely to adhere to the cathode, and even if it is obtained, it is spongy, which is not preferable.

【0015】電解温度は、600〜900℃が好まし
く、より好ましくは、650〜850℃である。上記の
温度より低い場合は、結晶性の良いTiが得られにく
く、また電流効率も低く好ましくない。電解温度が90
0℃よりも高い場合は、浴の蒸発が多くなり、また、電
流効率も低くなるため、好ましくない。
The electrolysis temperature is preferably 600 to 900 ° C, and more preferably 650 to 850 ° C. If the temperature is lower than the above temperature, Ti with good crystallinity is difficult to obtain, and the current efficiency is low, which is not preferable. Electrolysis temperature is 90
When the temperature is higher than 0 ° C., the evaporation of the bath increases and the current efficiency also decreases, which is not preferable.

【0016】電解を終了したならば、カソ−ドに電着し
たTiを引き上げ、冷却後脱着し、水洗を行なう。その
後、Tiの表面をフッ化水素−硝酸で洗浄し、次いでエ
タノ−ルで洗浄する。そして最後に、真空乾燥する。さ
らに精製が切望される場合は、上記の溶融塩電解精製を
繰り返す。
When the electrolysis is completed, the Ti electrodeposited on the cathode is pulled up, cooled and then desorbed, and washed with water. Then, the surface of Ti is washed with hydrogen fluoride-nitric acid and then with ethanol. And finally, it is vacuum dried. When further refining is desired, the above-described molten salt electrolytic refining is repeated.

【0017】以下、本発明の実施例及び比較例について
説明する。
Examples of the present invention and comparative examples will be described below.

【0018】[0018]

【実施例1】あらかじめ、表1に示すような純度の原料
である粗Tiスポンジ10kgを含む約750℃で溶融
状態のNaCl−KCl(モル比=45:55)浴15
kg中に、TiCl4600gを導入する。これによ
り、浴中で上記、の反応が進行し、NaCl−KC
l浴中にTiCl2、TiCl3が生成する。この結果、
浴中のTi濃度が、約2.0wt%となった。この浴に
対してNaF1wt%添加して、浴を調整した。
Example 1 A NaCl-KCl (molar ratio = 45: 55) bath 15 in a molten state at about 750 ° C. containing 10 kg of crude Ti sponge as a raw material having a purity shown in Table 1 in advance.
600 kg of TiCl 4 are introduced into kg. As a result, the above reaction proceeds in the bath, and NaCl-KC
In the 1-bath, TiCl 2 and TiCl 3 are produced. As a result,
The Ti concentration in the bath became about 2.0 wt%. The bath was adjusted by adding 1 wt% of NaF to this bath.

【0019】この浴を使用し、粗Tiスポンジをアノ−
ド、Ti棒をカソ−ドにして、電解温度720℃,初期
カソ−ド電流密度0.3A/cm2の電解条件で、カソ
−ドに高純度のTiを1kg電析させた。電析Tiを純
水で洗浄し、フッ酸−硝酸による酸洗及びエタノ−ル洗
浄を行なった後、60℃で真空乾燥を行った。得られた
Tiの分析値を表1に示す。
Using this bath, a crude Ti sponge is anodized.
1 kg of high-purity Ti was electrodeposited on the cathode under the electrolysis conditions of an electrolysis temperature of 720 ° C. and an initial cathodic current density of 0.3 A / cm 2 , using the cathode and Ti rod as the cathode. The electrodeposited Ti was washed with pure water, pickled with hydrofluoric acid-nitric acid and ethanol washed, and then vacuum dried at 60 ° C. Table 1 shows the obtained Ti analysis values.

【0020】[0020]

【実施例2】溶融塩中のNaF濃度を5wt%とした以
外は、実施例1と同様に電解を行った。結果を表1に示
す。
Example 2 Electrolysis was performed in the same manner as in Example 1 except that the concentration of NaF in the molten salt was 5 wt%. The results are shown in Table 1.

【0021】[0021]

【比較例】溶融塩中にNaFを添加しない以外は、実施
例1と同様に電解を行った。結果を表1に示す。
Comparative Example Electrolysis was performed in the same manner as in Example 1 except that NaF was not added to the molten salt. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、NaFを1及び
5wt%添加した実施例1及び2ではNaFを添加しな
い比較例と比較して、不純物であるFe、Cr、Cuが
0.05ppm未満(分析下限以下)と極めて低くなっ
ていることが判る。
As is clear from Table 1, in Examples 1 and 2 in which NaF was added at 1 and 5 wt%, Fe, Cr, and Cu as impurities were less than 0.05 ppm (compared with Comparative Example in which NaF was not added ( It can be seen that it is extremely low (below the lower limit of analysis).

【0024】[0024]

【発明の効果】【The invention's effect】

(1)本発明により、極めて高純度のTi(6Nレベル
以上)を容易に得ることができる。 (2)得られた高純度Tiは、半導体デバイス製造用の
タ−ゲット材等として好適に用いられる。
(1) According to the present invention, extremely high purity Ti (6N level or higher) can be easily obtained. (2) The obtained high-purity Ti is suitably used as a target material for manufacturing semiconductor devices.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属塩化物系の溶媒とチタン塩
化物の溶質を用いる溶融塩電解法で粗Tiを電解精製す
る方法において、溶融塩中にアルカリ金属弗化物を添加
して電解を行なうことを特徴とするTiの精製方法。
1. In a method for electrolytically refining crude Ti by a molten salt electrolysis method using an alkali metal chloride-based solvent and a titanium chloride solute, alkali metal fluoride is added to the molten salt for electrolysis. A method for purifying Ti, comprising:
【請求項2】 アルカリ金属弗化物の添加量が、溶融塩
に対して0.3〜10wt%であることを特徴とする請
求項1記載の方法。
2. The method according to claim 1, wherein the addition amount of the alkali metal fluoride is 0.3 to 10 wt% with respect to the molten salt.
JP35154292A 1992-12-09 1992-12-09 Method for refining ti Pending JPH06173065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35154292A JPH06173065A (en) 1992-12-09 1992-12-09 Method for refining ti

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35154292A JPH06173065A (en) 1992-12-09 1992-12-09 Method for refining ti

Publications (1)

Publication Number Publication Date
JPH06173065A true JPH06173065A (en) 1994-06-21

Family

ID=18417991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35154292A Pending JPH06173065A (en) 1992-12-09 1992-12-09 Method for refining ti

Country Status (1)

Country Link
JP (1) JPH06173065A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094312A1 (en) * 2003-04-21 2004-11-04 Sumitomo Titanium Corporation Method of purifying metal salt, method of deacidifying titanium material and method of producing the same
CN103147096A (en) * 2013-03-28 2013-06-12 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing molten-salt electrolyte containing low-valent titanium chloride and method for extracting titanium
WO2016028009A1 (en) * 2014-08-20 2016-02-25 서울대학교 산학협력단 Method for preparing titanium by using electrowinning
WO2018216319A1 (en) * 2017-05-22 2018-11-29 住友電気工業株式会社 Method for producing titanium-plated member
WO2018216320A1 (en) * 2017-05-22 2018-11-29 住友電気工業株式会社 Molten salt titanium plating solution composition and method for manufacturing titanium-plated member
WO2020044841A1 (en) * 2018-08-31 2020-03-05 東邦チタニウム株式会社 Method for producing metal titanium
WO2022230403A1 (en) * 2021-04-30 2022-11-03 東邦チタニウム株式会社 Metal titanium production method and metal titanium electrodeposit
WO2023007918A1 (en) * 2021-07-30 2023-02-02 東邦チタニウム株式会社 Method for producing electrodeposit

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094312A1 (en) * 2003-04-21 2004-11-04 Sumitomo Titanium Corporation Method of purifying metal salt, method of deacidifying titanium material and method of producing the same
CN103147096A (en) * 2013-03-28 2013-06-12 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing molten-salt electrolyte containing low-valent titanium chloride and method for extracting titanium
CN103147096B (en) * 2013-03-28 2015-07-01 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing molten-salt electrolyte containing low-valent titanium chloride and method for extracting titanium
US10465306B2 (en) 2014-08-20 2019-11-05 Snu R&Db Foundation Method for preparing titanium by using electrowinning
WO2016028009A1 (en) * 2014-08-20 2016-02-25 서울대학교 산학협력단 Method for preparing titanium by using electrowinning
CN106574384B (en) * 2014-08-20 2018-07-13 首尔大学校产学协力团 The method for manufacturing titanium using strike
CN106574384A (en) * 2014-08-20 2017-04-19 首尔大学校产学协力团 Method for preparing titanium by using electrowinning
CN110582594A (en) * 2017-05-22 2019-12-17 住友电气工业株式会社 Molten salt titanium plating solution composition and method for producing titanium-plated member
WO2018216320A1 (en) * 2017-05-22 2018-11-29 住友電気工業株式会社 Molten salt titanium plating solution composition and method for manufacturing titanium-plated member
CN110475910A (en) * 2017-05-22 2019-11-19 住友电气工业株式会社 Plate the manufacturing method of titanium part
WO2018216319A1 (en) * 2017-05-22 2018-11-29 住友電気工業株式会社 Method for producing titanium-plated member
JPWO2018216319A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Manufacturing method of titanium plated member
JPWO2018216320A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Molten salt titanium plating solution composition and method for producing titanium plated member
WO2020044841A1 (en) * 2018-08-31 2020-03-05 東邦チタニウム株式会社 Method for producing metal titanium
JPWO2020044841A1 (en) * 2018-08-31 2021-08-26 東邦チタニウム株式会社 Manufacturing method of metallic titanium
US11649554B2 (en) 2018-08-31 2023-05-16 Toho Titanium Co., Ltd. Method for producing metal titanium
WO2022230403A1 (en) * 2021-04-30 2022-11-03 東邦チタニウム株式会社 Metal titanium production method and metal titanium electrodeposit
WO2023007918A1 (en) * 2021-07-30 2023-02-02 東邦チタニウム株式会社 Method for producing electrodeposit

Similar Documents

Publication Publication Date Title
JP2904744B2 (en) Method for electrolytic production of magnesium or its alloy
US2828251A (en) Electrolytic cladding process
US3114685A (en) Electrolytic production of titanium metal
JPH06173065A (en) Method for refining ti
US2780593A (en) Production of metallic titanium
JP3736618B2 (en) Treatment method of waste acid containing copper
USH2087H1 (en) Pickling of refractory metals
US3226311A (en) Process of producing calcium by electrolysis
JPH06173064A (en) Method for refining ti
JP7097572B2 (en) Manufacturing method of metallic titanium
US2731402A (en) Production of metallic titanium
US2707170A (en) Electrodeposition of titanium
US2936268A (en) Preparation of metal borides and silicides
GB1199335A (en) Improvements in Aluminiding
US2939823A (en) Electrorefining metallic titanium
US1740857A (en) Process for the production of metallic beryllium
JPH06192874A (en) Refining method for cobalt
WO2020044841A1 (en) Method for producing metal titanium
US2834727A (en) Purification of molten electrolytes
US1127966A (en) Deposition of iron.
US2813068A (en) Production of titanium by fused salt electrolysis
US2899369A (en) Special electrolytic processing
US3725221A (en) Recovery of niobium and tantalum
JPH06172881A (en) Desilvering or silver recovering method
US3390064A (en) Electrolytic process for preparing stannous fluoride