JPH06173064A - Method for refining ti - Google Patents

Method for refining ti

Info

Publication number
JPH06173064A
JPH06173064A JP35154192A JP35154192A JPH06173064A JP H06173064 A JPH06173064 A JP H06173064A JP 35154192 A JP35154192 A JP 35154192A JP 35154192 A JP35154192 A JP 35154192A JP H06173064 A JPH06173064 A JP H06173064A
Authority
JP
Japan
Prior art keywords
purity
crude
electrolysis
electrodeposited
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35154192A
Other languages
Japanese (ja)
Inventor
Hideo Miyazaki
英男 宮崎
Masami Kuroki
正美 黒木
Yuichiro Shindo
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP35154192A priority Critical patent/JPH06173064A/en
Publication of JPH06173064A publication Critical patent/JPH06173064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To continuously produce high purity Ti by carrying out electrolysis while replenishing a specified amt. or more of crude Ti when crude Ti is electrolytically refined. CONSTITUTION:When crude Ti is electrolytically refined by a molten salt electrolysis method, electrolysis is carried out while intermittently replenishing crude Ti by an amt. equal to or larger than the weight of electrodeposited Ti. The purity of the crude Ti is not especially limited but commercially available Ti having 99-99.99wt.% purity is generally used. A metal not contaminating electrodeposited high purity Ti, e.g. Ti, Ni, W or Mo is used as the cathode but Ti, especially Ti having higher purity than the objective purity is preferably used. High purity (>=6N) Ti can be continuously produced from crude Ti by the molten salt electrolysis method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融塩電解法によるT
iの精製法に関する。本発明により得られる高純度Ti
は、金属不純物が極微量まで低減されており、半導体デ
バイス製造用のタ−ゲット材等として、好適である。
BACKGROUND OF THE INVENTION The present invention relates to T by the molten salt electrolysis method.
i purification method. High-purity Ti obtained by the present invention
The metal impurities are reduced to an extremely small amount, and is suitable as a target material for manufacturing semiconductor devices.

【0002】[0002]

【従来技術】溶融塩電解法によるTiの電解精製に用い
られる電解浴として、一般に、塩化物浴(代表例:Na
Cl−KCl−TiCl2−TiCl3)、塩化物−弗化
物混浴(代表例:NaCl−K2TiF6)、弗化物浴
(代表例:NaF−K2TiF6)等が知られている。
As an electrolytic bath used for electrolytic refining of Ti by a molten salt electrolysis method, a chloride bath (typical example: Na) is generally used.
Cl-KCl-TiCl 2 -TiCl 3 ), chloride - fluoride mixed bathing (typical example: NaCl-K 2 TiF 6) , fluoride bath (typical example: NaF-K 2 TiF 6) and the like are known.

【0003】しかしながら、高純度Ti製造のための溶
融塩電解精製法においては、一般にバッチ式であり、粗
Tiを浴中にセットし電解を行い、電解浴中の不純物含
有量が多くなった時点で、電解を終了するため連続的に
高純度Tiを得ることができなかった。さらに、この方
法では、浴の寿命が短く、コストが高いという問題点が
あった。
However, the molten salt electrolytic refining method for producing high-purity Ti is generally of a batch type, and when crude Ti is set in a bath for electrolysis, the content of impurities in the electrolytic bath becomes large. However, since the electrolysis was completed, high purity Ti could not be continuously obtained. Further, this method has a problem that the life of the bath is short and the cost is high.

【0004】[0004]

【問題点を解決するための手段】そこで、本発明者等
が、溶融塩電解精製法において、高純度Tiを連続的に
得る方法について鋭意検討して結果、電解精製時にカソ
−ドに電着する高純度Ti重量と同量以上のアノ−ドで
ある粗Tiを少なくとも間欠的に補加することにより、
上記問題点が解決できることを見出した。従って、本発
明の目的は、高純度Tiを連続的に得ることができる、
溶融塩電解法によるTiの精製方法を提供することにあ
る。
Therefore, the present inventors diligently studied a method for continuously obtaining high-purity Ti in a molten salt electrolytic refining method, and as a result, electrodeposition on a cathode during electrolytic refining By at least intermittently adding crude Ti, which is an anode of the same amount or more as the high purity Ti weight,
It has been found that the above problems can be solved. Therefore, the object of the present invention is to obtain high-purity Ti continuously,
It is intended to provide a method for purifying Ti by a molten salt electrolysis method.

【0005】[0005]

【発明の構成】即ち本発明は、溶融塩電解法で粗Tiを
電解精製する方法において、少なくとも間欠的に電着し
たTi重量と同量以上の粗Tiを補加して電解を行うこ
とを特徴とするTiの精製方法を提供する。
That is, in the present invention, in a method for electrolytically purifying crude Ti by a molten salt electrolysis method, electrolysis is performed by supplementing at least the same amount of crude Ti as the weight of Ti electrodeposited intermittently. A method for purifying characteristic Ti is provided.

【0006】[0006]

【発明の具体的説明】次に本発明の理解を容易にするた
め具体的かつ詳細に説明する。まず、本発明の対象とな
る粗Tiの純度は、特に制限はないが、通常市販されて
いる純度99〜99.99wt%のものである。カソ−
ドとしては、電着する高純度Tiを汚染しないもの例え
ばTi,Ni,W,Mo等であり、好ましくはTi、よ
り好ましくは通常目的とする純度以上の高純度Tiであ
る。
DETAILED DESCRIPTION OF THE INVENTION Next, a specific and detailed description will be given to facilitate understanding of the present invention. First, the purity of crude Ti which is the subject of the present invention is not particularly limited, but it is usually commercially available with a purity of 99 to 99.99 wt%. Caso
As the electrode, those which do not contaminate the high-purity Ti to be electrodeposited, such as Ti, Ni, W, Mo, etc., are preferably Ti, and more preferably high-purity Ti having a purity higher than the intended purity.

【0007】次に本発明に用いられる溶融塩としては、
塩化物浴(代表例:NaCl−KCl−TiCl2−T
iCl3)、塩化物−弗化物混浴(代表例:NaCl−
2TiF6)、弗化物浴(代表例:NaF−K2Ti
6)等があるが、ここでは、代表的に塩化物浴を例と
して説明する。
Next, as the molten salt used in the present invention,
Chloride bath (typical example: NaCl-KCl-TiCl 2 -T
iCl 3), chloride - fluoride mixed bathing (typical example: NaCl-
K 2 TiF 6), fluoride bath (typical example: NaF-K 2 Ti
F 6 ), etc., but here, a chloride bath will be representatively described as an example.

【0008】まず、アルカリ金属溶融塩の溶媒として
は、例えばNaCl,NaCl−KCl(モル比=40
〜60:60〜40)、LiCl−KCl(モル比=4
0〜60:60〜40)等があり、溶質として、TiC
2、TiCl3、TiCl4等がある。以上のような塩
は、通常、重金属、高融点金属、放射性元素等の不純物
の少ない純度の高いもの、具体的には、揮発性の不純物
元素除きで純度99.9wt%以上、好ましくは純度9
9.99wt%以上のものを使用しなければならない。
99.9wt%以下のものを用いると、電析したTiが
汚染を受けてしまうからである。
First, as a solvent of the molten alkali metal salt, for example, NaCl, NaCl-KCl (molar ratio = 40
~ 60: 60-40), LiCl-KCl (molar ratio = 4
0-60: 60-40), etc., and solute as TiC
l 2 , TiCl 3 , TiCl 4 and the like. The salt as described above is usually a high-purity salt containing few impurities such as heavy metals, high-melting-point metals, and radioactive elements, specifically, a purity of 99.9 wt% or more, preferably 9% by weight, excluding volatile impurities.
It must use 9.99 wt% or more.
This is because if 99.9 wt% or less is used, the electrodeposited Ti will be contaminated.

【0009】これらを用いて粗Tiを電解精製する際
に、少なくとも間欠的に粗Tiを補加するのが本発明の
特徴である。少なくとも間欠的にとは、連続的又はある
一定間隔をおいてということを意味する。この間隔につ
いては、設備、電解条件等により異なり一律に決めるこ
とはできないが、実際には目的とするTiの純度と電解
精製により得られるTiの純度を考慮に入れて決定され
る。
It is a feature of the present invention that the crude Ti is supplemented at least intermittently when the crude Ti is electrolytically refined using these materials. At least intermittently means continuously or at certain intervals. This interval differs depending on the equipment, electrolysis conditions and the like and cannot be uniformly determined, but in practice, it is determined in consideration of the target purity of Ti and the purity of Ti obtained by electrolytic refining.

【0010】この様にしないと、電解精製を行っていく
につれ、スライムが発生し、そのことにより溶出電位が
高くなって、不純物の高いスライムからの溶出量が多く
なり、目的とする高純度Tiを連続的に得ることはでき
ない。即ち、新たな粗Tiを補加することにより、補加
した粗Tiのみが溶け、スライムからの溶出がほとんど
なくなるため、溶融塩電解浴中の不純物濃度が増加しな
くなり、より多くの純度99.9999wt%(以下、
単に6Nと記す)以上の高純度Tiを連続的に得ること
がでると共に、浴の寿命も長くなるものと考えられる。
If this is not done, slime is generated as the electrolytic refining is carried out. As a result, the elution potential is increased, and the elution amount from the slime containing a large amount of impurities is increased. Cannot be obtained continuously. That is, by supplementing new crude Ti, only the supplemented crude Ti is melted, and elution from slime is almost eliminated, so that the impurity concentration in the molten salt electrolytic bath is not increased, and a higher purity of 99. 9999 wt% (hereinafter,
It is considered that high purity Ti of 6 N or more) can be continuously obtained, and the life of the bath is extended.

【0011】次にTiの溶融塩電解精製例を具体的に示
す。まず、使用する塩は、事前に十分真空乾燥脱水し、
水分等の除去を行なうことが必要である。そして、Ni
ルツボ中にNaCl−KCl(モル比=40〜60:6
0〜40)を入れ、アノ−ドである粗TiスポンジをN
iルツボの内壁に設けたバスケット中に挿入し、そして
カソ−ドとしてTi棒をNiルツボの中心に配置する。
これらは全てAr置換された密封容器中に入れられる。
Next, a specific example of molten salt electrolytic refining of Ti will be specifically shown. First, the salt to be used is thoroughly vacuum dried and dehydrated in advance,
It is necessary to remove water and the like. And Ni
NaCl-KCl (molar ratio = 40-60: 6 in crucible)
0-40) and put the crude Ti sponge which is an anode into N
Insert into a basket provided on the inner wall of the i crucible, and place a Ti rod as a cathode in the center of the Ni crucible.
All of these are placed in a sealed container with Ar substitution.

【0012】そして、加熱することにより、NaCl−
KClを溶融状態にした後、TiCl4を導入する。こ
れにより、浴中で以下の反応を進行せしめ、NaCl−
KCl浴中にTiCl2、TiCl3を生成せしめる。
が主反応である。 TiCl4+Ti→2TiCl2 …………… TiCl2+TiCl4→2TiCl3 ……… これにより、NaCl−KCl−TiCl2−TiCl3
(モル比:NaCl:KCl=40〜60:60〜4
0,Ti=1〜4wt%)の溶融塩電解浴ができる。
Then, by heating, NaCl-
After bringing KCl into a molten state, TiCl 4 is introduced. This allows the following reactions to proceed in the bath, NaCl-
TiCl 2 and TiCl 3 are formed in the KCl bath.
Is the main reaction. TiCl 4 + Ti → 2TiCl 2 …………… TiCl 2 + TiCl 4 → 2TiCl 3 ……… As a result, NaCl-KCl-TiCl 2 -TiCl 3
(Molar ratio: NaCl: KCl = 40-60: 60-4
(0, Ti = 1 to 4 wt%) molten salt electrolytic bath can be formed.

【0013】溶融塩電解浴中のTi濃度は、添加するT
iCl4により決まるが、上記、の反応を考慮に入
れTi濃度として、1〜4wt%になるようにTiCl
4を添加することが好ましく、より好ましいTi濃度
は、1.5〜3wt%である。この範囲内では、電流効
率も良く、電析状態は樹枝状となり、粒の大きさも大き
い。しかし、1wt%未満であると、カソ−ド棒に電着
しなかったり、電流効率が非常に低いものとなってしま
い好ましくない。また、電着したTiの粒度も非常に小
さくなる。4wt%を超えると、電流効率が低くなり、
電析形態もスポンジ状となり、Tiに付着した溶融塩等
の分離が不十分となり、高純度のTiが得にくい。
The concentration of Ti in the molten salt electrolytic bath depends on the T added.
It depends on iCl 4 , but the Ti concentration should be 1 to 4 wt% in consideration of the above reaction.
4 is preferably added, and a more preferable Ti concentration is 1.5 to 3 wt%. Within this range, the current efficiency is good, the electrodeposition is dendritic, and the size of the particles is large. However, if it is less than 1 wt%, it is not preferable because the cathode rod is not electrodeposited or the current efficiency is very low. Also, the grain size of electrodeposited Ti is very small. If it exceeds 4 wt%, the current efficiency becomes low,
The electrodeposited form also becomes sponge-like, and the separation of the molten salt and the like adhering to Ti becomes insufficient, and it is difficult to obtain high-purity Ti.

【0014】初期カソ−ド電流密度は、0.01〜2A
/cm2が好ましく、より好ましくは0.1〜1.0A
/cm2である。電流密度が、上記の電流密度より低い
場合は、電流効率が低く、時間もかかるため生産性が低
く、好ましくない。一方、2.0A/cm2より高い場
合は、粒が小さくなるため、カソ−ドに付着することが
少なく、仮りに得られたとしても、スポンジ状であるた
め好ましくない。
The initial cathode current density is 0.01 to 2 A.
/ Cm 2 is preferable, more preferably 0.1 to 1.0 A
/ Cm 2 . When the current density is lower than the above current density, the current efficiency is low and it takes time, so that the productivity is low, which is not preferable. On the other hand, if it is higher than 2.0 A / cm 2 , the particles are small and the particles are less likely to adhere to the cathode, and even if it is obtained, it is spongy, which is not preferable.

【0015】電解温度は、600〜900℃が好まし
く、より好ましくは、650〜850℃である。上記の
温度より低い場合は、結晶性の良いTiが得られにく
く、また電流効率も低く好ましくない。電解温度が90
0℃よりも高い場合は、浴の蒸発が多くなり、また、電
流効率も低くなるため、好ましくない。
The electrolysis temperature is preferably 600 to 900 ° C, and more preferably 650 to 850 ° C. If the temperature is lower than the above temperature, Ti with good crystallinity is difficult to obtain, and the current efficiency is low, which is not preferable. Electrolysis temperature is 90
When the temperature is higher than 0 ° C., the evaporation of the bath increases and the current efficiency also decreases, which is not preferable.

【0016】そして、上記条件下で電解を行い、一回目
の電解を終了したならば、カソ−ドに電着したTiを引
き上げ、冷却後脱着し、水洗を行なう。その後、Tiの
表面をフッ化水素−硝酸で洗浄し、次いでエタノ−ルで
洗浄する。そして最後に、真空乾燥する。
Then, electrolysis is carried out under the above-mentioned conditions, and when the first electrolysis is completed, the Ti electrodeposited on the cathode is pulled up, and after cooling, it is desorbed and washed with water. Then, the surface of Ti is washed with hydrogen fluoride-nitric acid and then with ethanol. And finally, it is vacuum dried.

【0017】さらに、次の電解の前に、少なくとも電着
Ti重量と同量以上の粗TiをTiパイプ等を通してア
ノ−ドに装入する。その後前記操作法により、溶融塩電
解精製を行なう。この粗Ti補加操作を、一回の電解終
了毎に繰り返す。この粗Ti補加操作は、電解中にTi
の電着量に応じて連続的に行っても良い。この様にし
て、高純度Tiを連続的に得ることができる。
Further, before the next electrolysis, at least the same amount of crude Ti as the electrodeposited Ti weight is charged into the anode through a Ti pipe or the like. Then, molten salt electrolytic refining is performed by the above-mentioned operation method. This rough Ti supplementing operation is repeated every time the electrolysis is completed. This coarse Ti addition operation is
It may be continuously performed depending on the amount of electrodeposition. In this way, high purity Ti can be continuously obtained.

【0018】以下、本発明の実施例及び比較例について
説明する。
Examples of the present invention and comparative examples will be described below.

【0019】[0019]

【実施例】あらかじめ、表1に示すような純度の原料で
ある粗Tiスポンジ600gを含む約750℃で溶融状
態のNaCl−KCl(モル比=45:55)浴10k
g中に、TiCl4485gを導入する。これにより、
浴中で上記、の反応が進行し、NaCl−KCl浴
中にTiCl2、TiCl3が生成する。この結果、浴中
のTi濃度が、約2.0wt%となった。
EXAMPLE A NaCl-KCl (molar ratio = 45: 55) bath 10 k in a molten state at about 750 ° C. containing 600 g of crude Ti sponge as a raw material having a purity shown in Table 1 in advance.
Into g, 485 g of TiCl 4 are introduced. This allows
The above reaction proceeds in the bath, and TiCl 2 and TiCl 3 are produced in the NaCl-KCl bath. As a result, the Ti concentration in the bath became about 2.0 wt%.

【0020】この浴を使用し、Tiスポンジをアノ−
ド、Ti棒をカソ−ドにして、電解温度720℃,初期
カソ−ド電流密度0.3A/cm2の電解条件で、カソ
−ドに高純度のTiを電析させた。電析Tiを純水で洗
浄し、フッ酸−硝酸による酸洗及びエタノ−ル洗浄を行
なった。さらに、60℃で真空乾燥を行った。これによ
り、電析Ti50gを得た。二回目の電解の前に、粗T
iスポンジ約100gを装入した。この電解操作を7回
繰り返した。得られたTiの分析値を、表1に示す。
Using this bath, Ti sponge is anodized.
With the cathode and the Ti rod as cathodes, high-purity Ti was electrodeposited on the cathodes under electrolysis conditions of an electrolysis temperature of 720 ° C. and an initial cathode current density of 0.3 A / cm 2 . The electrodeposited Ti was washed with pure water, followed by pickling with hydrofluoric acid-nitric acid and ethanol washing. Further, vacuum drying was performed at 60 ° C. Thereby, 50 g of electrodeposited Ti was obtained. Before the second electrolysis, rough T
About 100 g of i-sponge was charged. This electrolysis operation was repeated 7 times. Table 1 shows the obtained Ti analysis values.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【比較例】各回の電解終了後、粗Tiスポンジを補加し
ない以外は、実施例1と同様に電解を行った。この結果
を、表2に示す。
Comparative Example After each electrolysis, electrolysis was performed in the same manner as in Example 1 except that the crude Ti sponge was not added. The results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】表1及び表2から明らかなように、実施例
においては、7回の電解を行った後でも不純物であるF
e、Cr、Ni、Cuが0.05ppm(分析下限以
下)未満なのに対し、比較例においては、2回目以降で
Cu、そして4回目以降でFe、Cr、7回目でNiが
検出されていることが判る。
As is clear from Tables 1 and 2, in the examples, F which is an impurity even after seven times of electrolysis.
e, Cr, Ni, and Cu are less than 0.05 ppm (below the lower limit of analysis), whereas in the comparative example, Cu is detected after the second time, Fe, Cr after the fourth time, and Ni after the seventh time. I understand.

【0025】[0025]

【発明の効果】【The invention's effect】

(1)本発明により、極めて高純度のTi(6N以上)
を連続的にかつ容易に得ることができる。 (2)得られた高純度Tiは、半導体デバイス製造用の
タ−ゲット材等として好適に用いられる。
(1) According to the present invention, extremely high purity Ti (6N or more)
Can be obtained continuously and easily. (2) The obtained high-purity Ti is suitably used as a target material for manufacturing semiconductor devices.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融塩電解法で粗Tiを電解精製する方
法において、少なくとも間欠的に電着したTi重量と同
量以上の粗Tiを補加して電解を行うことを特徴とする
Tiの精製方法。
1. A method for electrolytically refining crude Ti by a molten salt electrolysis method, characterized in that electrolysis is performed by supplementing at least the same amount or more of crude Ti as electrodeposition of intermittently electrodeposited Ti. Purification method.
JP35154192A 1992-12-09 1992-12-09 Method for refining ti Pending JPH06173064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35154192A JPH06173064A (en) 1992-12-09 1992-12-09 Method for refining ti

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35154192A JPH06173064A (en) 1992-12-09 1992-12-09 Method for refining ti

Publications (1)

Publication Number Publication Date
JPH06173064A true JPH06173064A (en) 1994-06-21

Family

ID=18417985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35154192A Pending JPH06173064A (en) 1992-12-09 1992-12-09 Method for refining ti

Country Status (1)

Country Link
JP (1) JPH06173064A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1031734C2 (en) * 2006-05-03 2007-11-06 Girasolar B V Process for purifying a semiconductor material using an oxidation-reduction reaction.
WO2013065511A1 (en) * 2011-11-04 2013-05-10 住友電気工業株式会社 Molten salt electrolysis metal fabrication method and apparatus for use in same
JP2013117063A (en) * 2011-11-04 2013-06-13 Sumitomo Electric Ind Ltd Method of producing metal by molten salt electrolysis
JP2013147731A (en) * 2011-12-22 2013-08-01 Sumitomo Electric Ind Ltd Molten salt electrolysis metal fabrication method
US10309022B2 (en) 2011-08-10 2019-06-04 Sumitomo Electric Industries, Ltd. Element recovery method and element recovery apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213490A (en) * 1989-02-15 1990-08-24 Nippon Mining Co Ltd Production of high-purity titanium and equipment thereof and high-purity titanium target material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213490A (en) * 1989-02-15 1990-08-24 Nippon Mining Co Ltd Production of high-purity titanium and equipment thereof and high-purity titanium target material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1031734C2 (en) * 2006-05-03 2007-11-06 Girasolar B V Process for purifying a semiconductor material using an oxidation-reduction reaction.
WO2007126309A3 (en) * 2006-05-03 2008-04-03 Girasolar B V Method for the purification of a semiconductor material by application of an oxidation-reduction reaction
US10309022B2 (en) 2011-08-10 2019-06-04 Sumitomo Electric Industries, Ltd. Element recovery method and element recovery apparatus
WO2013065511A1 (en) * 2011-11-04 2013-05-10 住友電気工業株式会社 Molten salt electrolysis metal fabrication method and apparatus for use in same
JP2013117063A (en) * 2011-11-04 2013-06-13 Sumitomo Electric Ind Ltd Method of producing metal by molten salt electrolysis
JP2013147731A (en) * 2011-12-22 2013-08-01 Sumitomo Electric Ind Ltd Molten salt electrolysis metal fabrication method

Similar Documents

Publication Publication Date Title
US3114685A (en) Electrolytic production of titanium metal
JP2904744B2 (en) Method for electrolytic production of magnesium or its alloy
US2828251A (en) Electrolytic cladding process
JP2004502036A (en) Method and apparatus for processing metal, and metal manufactured by processing
JPH06173065A (en) Method for refining ti
US2943032A (en) Electrolytic production of titanium
JPH06173064A (en) Method for refining ti
JPS6327434B2 (en)
JP3736618B2 (en) Treatment method of waste acid containing copper
US2707170A (en) Electrodeposition of titanium
US4287030A (en) Process for producing high-purity indium
US2936268A (en) Preparation of metal borides and silicides
US2731402A (en) Production of metallic titanium
US2783196A (en) Method for producing titanium and zirconium
US2668750A (en) Purification of by-product halide salts
US2892763A (en) Production of pure elemental silicon
US2984605A (en) Deposition of boron from fused salt baths
JP3066886B2 (en) High purity cobalt sputtering target
US2831802A (en) Production of subdivided metals
US2939823A (en) Electrorefining metallic titanium
US2913379A (en) Separation process
US2834727A (en) Purification of molten electrolytes
US2899369A (en) Special electrolytic processing
US2813068A (en) Production of titanium by fused salt electrolysis
WO2020044841A1 (en) Method for producing metal titanium