JP2638366B2 - Operation control device for refrigeration equipment - Google Patents

Operation control device for refrigeration equipment

Info

Publication number
JP2638366B2
JP2638366B2 JP34109691A JP34109691A JP2638366B2 JP 2638366 B2 JP2638366 B2 JP 2638366B2 JP 34109691 A JP34109691 A JP 34109691A JP 34109691 A JP34109691 A JP 34109691A JP 2638366 B2 JP2638366 B2 JP 2638366B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
optimum
optimum temperature
thc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34109691A
Other languages
Japanese (ja)
Other versions
JPH05172410A (en
Inventor
誠治 酒井
世紀 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP34109691A priority Critical patent/JP2638366B2/en
Publication of JPH05172410A publication Critical patent/JPH05172410A/en
Application granted granted Critical
Publication of JP2638366B2 publication Critical patent/JP2638366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置の運転制御装
置に係り、特に、吐出管温度を最適温度にするよう電動
膨張弁の開度を制御するようにしたものの改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigeration system, and more particularly to an improvement in an operation control device for controlling an opening of an electric expansion valve so that a discharge pipe temperature is adjusted to an optimum temperature.

【0002】[0002]

【従来の技術】従来より、例えば特公昭59―1294
2号公報に開示される如く、圧縮機、凝縮器、電動膨張
弁及び蒸発器を順次接続してなる冷媒回路を備えた冷凍
装置の運転制御装置として、冷媒の蒸発温度と凝縮温度
とに基づき最適な冷凍効果を与える吐出冷媒の最適温度
を演算し、吐出冷媒温度がその最適温度に収束するよう
電動膨張弁の開度を制御することにより、定容量形の圧
縮機を使用しながら、簡素な構成で効率の高い運転を行
おうとするものは公知の技術である。
2. Description of the Related Art Conventionally, for example, Japanese Patent Publication No. 59-1294
As disclosed in Japanese Unexamined Patent Publication No. 2 (1995), as an operation control device of a refrigeration system including a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected, based on a refrigerant evaporation temperature and a condensation temperature. Calculates the optimum temperature of the discharged refrigerant that provides the optimum refrigeration effect, and controls the opening of the electric expansion valve so that the discharged refrigerant temperature converges to the optimum temperature. It is a known technique that attempts to perform efficient operation with a simple configuration.

【0003】[0003]

【発明が解決しようとする課題】ところで、インバータ
で運周波数を可変に調節されるスクロール型圧縮機を備
えた冷凍装置について、上記公報のものを適用すると、
下記のような問題が生じる。
By the way, as for the refrigerating apparatus provided with the scroll type compressor whose operating frequency is variably adjusted by the inverter, if the above-mentioned publication is applied,
The following problems occur.

【0004】すなわち、スクロール型圧縮機では、スプ
リングによってロータがシリンダ内壁に押し付けられる
ロータリー圧縮機とは異なり、一対のスクロール間のシ
ールは、回転による遠心力を利用することでなされてい
る。そのため、回転数が低いとき、つまりインバータ周
波数が低いときにはシール機能が弱くなっており、冷媒
の漏れが生じることがある。このため、吐出管温度が上
昇し、冷凍効果を悪化させるとともに、圧縮機に負担が
掛かり、信頼性を損ねる虞れがあった。
That is, in a scroll compressor, unlike a rotary compressor in which a rotor is pressed against the inner wall of a cylinder by a spring, a seal between a pair of scrolls is made by utilizing centrifugal force due to rotation. Therefore, when the rotation speed is low, that is, when the inverter frequency is low, the sealing function is weak, and the refrigerant may leak. For this reason, the temperature of the discharge pipe increases, and the refrigerating effect is deteriorated. In addition, a load is applied to the compressor, and there is a possibility that the reliability may be impaired.

【0005】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、インバータ周波数の低い領域では電
動膨張弁の開度を開き側に補正する手段を講ずることに
より、冷媒流量の低減を抑制し、もって、冷凍効果及び
信頼性の悪化を有効に防止することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the foregoing, and an object of the present invention is to reduce the flow rate of a refrigerant by adopting a means for correcting the opening of an electric expansion valve to an open side in a region where an inverter frequency is low. Therefore, it is possible to effectively prevent the refrigeration effect and the reliability from deteriorating.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の解決手段は、吐出管温度を最適温度に保持
する制御において、インバータ周波数が低い領域では、
最適温度の演算値を低くするよう補正することにある。
Means for Solving the Problems To achieve the above object, a solution of the present invention is to control the discharge pipe temperature at an optimum temperature in a region where the inverter frequency is low.
The correction is performed so as to lower the calculated value of the optimum temperature.

【0007】具体的に、請求項1の発明の講じた手段
は、図1に示すように、インバータ(13)により周波
数が可変に調節されるスクロール型圧縮機(1)と、凝
縮器(3又は6)と、電動膨張弁(5)と、蒸発器(6
又は3)とを順次接続してなる冷媒回路(9)を備えた
冷凍装置を前提とする。
Specifically, as shown in FIG. 1, the means adopted in the first aspect of the invention is a scroll compressor (1) whose frequency is variably adjusted by an inverter (13), and a condenser (3). Or 6), the electric expansion valve (5), and the evaporator (6).
Or 3) with a refrigeration apparatus provided with a refrigerant circuit (9) sequentially connected.

【0008】そして、冷凍装置の運転制御装置として、
冷媒の蒸発温度を検出する蒸発温度検出手段(The又は
Thc)と、冷媒の凝縮温度を検出する凝縮温度検出手段
(Thc又はThe)と、上記圧縮機(1)からの吐出冷媒
の温度を検出する吐出温度検出手段(Th2)と、上記蒸
発温度検出手段(The又はThc)及び凝縮温度検出手段
(Thc又はThe)の出力を受け、最適冷凍効果を与える
吐出冷媒の最適温度を演算する最適温度演算手段(5
1)と、上記吐出温度検出手段(Th2)の出力を受け、
吐出冷媒温度が上記最適温度演算手段(51)で演算さ
れる最適温度になるよう上記電動膨張弁(5)の開度を
制御する開度制御手段(53)とを設けるものとする。
[0008] As an operation control device of the refrigeration system,
Evaporating temperature detecting means (Th or Thc) for detecting the evaporating temperature of the refrigerant; condensing temperature detecting means (Thc or Th) for detecting the condensing temperature of the refrigerant; and detecting the temperature of the refrigerant discharged from the compressor (1). The optimum temperature for receiving the output of the discharge temperature detecting means (Th2), the evaporating temperature detecting means (Th or Thc) and the condensing temperature detecting means (Thc or Th), and calculating the optimum temperature of the discharged refrigerant giving the optimum refrigerating effect. Arithmetic means (5
1) receiving the output of the discharge temperature detecting means (Th2);
An opening control means (53) for controlling the opening of the electric expansion valve (5) so that the discharged refrigerant temperature becomes the optimum temperature calculated by the optimum temperature calculating means (51) is provided.

【0009】さらに、上記インバータ(13)の出力周
波数が所定値以下の時、周波数値が低いほど上記最適温
度演算手段(51)で演算される最適温度を低くするよ
う補正する補正手段(52)を設ける構成としたもので
ある。
Further, when the output frequency of the inverter (13) is lower than a predetermined value, a correction means (52) for correcting the lower the frequency value, the lower the optimum temperature calculated by the optimum temperature calculation means (51). Is provided.

【0010】請求項2の発明の講じた手段は、上記請求
項1の発明において、補正手段(53)を、補正判断の
基準となるインバータ周波数の所定値と現在のインバー
タ周波数値との差に対してリニアに最適温度を低減する
よう補正する構成としたものである。
The means adopted in the invention of claim 2 is the invention according to claim 1, wherein the correction means (53) determines a difference between a predetermined value of the inverter frequency as a reference for correction judgment and the current inverter frequency value. On the other hand, the temperature is corrected so as to linearly reduce the optimum temperature.

【0011】[0011]

【作用】以上の構成により、請求項1の発明では、最適
温度演算手段(51)により、冷媒の蒸発温度、凝縮温
度に基づき、最適な冷凍効果を与える吐出管温度の最適
温度が演算され、開度制御手段(53)により、吐出管
温度がこの最適温度に収束するよう電動膨張弁(5)の
開度が制御される。
With the above arrangement, in the first aspect of the present invention, the optimum temperature calculating means (51) calculates the optimum temperature of the discharge pipe temperature which gives the optimum refrigeration effect based on the evaporation temperature and the condensation temperature of the refrigerant. The opening of the electric expansion valve (5) is controlled by the opening control means (53) so that the discharge pipe temperature converges to this optimum temperature.

【0012】その場合、インバータ(13)で運転周波
数が可変に調節されるスクロール型圧縮機(1)では、
運転周波数が低くなると、スクロール間における冷媒の
漏れが増大して冷媒の吐出量が低減するので、吐出管温
度が上昇し、冷凍効果や信頼性が悪化する虞れが生じる
が、本発明では、補正手段(52)により、インバータ
周波数が低いほど最適温度を低くするように、つまり最
適温度の演算値が冷媒の漏れを考慮した最適温度に近付
くように補正されるので、吐出管温度が適正値に維持さ
れ、冷凍効果や信頼性の悪化が防止されることになる。
In this case, in the scroll compressor (1) whose operating frequency is variably adjusted by the inverter (13),
When the operating frequency is reduced, the leakage of the refrigerant between the scrolls increases and the discharge amount of the refrigerant decreases, so that the discharge pipe temperature increases, and there is a possibility that the refrigeration effect and reliability may deteriorate, but in the present invention, The correction means (52) corrects the optimum temperature lower as the inverter frequency is lower, that is, the calculated value of the optimum temperature approaches the optimum temperature in consideration of the leakage of the refrigerant. , And the deterioration of the refrigeration effect and reliability is prevented.

【0013】請求項2の発明では、請求項1の発明にお
ける補正手段(52)の作用において、最適温度の補正
判断の基準となるインバータ周波数の所定値と現在のイ
ンバータ周波数値との差に対してリニアに最適温度が低
減されるので、補正演算が簡素化され、インバータ周波
数の低下に対して迅速に対応されることになる。
According to a second aspect of the present invention, in the operation of the correcting means (52) according to the first aspect of the present invention, the difference between the predetermined value of the inverter frequency and the current inverter frequency value, which is a reference for the correction judgment of the optimum temperature, is obtained. As a result, the optimum temperature is linearly reduced, so that the correction calculation is simplified, and the inverter frequency is quickly reduced.

【0014】[0014]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、一台の室外ユニット(A)に対して
一台の室内熱交換器(B)が接続されたいわゆるセパレ
ートタイプのものである。上記室外ユニット(A)に
は、インバータ(13)により運転周波数Ft を可変に
調節されるスクロールタイプの圧縮機(1)と、冷房運
転時には図中実線のごとく、暖房運転時には図中破線の
ごとく切換わる四路切換弁(2)と、冷房運転時には凝
縮器として、暖房運転時には蒸発器として機能する室外
熱交換器(3)と、冷媒を減圧するための減圧部(2
0)と、圧縮機(1)の吸入管に介設され、吸入冷媒中
の液冷媒を除去するためのアキュムレ―タ(7)とが主
要機器として配置されている。また、室内ユニット
(B)には、冷房運転時には蒸発器として、暖房運転時
には凝縮器として機能する室内熱交換器(6)が配置さ
れている。上記各機器は冷媒配管(8)により順次接続
され、冷媒の循環により熱移動を生ぜしめるようにした
冷媒回路(9)が構成されている。
FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, which is a so-called separate type in which one outdoor unit (A) is connected to one indoor heat exchanger (B). Things. The outdoor unit (A) includes a scroll-type compressor (1) whose operating frequency Ft is variably adjusted by an inverter (13), as shown by the solid line in the cooling operation, and as shown by the broken line in the heating operation in the heating operation. A four-way switching valve (2) for switching, an outdoor heat exchanger (3) functioning as a condenser during a cooling operation and as an evaporator during a heating operation, and a decompression unit (2) for decompressing the refrigerant.
0) and an accumulator (7) interposed in the suction pipe of the compressor (1) for removing the liquid refrigerant in the suction refrigerant are arranged as main equipment. The indoor unit (B) is provided with an indoor heat exchanger (6) that functions as an evaporator during the cooling operation and as a condenser during the heating operation. The above devices are sequentially connected by a refrigerant pipe (8), and a refrigerant circuit (9) is configured to generate heat transfer by circulation of the refrigerant.

【0016】ここで、上記減圧部(20)には、液冷媒
を貯溜するためのレシ―バ(4)と、液冷媒の減圧機能
と流量調節機能とを有する電動膨張弁(5)とが配設さ
れ、上記レシ―バ(4)と電動膨張弁(5)とは、電動
膨張弁(5)がレシ―バ(4)の下部つまり液部に連通
するよう、室外熱交換器(3)の補助熱交換器(3a)
を介して共通路(8a)に直列に配置されている。そし
て、共通路(8a)のレシ―バ(4)上流側の端部
(P)と室外熱交換器(3)との間は、室外熱交換器
(3)からレシ―バ(4)への冷媒の流通のみを許容す
る第1逆止弁(D1)を介して第1流入路(8b1)によ
り、上記共通路(8a)の点(P)と室内熱交換器
(6)との間は室内熱交換器(6)からレシ―バ(4)
への冷媒の流通のみを許容する第2逆止弁(D2)を介
して第2流入路(8b2)により、それぞれ接続されてい
る一方、共通路(8a)の上記電動膨張弁(5)他端側
の端部(Q)と上記第2逆止弁(D2)−室内熱交換器
(6)間の点(R)との間は電動膨張弁(5)から室内
熱交換器(6)への冷媒の流通のみを許容する第3逆止
弁(D3)を介して第1流出路(8c1)により、共通路
(8a)の上記点(Q)と上記第1逆止弁(D1)−室
外熱交換器(3)間の点(S)との間は電動膨張弁
(5)から室外熱交換器(3)への冷媒の流通のみを許
容する第4逆止弁(D4)を介して第2流出路(8c2)
により、それぞれ接続されている。
The pressure reducing section (20) includes a receiver (4) for storing the liquid refrigerant, and an electric expansion valve (5) having a function of reducing the liquid refrigerant and a function of adjusting the flow rate. The receiver (4) and the electric expansion valve (5) are arranged so that the electric expansion valve (5) communicates with the lower part of the receiver (4), that is, the liquid part. ) Auxiliary heat exchanger (3a)
Are arranged in series on the common path (8a) via And, between the outdoor heat exchanger (3) and the end (P) on the upstream side of the receiver (4) of the common path (8a), from the outdoor heat exchanger (3) to the receiver (4). Between the point (P) of the common path (8a) and the indoor heat exchanger (6) by a first inflow path (8b1) via a first check valve (D1) that permits only the flow of the refrigerant. Is the receiver (4) from the indoor heat exchanger (6)
Connected via a second check valve (D2) allowing only the flow of refrigerant to the second inflow path (8b2), while being connected to the electric expansion valve (5) and the like in the common path (8a). Between the end (Q) on the end side and a point (R) between the second check valve (D2) and the indoor heat exchanger (6), the electric expansion valve (5) to the indoor heat exchanger (6). The point (Q) of the common path (8a) and the first check valve (D1) through the first outflow path (8c1) via the third check valve (D3) that permits only the flow of refrigerant to the first check valve (D1). A fourth check valve (D4) that allows only refrigerant to flow from the electric expansion valve (5) to the outdoor heat exchanger (3) between the point (S) between the outdoor heat exchangers (3); Via the second outflow channel (8c2)
Are connected to each other.

【0017】また、上記レシ―バ(4)の上流側の点
(P)と流出側の点(Q)との間には、キャピラリチュ
―ブ(C)を介設してなる液封防止バイパス路(8f)
が設けられていて、該液封防止バイパス路(8f)によ
り、圧縮機(1)の停止時における液封を防止するとと
もに、ガス冷媒がレシ―バ(4)上部から第1流出路
(8c1)側に移動しうるようになされている。なお、上
記キャピラリチュ―ブ(C)の減圧度は電動膨張弁
(5)よりも十分大きくなるように設定されていて、通
常運転時における電動膨張弁(5)による冷媒流量調節
機能を良好に維持しうるようになされている。
Further, between the point (P) on the upstream side of the receiver (4) and the point (Q) on the outflow side, there is provided a capillary tube (C) for preventing liquid sealing. Bypass road (8f)
The liquid seal prevention bypass passage (8f) prevents liquid seal when the compressor (1) is stopped, and allows the gas refrigerant to flow from the upper part of the receiver (4) to the first outflow passage (8c1). ) Side. The degree of pressure reduction of the capillary tube (C) is set to be sufficiently larger than that of the electric expansion valve (5), so that the function of adjusting the refrigerant flow rate by the electric expansion valve (5) during normal operation can be improved. It is made so that it can be maintained.

【0018】なお、(F1)〜(F4)は冷媒中の塵埃
を除去するためのフィルタ、(ER)は圧縮機(1)の
運転音を低減させるための消音器である。
Note that (F1) to (F4) are filters for removing dust in the refrigerant, and (ER) is a muffler for reducing the operation noise of the compressor (1).

【0019】さらに、空気調和装置にはセンサ類が設け
られていて、(Th2)は吐出管に配置され、吐出管温度
T2を検出する吐出温度検出手段としての吐出管セン
サ、(Tha)は室外ユニット(A)の空気吸込口に配置
され、外気温度である吸込空気温度Taを検出する室外
吸込センサ、(Thc)は室外熱交換器(3)に配置さ
れ、冷房運転時には凝縮温度となり暖房運転時には蒸発
温度となる外熱交温度Tcを検出する外熱交センサ、
(Thr)は室内ユニット(B)の空気吸込口に配置さ
れ、室内温度である吸込空気温度Trを検出する室内吸
込センサ、(The)は室内熱交換器(6)に配置され、
冷房運転時には蒸発温度となり暖房運転時には凝縮温度
となる内熱交温度Teを検出する内熱交センサ、(HP
S)は高圧側圧力の過上昇によりオンとなって後述の保
護装置(11)を作動させる高圧圧力スイッチ、(LP
S)は低圧側圧力の過低下によりオンとなって保護装置
(11)を作動させる低圧圧力スイッチである。上記各
センサ類の信号は、空気調和装置の運転を制御するコン
トローラ(10)に入力可能に接続されており、該コン
トローラ(10)により、上記各センサ類の信号に応じ
て、空気調和装置の運転を制御するようになされてい
る。
Further, sensors are provided in the air conditioner, (Th2) is disposed in the discharge pipe, a discharge pipe sensor as discharge temperature detecting means for detecting the discharge pipe temperature T2, and (Tha) is an outdoor An outdoor suction sensor that is disposed at an air suction port of the unit (A) and detects an intake air temperature Ta, which is an outside air temperature, and (Thc) is disposed at an outdoor heat exchanger (3). An external heat exchange sensor that detects an external heat exchange temperature Tc that is sometimes an evaporation temperature;
(Thr) is disposed at the air suction port of the indoor unit (B), detects an indoor air temperature Tr, which is an indoor air suction sensor, and (The) is disposed at the indoor heat exchanger (6).
An internal heat exchange sensor for detecting an internal heat exchange temperature Te which becomes an evaporating temperature during a cooling operation and becomes a condensing temperature during a heating operation, (HP
S) is a high-pressure switch which is turned on by an excessive rise of the high-pressure side pressure and activates a protection device (11) described later, (LP
S) is a low-pressure switch that is turned on when the low-pressure side pressure is excessively low to activate the protection device (11). The signals from the sensors are inputably connected to a controller (10) that controls the operation of the air conditioner, and the controller (10) responds to the signals from the sensors to control the operation of the air conditioner. Driving is controlled.

【0020】また、上記コントローラ(10)内には、
空気調和装置の運転中、何らかの異常が生じた時に作動
して、空気調和装置を異常停止させる保護装置(1
1)、タイマ(12)等が内蔵されている。そして、上
記保護装置(11)には、図示しないが、上記高低圧ス
イッチ(HPS),(LPS)の他、吐出管センサ(T2)
の信号も入力されており、吐出管温度T2が所定温度以
上になると、保護装置(11)が作動して空気調和装置
を異常停止させ、圧縮機(1)の焼損等の事故を防止す
るようになされている。
Further, in the controller (10),
During operation of the air conditioner, a protection device (1) that is activated when an abnormality occurs to stop the air conditioner abnormally.
1), a timer (12) and the like are built in. Although not shown, the protection device (11) has a discharge pipe sensor (T2) in addition to the high / low pressure switches (HPS) and (LPS).
When the discharge pipe temperature T2 exceeds a predetermined temperature, the protection device (11) is activated to stop the air conditioner abnormally and prevent accidents such as burnout of the compressor (1). Has been made.

【0021】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流入路(8b1)から流入し、第1逆止弁(D1)を経
てレシ―バ(4)に貯溜され、電動膨張弁(5)で減圧
された後、第1流出路(8c1)を経て室内熱交換器
(6)で蒸発して圧縮機(1)に戻る循環となる一方、
暖房運転時には、室内熱交換器(6)で凝縮液化された
液冷媒が第2流入路(8b2)から流入し、第2逆止弁
(D2)を経てレシ―バ(4)に貯溜され、電動膨張弁
(5)で減圧された後、第2流出路(8c2)を経て室外
熱交換器(3)で蒸発して圧縮機(1)に戻る循環とな
る。
In the refrigerant circuit (9), during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow path (8b1) and passes through the first check valve (D1). After being stored in the receiver (4) and decompressed by the electric expansion valve (5), it is evaporated in the indoor heat exchanger (6) through the first outflow passage (8c1) and returns to the compressor (1). While circulating,
During the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) flows in from the second inflow path (8b2) and is stored in the receiver (4) through the second check valve (D2). After the pressure is reduced by the electric expansion valve (5), the refrigerant evaporates in the outdoor heat exchanger (3) via the second outflow passage (8c2) and returns to the compressor (1).

【0022】ここで、上記コントローラ(10)の制御
内容について説明する。図3は、上記コントローラ(1
0)の冷房運転時における制御内容を示し、ステップS
T1で、上記内熱交センサ(The)で検出される蒸発温
度Te、外熱交センサ(Thc)で検出される凝縮温度T
c、吐出管センサ(Th2)で検出される吐出管温度T
2、及び現在のインバータ周波数Ftをそれぞれ入力
し、ステップST2で、インバータ周波数Ftが所定値
60Hz以下か否かを判別して、Ft≦60(Hz)で
なければ、後述の最適温度Tkの演算を通常の演算式で
行って差支えないと判断し、ステップST3で、補正項
Tdxを「0」とする一方、Ft≦60(Hz)であれ
ば、圧縮機(1)の回転数が低いので冷媒の漏れによる
吐出管温度の異常上昇を防止する必要があると判断し
て、ステップST4で、下記数式(1) Tdx=A×(60−Ft)+B (1) に基づき、補正項Tdxの演算を行った後、ステップST
5に進む。
Here, the control contents of the controller (10) will be described. FIG. 3 shows the controller (1).
0) shows the control contents during the cooling operation in step S).
At T1, the evaporation temperature Te detected by the internal heat exchange sensor (The) and the condensation temperature T detected by the external heat exchange sensor (Thc)
c, discharge pipe temperature T detected by discharge pipe sensor (Th2)
2 and the current inverter frequency Ft, respectively, and in step ST2, it is determined whether or not the inverter frequency Ft is equal to or lower than a predetermined value of 60 Hz. If Ft ≦ 60 (Hz), an optimum temperature Tk described later is calculated. It is determined that there is no problem in performing the above by using an ordinary arithmetic expression. In step ST3, while the correction term Tdx is set to “0”, if Ft ≦ 60 (Hz), the rotation speed of the compressor (1) is low. It is determined that it is necessary to prevent an abnormal rise in the discharge pipe temperature due to refrigerant leakage, and in step ST4, the correction term Tdx is calculated based on the following equation (1) Tdx = A × (60−Ft) + B (1) After performing the calculation, step ST
Go to 5.

【0023】次に、ステップST5で、下記数式(2) Tk=C+D×Te +E×Tc −Tdx (2) (ただし、A,B,C,D,Eはいずれも定数)に基づ
き、最適な冷凍効果EERを与える吐出管温度である最
適温度Tkを算出する。ここで、上記数式(2) の各係数
は実験により求められ、例えばA=0.5、B=0、C
=4、D=−1.13、E=1.72程度の値となる。
Next, in step ST5, based on the following equation (2), Tk = C + D × Te + E × Tc−Tdx (2) (where A, B, C, D, and E are constants) The optimum temperature Tk, which is the discharge pipe temperature that gives the refrigeration effect EER, is calculated. Here, each coefficient of the above equation (2) is obtained by an experiment, for example, A = 0.5, B = 0, C
= 4, D = -1.13, and E = 1.72.

【0024】例えば、インバータ周波数Ftが30(H
z)のときには、Tdx=0.5×(60−30)=15
(℃)となって、最適温度Tkが15℃だけ低く補正さ
れることになる。
For example, if the inverter frequency Ft is 30 (H
In the case of z), Tdx = 0.5 × (60−30) = 15
(° C.), and the optimum temperature Tk is corrected to be lower by 15 ° C.

【0025】そして、ステップST6で、式 ΔT2=
T2−Tkに基づき吐出管温度T2と最適温度Tkとの
温度差ΔT2を算出した後、ステップST7で、|ΔT
2|≦5か否か、つまり吐出管温度T2が最適温度Tk
の上下一定範囲内に収束したか否かを判別し、収束する
までは、ステップST8に進んで、ΔT2が正か否か、
つまり吐出管温度T2が最適温度Tkよりも高いか否か
を判別し、吐出管温度T2の方が高ければ、ステップS
T9で、電動膨張弁(5)を中程度に開くよう制御する
一方、吐出管温度T2の方が低ければ、ステップST1
0で、電動膨張弁(5)の開度を中程度に閉じるように
制御する。
Then, in step ST6, the equation ΔT2 =
After calculating the temperature difference ΔT2 between the discharge pipe temperature T2 and the optimum temperature Tk based on T2−Tk, in step ST7, | ΔT
2 | ≦ 5, that is, the discharge pipe temperature T2 is the optimum temperature Tk
It is determined whether or not convergence has occurred within the upper and lower fixed ranges. Until convergence, the process proceeds to step ST8 to determine whether or not ΔT2 is positive.
That is, it is determined whether or not the discharge pipe temperature T2 is higher than the optimum temperature Tk.
At T9, while the electric expansion valve (5) is controlled to open to the middle level, if the discharge pipe temperature T2 is lower, the control proceeds to step ST1.
At 0, control is performed to close the opening of the electric expansion valve (5) to an intermediate level.

【0026】一方、上記ステップST7の判別で、|Δ
T2|≦5となり、吐出管温度T2が最適温度Tkの上
下一定範囲内に収束すると、ステップST11に移行し
て、詳細は省略するが、電動膨張弁(5)の開度を微細
に調節するファジ―制御を実行する。
On the other hand, in step ST7, | Δ
When T2 | ≦ 5, and the discharge pipe temperature T2 converges within a certain range above and below the optimum temperature Tk, the process proceeds to step ST11, and although not described in detail, the opening degree of the electric expansion valve (5) is finely adjusted. Execute fuzzy control.

【0027】以上のフローにおいて、ステップSTST
2からST3を経てST5に至る制御により、請求項1
の発明にいう最適温度演算手段(51)が構成され、ス
テップST2からST4を経てST5に至る制御によ
り、補正手段(52)が構成され、ステップST7〜S
T11の制御により、開度制御手段(53)が構成され
ている。
In the above flow, step STST
2. The control from step 2 to step ST5 through step ST3.
The optimum temperature calculating means (51) according to the present invention is constituted, and the control means (52) is constituted by the control from step ST2 to step ST5 through step ST4.
The control of T11 constitutes an opening control means (53).

【0028】なお、説明は省略するが、暖房運転時にお
いても、上述の制御と同様に、インバータ周波数Ftに
よる補正を伴う最適温度Tkの演算が行われ、その算出
値に応じて、電動膨張弁(5)の開度を制御するように
なされている。
Although the description is omitted, even during the heating operation, the calculation of the optimum temperature Tk accompanied by the correction by the inverter frequency Ft is performed similarly to the above-described control, and the electric expansion valve is operated in accordance with the calculated value. The opening degree of (5) is controlled.

【0029】したがって、上記実施例では、最適温度演
算手段(51)により、冷媒の蒸発温度Te、凝縮温度
Tcに基づき、最適な冷凍効果を与える吐出管温度T2
の最適温度Tkが演算される。しかるに、インバータ
(13)で運転周波数Ftが可変に調節されるスクロー
ル型圧縮機(1)では、前述のように、運転周波数Ft
が低くなると、冷媒の漏れが増大する虞れがある。そし
て、この冷媒の漏れが生じると、冷媒流量の低減によっ
て吐出管温度T2が上昇して、冷凍効果が悪化したり、
甚だしいときには吐出管温度T2の過上昇により信頼性
が悪化する虞れがある。
Therefore, in the above embodiment, the optimum temperature calculating means (51) is based on the evaporating temperature Te and the condensing temperature Tc of the refrigerant, and the discharge pipe temperature T2 which gives the optimum refrigerating effect.
Is calculated. However, in the scroll compressor (1) in which the operating frequency Ft is variably adjusted by the inverter (13), as described above, the operating frequency Ft
Lower, the leakage of the refrigerant may increase. When the refrigerant leaks, the discharge pipe temperature T2 rises due to the decrease in the refrigerant flow rate, and the refrigeration effect deteriorates.
In extreme cases, the reliability may be degraded due to an excessive rise in the discharge pipe temperature T2.

【0030】ここで、上記実施例では、補正手段(5
2)により、インバータ周波数Ftが低いほど最適温度
Tkを低くするように、つまり最適温度Tkが冷媒の漏
れを考慮した最適値に補正されるので、開度制御手段
(53)で制御される電動膨張弁(5)の開度が増大側
に補正されることになって、冷媒流量が確保される。よ
って、良好な冷凍効果が維持され、吐出管温度T2の過
上昇が有効に防止されることになる。
Here, in the above embodiment, the correction means (5
According to 2), the lower the inverter frequency Ft is, the lower the optimum temperature Tk is, that is, the optimum temperature Tk is corrected to an optimum value in consideration of the leakage of the refrigerant, so that the electric power controlled by the opening control means (53). The opening degree of the expansion valve (5) is corrected to the increasing side, and the flow rate of the refrigerant is secured. Therefore, a good refrigeration effect is maintained, and an excessive rise in the discharge pipe temperature T2 is effectively prevented.

【0031】特に、上記実施例のごとく、インバータ周
波数Ftの所定値(上記実施例では60Hz)と現在値
との差に応じて、最適温度Tkをリニアに低減させるこ
とで、補正演算を簡素化することができ、インバータ周
波数Ftの低下に対して迅速に対応することができる。
In particular, as in the above embodiment, the correction operation is simplified by linearly reducing the optimum temperature Tk according to the difference between the predetermined value (60 Hz in the above embodiment) of the inverter frequency Ft and the current value. Therefore, it is possible to quickly respond to a decrease in the inverter frequency Ft.

【0032】[0032]

【発明の効果】以上説明したように、請求項1の発明に
よれば、インバータにより周波数が可変に調節されるス
クロール型圧縮機を備え、冷媒の凝縮温度と蒸発温度と
に基づき最適の冷凍効果を与える吐出管温度の最適温度
を演算して、吐出管温度がこの最適温度になるよう電動
膨張弁の開度を制御するようにした冷凍装置の運転制御
装置として、インバータ周波数が所定値以下のときに
は、インバータ周波数が低いほど最適温度の演算値を低
く補正するようにしたので、圧縮機のスクロール間の冷
媒の漏れに起因する吐出管温度の異常上昇を防止するこ
とができ、よって、冷凍効果や信頼性の悪化を有効に防
止することができる。
As described above, according to the first aspect of the present invention, the scroll type compressor whose frequency is variably adjusted by the inverter is provided, and the optimum refrigerating effect is provided based on the condensation temperature and the evaporation temperature of the refrigerant. The operation control device of the refrigeration system that calculates the optimum temperature of the discharge pipe temperature to give the discharge pipe temperature and controls the opening degree of the electric expansion valve so that the discharge pipe temperature becomes the optimum temperature. At times, the calculated value of the optimum temperature is corrected to be lower as the inverter frequency is lower, so that it is possible to prevent the discharge pipe temperature from abnormally rising due to the leakage of the refrigerant between the scrolls of the compressor, and thus the refrigeration effect can be prevented. And deterioration of reliability can be effectively prevented.

【0033】請求項2の発明によれば、上記請求項1の
発明において、補正判断の基準となる所定値と現在のイ
ンバータ周波数値との差に対してリニアに最適温度を低
減する補正としたので、制御の簡素化により、インバー
タ周波数の低減に対して迅速に対応することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the correction is performed so as to linearly reduce the optimum temperature with respect to a difference between a predetermined value serving as a reference for correction judgment and the current inverter frequency value. Therefore, by simplifying the control, it is possible to quickly respond to the reduction of the inverter frequency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air-conditioning apparatus according to the embodiment.

【図3】コントローラの制御内容を示すフロ―チャ―ト
図である。
FIG. 3 is a flowchart showing the control contents of a controller.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器(凝縮器又は蒸発器) 5 電動膨張弁 6 室内熱交換器(蒸発器又は凝縮器) 9 冷媒回路 13 インバータ 51 最適温度演算手段 52 補正手段 53 開度制御手段 Th2 吐出管センサ(吐出温度検出手段) The 内熱交センサ(蒸発温度検出手段又は凝縮温度検
出手段) Thc 外熱交センサ(凝縮温度検出手段又は蒸発温度検
出手段)
DESCRIPTION OF SYMBOLS 1 Compressor 3 Outdoor heat exchanger (condenser or evaporator) 5 Electric expansion valve 6 Indoor heat exchanger (evaporator or condenser) 9 Refrigerant circuit 13 Inverter 51 Optimal temperature calculation means 52 Correction means 53 Opening control means Th2 Discharge pipe sensor (discharge temperature detection means) The inside heat exchange sensor (evaporation temperature detection means or condensation temperature detection means) Thc outside heat exchange sensor (condensation temperature detection means or evaporation temperature detection means)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 インバータ(13)により周波数が可変
に調節されるスクロール型圧縮機(1)と、凝縮器(3
又は6)と、電動膨張弁(5)と、蒸発器(6又は3)
とを順次接続してなる冷媒回路(9)を備えた冷凍装置
において、 冷媒の蒸発温度を検出する蒸発温度検出手段(The又は
Thc)と、冷媒の凝縮温度を検出する凝縮温度検出手段
(Thc又はThe)と、上記圧縮機(1)からの吐出冷媒
の温度を検出する吐出温度検出手段(Th2)と、上記蒸
発温度検出手段(The又はThc)及び凝縮温度検出手段
(Thc又はThe)の出力を受け、最適冷凍効果を与える
吐出冷媒の最適温度を演算する最適温度演算手段(5
1)と、上記吐出温度検出手段(Th2)の出力を受け、
吐出冷媒温度が上記最適温度演算手段(51)で演算さ
れる最適温度になるよう上記電動膨張弁(5)の開度を
制御する開度制御手段(53)とを備えるとともに、 上記インバータ(13)の出力周波数が所定値以下の
時、周波数値が低いほど上記最適温度演算手段(51)
で演算される最適温度を低くするよう補正する補正手段
(52)を備えたことを特徴とする冷凍装置の運転制御
装置。
A scroll compressor (1) whose frequency is variably adjusted by an inverter (13), and a condenser (3).
Or 6), an electric expansion valve (5), and an evaporator (6 or 3)
And a refrigerant circuit (9) comprising a refrigerant circuit (9) and a refrigerant temperature detector (Thc or Thc) for detecting the vaporization temperature of the refrigerant, and a condenser temperature detector (Thc) for detecting the refrigerant condensation temperature. Or Th), discharge temperature detecting means (Th2) for detecting the temperature of the refrigerant discharged from the compressor (1), and evaporating temperature detecting means (The or Thc) and condensing temperature detecting means (Thc or Th). The optimum temperature calculating means (5) which receives the output and calculates the optimum temperature of the discharged refrigerant which gives the optimum refrigerating effect.
1) receiving the output of the discharge temperature detecting means (Th2);
Opening degree control means (53) for controlling the opening degree of the electric expansion valve (5) so that the discharged refrigerant temperature becomes the optimum temperature calculated by the optimum temperature calculating means (51); If the output frequency is lower than the predetermined value, the optimum temperature calculating means (51) becomes lower as the frequency value becomes lower.
An operation control device for a refrigeration system, comprising: a correction means (52) for correcting the optimum temperature calculated by (1) to be lower.
【請求項2】 請求項1記載の冷凍装置の運転制御装置
において、 補正手段(53)は、補正判断の基準となるインバータ
周波数の所定値と現在のインバータ周波数値との差に対
してリニアに最適温度を低減するよう補正するものであ
ることを特徴とする冷凍装置の運転制御装置。
2. The operation control device for a refrigeration system according to claim 1, wherein the correction means (53) linearly adjusts a difference between a predetermined value of the inverter frequency and a current inverter frequency value as a reference for the correction judgment. An operation control device for a refrigerating device, wherein the operation control device performs correction so as to reduce an optimum temperature.
JP34109691A 1991-12-24 1991-12-24 Operation control device for refrigeration equipment Expired - Lifetime JP2638366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34109691A JP2638366B2 (en) 1991-12-24 1991-12-24 Operation control device for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34109691A JP2638366B2 (en) 1991-12-24 1991-12-24 Operation control device for refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05172410A JPH05172410A (en) 1993-07-09
JP2638366B2 true JP2638366B2 (en) 1997-08-06

Family

ID=18343224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34109691A Expired - Lifetime JP2638366B2 (en) 1991-12-24 1991-12-24 Operation control device for refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2638366B2 (en)

Also Published As

Publication number Publication date
JPH05172410A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US20030233836A1 (en) Freezing device
JPH055564A (en) Air conditioner
JP4475660B2 (en) Refrigeration equipment
JP2003314907A (en) Control apparatus of expansion valve
JP2500519B2 (en) Operation control device for air conditioner
JP2638366B2 (en) Operation control device for refrigeration equipment
JPH10227533A (en) Air-conditioner
JP3097323B2 (en) Operation control device for air conditioner
JP4082040B2 (en) Refrigeration equipment
JPH06207758A (en) Air conditioner
JP2861603B2 (en) Operation control device for air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JP2757685B2 (en) Operation control device for air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JPH04222341A (en) Operation controller for air conditioner
JP3481274B2 (en) Separate type air conditioner
JP2909941B2 (en) Defrosting operation control device for refrigeration equipment
JP2765391B2 (en) Oil recovery operation control device for air conditioner
JPH05256496A (en) Operation controller for air conditioner
JP2504338B2 (en) Operation control device for air conditioner
JP2500524B2 (en) Refrigeration system operation controller
JPH10132406A (en) Refrigerating system
JPH09236299A (en) Running control device for air conditioning apparatus
JPH1047797A (en) Air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970318