JP2633858B2 - Probe microscope - Google Patents

Probe microscope

Info

Publication number
JP2633858B2
JP2633858B2 JP62170940A JP17094087A JP2633858B2 JP 2633858 B2 JP2633858 B2 JP 2633858B2 JP 62170940 A JP62170940 A JP 62170940A JP 17094087 A JP17094087 A JP 17094087A JP 2633858 B2 JP2633858 B2 JP 2633858B2
Authority
JP
Japan
Prior art keywords
probe
sample
piezoelectric element
coarse movement
movement mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62170940A
Other languages
Japanese (ja)
Other versions
JPS6415601A (en
Inventor
啓二 高田
茂行 細木
純男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62170940A priority Critical patent/JP2633858B2/en
Publication of JPS6415601A publication Critical patent/JPS6415601A/en
Application granted granted Critical
Publication of JP2633858B2 publication Critical patent/JP2633858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば走査型トンネル顕微鏡のような、プ
ローブ顕微鏡に係り、特に、例えば走査型トンネル顕微
鏡で最初にトンネル電流を得るときのように、プローブ
顕微鏡の初期状態を確立するための操作を簡便にするた
めの工夫のなされたプローブ顕微鏡に関する。以下説明
を簡便にするために、走査型トンネル顕微鏡について説
明する。
Description: FIELD OF THE INVENTION The present invention relates to a probe microscope, for example, a scanning tunneling microscope, and more particularly to, for example, a case where a tunneling current is first obtained in a scanning tunneling microscope. The present invention relates to a probe microscope devised for simplifying an operation for establishing an initial state of the probe microscope. Hereinafter, a scanning tunneling microscope will be described for simplicity.

〔従来の技術〕[Conventional technology]

走査型トンネル電子顕微鏡(STM)において試料を観
察するためには、探針と試料面との間隔をミクロンオー
ダーまで接近させる必要がある。探針に試料を接近させ
る手段としては、サイエンス誌第15巻第10号(1985年)
第14頁から第15頁に記載されている駆動機構が挙げられ
る。この駆動機構は、圧電板と3個所の静電固定板とか
ら成る。圧電板の伸縮と静電固定板による固定及び固定
解除の作用とにより、平面内を移動することができる。
この駆動機構により、試料を探針に近づけてゆき、トン
ネル電流が検出された時点で移動を停止する。
In order to observe a sample with a scanning tunneling electron microscope (STM), the distance between the probe and the sample surface must be close to the order of microns. As a means of bringing a sample closer to a probe, Science Magazine Vol. 15, No. 10, (1985)
The driving mechanism described on pages 14 to 15 can be mentioned. This drive mechanism is composed of a piezoelectric plate and three static fixing plates. Due to the expansion and contraction of the piezoelectric plate and the action of fixing and releasing by the electrostatic fixing plate, it is possible to move in a plane.
With this drive mechanism, the sample is brought closer to the probe, and stops moving when a tunnel current is detected.

上記駆動機構の他には、レビユー オブ サイエンテ
イフイク インスツルメント 56,10(1985)(Rev.Sc
i.instrum.56(10).(1985)記載の電磁方式による機
構などがある。
In addition to the above drive mechanism, review of Scientific Instruments 56, 10 (1985) (Rev. Sc
i.instrum.56 (10). (1985).

これらの試料移動機構を停止する際には、オペレータ
がトンネル電流の検出を確認し、手動により即座に停止
させる。探針と試料との衝突を避けるためには、適当に
近づいたと思われる時点から、1ステツプの移動量を小
さくするかあるいはゆつくり移動させる。
When stopping these sample moving mechanisms, the operator confirms the detection of the tunnel current and immediately stops it manually. In order to avoid collision between the probe and the sample, the moving amount of one step is reduced or the moving distance is relaxed from the time when it is considered that the probe is appropriately approached.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記従来技術においては、オペレータの操作
によつているためトンネル電流を検出すると同時に試料
移動を停止するこおは困難であり、試料を探針に衝突さ
せてしまう危険性が多分にあつた。またオペレータも細
心の注意と時間とを要し、作業上の負担が大であつた。
However, in the above-mentioned conventional technology, it is difficult to detect the tunnel current and stop the movement of the sample at the same time because the operation is performed by the operator. . In addition, the operator also requires meticulous attention and time, and the work load is heavy.

本発明の目的は、試料と探針との衝突による両者の破
損を防止し短時間で両者を近づけるため、トンネル電流
が検出されると同時に試料移動を停止する操作を制御回
路により自動化することにある。
An object of the present invention is to automate the operation of stopping movement of a sample at the same time that a tunnel current is detected, in order to prevent the sample and probe from being damaged by collision between the sample and the probe and to bring them closer in a short time. is there.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的は、試料または探針を広範囲に移動させる第
2の駆動手段である粗動機構と、トンネル電流を検出す
るまで粗動機構を移動させトンネル電流を検出すると同
時に停止させる粗動機構制御回路を設けることにより達
成される。
An object of the present invention is to provide a coarse movement mechanism which is a second driving means for moving a sample or a probe over a wide range, and a coarse movement mechanism control circuit for moving the coarse movement mechanism until a tunnel current is detected, and detecting and stopping the tunnel current at the same time. This is achieved by providing

〔作用〕[Action]

粗動機構制御回路は、電流検出器からの信号によりト
ンネル電流が検出されたか否かを判別する。未検出の場
合のみ、粗動機構を一定距離だけ移動させ、試料を探針
に近づける。
The coarse movement mechanism control circuit determines whether a tunnel current is detected based on a signal from the current detector. Only when no detection is made, the coarse movement mechanism is moved by a certain distance to bring the sample closer to the probe.

このように、試料と探針とを接近させる際、微動機構
である第1の駆動手段の動作距離内になるように粗動機
構を動作させ、トンネル電流の検出と同時に粗動機構を
停止させることにより、試料と探針との衝突は起こらな
い。オペレータは、粗動機構制御回路を起動させること
のみで、他に何ら注意を払うことなくトンネル電流を得
ることができる。
As described above, when the sample and the probe are brought close to each other, the coarse movement mechanism is operated so as to be within the operating distance of the first driving means, which is a fine movement mechanism, and the coarse movement mechanism is stopped simultaneously with the detection of the tunnel current. Thus, collision between the sample and the probe does not occur. The operator can obtain the tunnel current only by activating the coarse movement mechanism control circuit without paying any other attention.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

台13上に、試料11を試料面と平行な平面内で2次元的
に走査せしめる走査機構8がある。試料と対向するよう
に探針10と、探針を保持し探針と試料との間隔を調整で
きるZ軸圧電素子9とは、固定機構5及び4と圧電素子
3より成る粗動機構により保持されている。探針10と試
料11と間に電圧を印加し、トンネル電流を検出する電流
検出器12とを探針と試料との間に流れるトンネル電流
を、Z軸圧電素子9の制御により一定に保たせるZ軸制
御回路6と、走査機構8とZ軸制御回路6からの信号と
からトンネル電子顕微鏡STM像等を表示する表示機構7
と、トンネル電流を一定に保たせるように圧電素子3を
制御するサーボ回路2と、Z軸制御回路からのトンネル
電流の信号を検知し、サーボ回路2及び固定機構5,4と
を制御する粗動機構制御回路1とにより制御及び表示系
を形成する。
On the table 13, there is a scanning mechanism 8 for scanning the sample 11 two-dimensionally in a plane parallel to the sample surface. The probe 10 facing the sample and the Z-axis piezoelectric element 9 that can hold the probe and adjust the distance between the probe and the sample are held by the coarse movement mechanism including the fixing mechanisms 5 and 4 and the piezoelectric element 3. Have been. A voltage is applied between the probe 10 and the sample 11, and a current detector 12 for detecting a tunnel current causes a tunnel current flowing between the probe and the sample to be kept constant by controlling the Z-axis piezoelectric element 9. A display mechanism 7 for displaying a tunneling electron microscope STM image or the like from the Z-axis control circuit 6, the scanning mechanism 8 and signals from the Z-axis control circuit 6.
A servo circuit 2 for controlling the piezoelectric element 3 so as to keep the tunnel current constant, and a coarse circuit for detecting the tunnel current signal from the Z-axis control circuit and controlling the servo circuit 2 and the fixing mechanisms 5 and 4. The control and display system is formed by the dynamic mechanism control circuit 1.

次に動作を説明する。探針10と試料11とが数mm離れた
状態で、固定機構5,4により粗動機構が台上に固定され
ている状態を考える。
Next, the operation will be described. Consider a state in which the coarse movement mechanism is fixed on the table by the fixing mechanisms 5 and 4 in a state where the probe 10 and the sample 11 are separated by several mm.

電流検出器12により試料11及び探針10間に電圧が印加
されると同時に、Z軸制御回路6のフイードバツク機能
の働きにより、ある設定された電流を探針10と試料11間
に流すために、Z軸圧電素子9に電圧が印加され探針が
試料に近づく。Z軸圧電素子の伸縮量は100nmであり、
トンネル電流あるいは非常に低電圧の電界放射電流は流
れず、粗動機構により、さらに探針を試料に近づける必
要がある。
A voltage is applied between the sample 11 and the probe 10 by the current detector 12 and at the same time, a certain set current is caused to flow between the probe 10 and the sample 11 by the function of the feedback function of the Z-axis control circuit 6. Then, a voltage is applied to the Z-axis piezoelectric element 9, and the probe approaches the sample. The amount of expansion and contraction of the Z-axis piezoelectric element is 100 nm,
No tunnel current or very low voltage field emission current flows, and the probe must be brought closer to the sample by the coarse movement mechanism.

このような場合には、粗動機構制御回路1が働く。ま
ず、固定機構5の固定を解除し、サーボ回路2を起動さ
せる。サーボ回路2は、圧電素子3を最大10μm伸ば
す。このときにおいても電流が検出されない場合は、固
定機構5を固定し、固定機構4の固定を解除する。次に
サーボ回路をオフにし、圧電素子3を縮め、固定機構4
を固定する。
In such a case, the coarse movement mechanism control circuit 1 operates. First, the fixing of the fixing mechanism 5 is released, and the servo circuit 2 is started. The servo circuit 2 extends the piezoelectric element 3 by a maximum of 10 μm. If no current is detected at this time, the fixing mechanism 5 is fixed and the fixing of the fixing mechanism 4 is released. Next, the servo circuit is turned off, the piezoelectric element 3 is contracted, and the fixing mechanism 4 is turned off.
Is fixed.

この一連の操作を繰り返すことにより、粗動機構及び
これに支持された探針10は、10μmのステップで試料に
近づく。最終的にはサーボ回路2の起動により、試料、
11と探針10間に流れる電流を検出した時点で止まる。第
2図に停止までの粗動機構のサイクリツクな動作の様子
を示す。
By repeating this series of operations, the coarse movement mechanism and the probe 10 supported by the coarse movement mechanism approach the sample in steps of 10 μm. Finally, the sample,
It stops when the current flowing between the probe 11 and the probe 10 is detected. FIG. 2 shows the cyclic operation of the coarse movement mechanism up to the stop.

次に圧電素子3に印加する電圧を適当な電圧で固定す
るか、あるいは固定機構5を固定し固定機構4の固定を
解除した後サーボ回路をオフにする。これにより粗動機
構が静止し、走査機構8,Z軸制御回路6等の働きによ
り、試料の像が得られる。
Next, the voltage applied to the piezoelectric element 3 is fixed at an appropriate voltage, or the fixing mechanism 5 is fixed and the fixing mechanism 4 is released, and then the servo circuit is turned off. As a result, the coarse movement mechanism stops, and an image of the sample is obtained by the operation of the scanning mechanism 8, the Z-axis control circuit 6, and the like.

探針と試料間に流れる電流によるフイードバツクによ
り、Z軸圧電素子9及び圧電素子3を駆動するレスポン
スの速さは、後者を前者に比し、著しく遅くする。例え
ばZ軸圧電素子9を0.5m sec、の速さで制御する場合
は、圧電素子3を50m secの速さで制御する。このこと
により、相互の干渉による発振を避けることができる。
あるいは、トンネル電流が出るまで、Z軸圧電素子側の
フイードバツク機能を停止しておいてもよい。
Due to the feedback caused by the current flowing between the probe and the sample, the response speed for driving the Z-axis piezoelectric element 9 and the piezoelectric element 3 is significantly slower in the latter than in the former. For example, when controlling the Z-axis piezoelectric element 9 at a speed of 0.5 msec, the piezoelectric element 3 is controlled at a speed of 50 msec. Thus, oscillation due to mutual interference can be avoided.
Alternatively, the feedback function on the Z-axis piezoelectric element side may be stopped until a tunnel current is generated.

本実施例によれば、圧電素子3及びサーボ回路2の働
きによつてもSTM像を得ることができる。利用範囲は、
Z軸圧電素子9の伸縮量100nmを越える場合であり、低
倍率での試料観察や凹凸の激しい試料の観察に適する。
圧電素子3で試料表面をおおまかに観察した後、Z軸圧
電素子で任意の場所を高い分解能で観察すればよい。但
し、この際、サーボ回路2のレスポンスが速くなるよう
に調整しておく必要がある。
According to this embodiment, an STM image can be obtained by the operation of the piezoelectric element 3 and the servo circuit 2. The usage range is
This is the case where the amount of expansion and contraction of the Z-axis piezoelectric element 9 exceeds 100 nm, and is suitable for observation of a sample at a low magnification and observation of a sample with severe irregularities.
After roughly observing the sample surface with the piezoelectric element 3, an arbitrary place may be observed with high resolution using the Z-axis piezoelectric element. However, at this time, it is necessary to adjust the response of the servo circuit 2 so as to be fast.

また、本実施例によれば、Z軸圧電素子9の伸縮量よ
りも大きなステツプで、探針を試料に近づけることがで
きる。
Further, according to this embodiment, the probe can be brought closer to the sample in steps larger than the amount of expansion and contraction of the Z-axis piezoelectric element 9.

第3図は、粗動機構を制御する他の実施例である。本
実施例においては、サーボ回路2は常に動作しており、
サーボ回路と圧電素子3との間に設けられたスイツチ15
の制御により圧電素子3を動作させる。この場合、トン
ネル電流が検出されない限り、サーボ回路からはある一
定の電圧が出力されており、スイツチ15をオンにした瞬
間に圧電素子3が急激に動作し、探針と試料とが衝突す
る可能性がある。このため、サーボ回路と圧電素子3と
の間に抵抗14を付加した。圧電素子3は静電容量Cを持
つており、この容量Cと抵抗14との作用により、圧電素
子は急激に動作することはない。
FIG. 3 shows another embodiment for controlling the coarse movement mechanism. In this embodiment, the servo circuit 2 is always operating,
A switch 15 provided between the servo circuit and the piezoelectric element 3
Controls the piezoelectric element 3 to operate. In this case, as long as no tunnel current is detected, a certain voltage is output from the servo circuit, and the moment the switch 15 is turned on, the piezoelectric element 3 operates rapidly, and the probe and the sample may collide. There is. Therefore, a resistor 14 is added between the servo circuit and the piezoelectric element 3. The piezoelectric element 3 has an electrostatic capacitance C, and the piezoelectric element does not operate rapidly due to the action of the capacitance C and the resistor 14.

第4図は、粗動機構として電磁方式を用いた場合の実
施例である。台13の下に取り付けられた電磁コイル17と
台12上を滑らかに動く試料台18と試料台18下部に取り付
けられて永久磁石16とより成る粗動機構に試料11が取り
付けられている。永久磁石16の磁化方向は、コイル17軸
及び台の面に対して垂直方向である。電磁コイル17に瞬
間的に電流を流すことにより、試料台は一定距離だけ移
動する。これは、電磁コイル17と永久磁石16との磁場に
よる相互作用による。1ステツプの移動量は、コイルに
流す電流量により調整できる。Z軸圧電素子9の伸縮量
よりも、小さい範囲で1ステツプの移動量を決定する。
FIG. 4 shows an embodiment in which an electromagnetic system is used as the coarse movement mechanism. The sample 11 is mounted on a coarse movement mechanism including an electromagnetic coil 17 mounted below the table 13, a sample table 18 which moves smoothly on the table 12, and a permanent magnet 16 mounted on the lower part of the sample table 18. The magnetization direction of the permanent magnet 16 is perpendicular to the axis of the coil 17 and the plane of the table. By instantaneously passing a current through the electromagnetic coil 17, the sample stage moves by a certain distance. This is due to the interaction between the electromagnetic coil 17 and the permanent magnet 16 due to the magnetic field. The amount of movement for one step can be adjusted by the amount of current flowing through the coil. The amount of movement of one step is determined within a range smaller than the amount of expansion and contraction of the Z-axis piezoelectric element 9.

Z軸制御回路6により探針10と試料11間に流れる電流
が検出されるまで、粗動機構制御回路1は電磁コイル17
に電流パルスを与え続ける。電流が検出された時点で、
軸制御回路からの信号により自動的に粗動機構は停止さ
れる。
Until the Z-axis control circuit 6 detects a current flowing between the probe 10 and the sample 11, the coarse movement mechanism control circuit 1
Continue to give a current pulse. When the current is detected,
The coarse movement mechanism is automatically stopped by a signal from the axis control circuit.

第5図は、コーター19と差動ねじ20とから成る粗動機
構を有するSTMでの一実施例である。
FIG. 5 shows an embodiment of an STM having a coarse movement mechanism comprising a coater 19 and a differential screw 20.

モーター19の回転と差動ねじ20との働きにより、試料
が極くわずかずつ探針に近づく。Z軸制御回路6による
トンネル電流の検出と同時に、モーター19を停止する。
探針10と試料11との衝突を避けるため、Z軸電圧素子9
の伸縮量以下のステツプモーター19を制御する。あるい
は試料をゆつくり移動させることにより、トンネル電流
検出から実際に試料が停止するまでに、試料が移動する
距離を、Z軸圧電素子9の伸縮量以下におさえる。
By the rotation of the motor 19 and the function of the differential screw 20, the sample approaches the probe very little by little. At the same time as the detection of the tunnel current by the Z-axis control circuit 6, the motor 19 is stopped.
To avoid collision between the probe 10 and the sample 11, the Z-axis voltage element 9
The step motor 19 is controlled to be equal to or less than the amount of expansion and contraction. Alternatively, by moving the sample slowly, the distance the sample moves from the detection of the tunnel current to the actual stop of the sample is kept to be equal to or less than the amount of expansion and contraction of the Z-axis piezoelectric element 9.

本実施例においては、他の実施例に比べ粗動機構の位
置決め精度が悪いため、Z軸圧電素子の伸縮量は少なく
とも数μmは必要である。10μm程度の圧電素子と100n
m程度の圧電素子とによりZ軸制御素子を形成し、それ
ぞれにフイールドバツク機構を付加するとよい。
In this embodiment, since the positioning accuracy of the coarse movement mechanism is lower than in the other embodiments, the amount of expansion and contraction of the Z-axis piezoelectric element needs to be at least several μm. About 10μm piezoelectric element and 100n
It is preferable to form a Z-axis control element with about m piezoelectric elements, and to add a field back mechanism to each of them.

〔発明の効果〕〔The invention's effect〕

本発明によれば、Z軸制御回路及び粗動機構制御回路
を起動させるだけで、トンネル電流が流れる距離まで自
動的に探針と試料とが近づく。また、探針を試料に衝突
させる危険性もない。
According to the present invention, only by activating the Z-axis control circuit and the coarse movement mechanism control circuit, the probe and the sample automatically come close to the distance where the tunnel current flows. Further, there is no danger that the probe will collide with the sample.

粗動機構に、トンネル電流によるフイールドバツク機
能を設けたことにより、1回の移動量を大きくとること
ができる。このため、短い時間で試料を探針に近づける
ことができる。また尺取り虫型の粗動機構の場合には、
固定時あるいは固定解除時のガタによる探針と試料との
衝突の危険性も軽減される。
By providing the coarse motion mechanism with a field back function by a tunnel current, the amount of one movement can be increased. Therefore, the sample can be brought closer to the probe in a short time. Also, in the case of a worm-type coarse movement mechanism,
The danger of collision between the probe and the sample due to backlash when fixing or releasing fixing is also reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第3図乃至第5図は本発明の実施例を示す
ブロツク図、第2図は粗動機構の制御動作を示すタイミ
ングである。 1……粗動機構制御回路、2……サーボ回路、3……圧
電素子、4……固定機構、5……固定機構、6……Z軸
制御回路、7……表示機構、8……走査機構、9……Z
軸圧電素子、10……探針、11……試料、12……電流検出
器、13……台、14……抵抗、15……スイツチ、16……永
久磁石、17……電磁コイル、18……試料台、19……モー
ター、20……差動ねじ。
1 and 3 to 5 are block diagrams showing an embodiment of the present invention, and FIG. 2 is a timing chart showing a control operation of the coarse movement mechanism. DESCRIPTION OF SYMBOLS 1 ... Coarse movement mechanism control circuit, 2 ... Servo circuit, 3 ... Piezoelectric element, 4 ... Fixing mechanism, 5 ... Fixing mechanism, 6 ... Z-axis control circuit, 7 ... Display mechanism, 8 ... Scanning mechanism, 9 ... Z
Axial piezoelectric element, 10 probe, 11 sample, 12 current detector, 13 base, 14 resistance, 15 switch, 16 permanent magnet, 17 electromagnetic coil, 18 …… Sample stand, 19 …… Motor, 20 …… Differential screw.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】先端を鋭利に尖らせた探針と、該探針に対
向して配置された試料の試料表面との間の物理情報を検
出する手段と、該物理情報に基づき該探針と試料表面と
の距離を制御するサーボ手段と、該探針と試料表面に沿
って2次元的に相対的に移動させる走査機構と、該探針
または該試料の動きおよび該物理情報を該走査機構から
の情報に対応して表示する表示手段とを有するプローブ
顕微鏡において、該サーボ手段よりも広い移動範囲で探
針と該試料表面との間隔をステップ的に調節する他の駆
動手段と、該物理情報に応じて該他の駆動手段の動作を
停止する信号を出力する手段とを備えることを特徴とす
るプローブ顕微鏡。
1. Means for detecting physical information between a probe having a sharply pointed tip and a sample surface of a sample disposed opposite to the probe, and the probe based on the physical information Servo means for controlling the distance between the probe and the sample surface; a scanning mechanism for moving the probe and the sample relative to each other two-dimensionally; and scanning the movement of the probe or the sample and the physical information. A probe microscope having display means for displaying information corresponding to information from a mechanism, another driving means for adjusting the distance between the probe and the sample surface in a stepwise manner in a wider moving range than the servo means, A means for outputting a signal for stopping the operation of the other driving means in accordance with the physical information.
【請求項2】前記サーボ手段は他の駆動手段が動作状態
にあるとき動作しないように拘束されている請求項1記
載のプローブ顕微鏡。
2. The probe microscope according to claim 1, wherein said servo means is restrained from operating when another driving means is in an operating state.
【請求項3】前記他の駆動手段の駆動レスポンスの速さ
は前記サーボ手段の駆動レスポンスの速さよりも遅く設
定されていることを特徴とする請求項1記載のプローブ
顕微鏡。
3. The probe microscope according to claim 1, wherein the speed of the drive response of the other drive means is set to be slower than the speed of the drive response of the servo means.
【請求項4】前記探針と試料表面との間の物理情報がト
ンネル電流である請求項1ないし3の何れかに記載のプ
ローブ顕微鏡。
4. The probe microscope according to claim 1, wherein physical information between the probe and the sample surface is a tunnel current.
【請求項5】前記他の駆動手段による1回あたりのステ
ップ移動量は前記サーボ手段による最大移動量よりも小
さく設定された請求項1ないし4の何れかに記載のプロ
ーブ顕微鏡。
5. The probe microscope according to claim 1, wherein an amount of step movement per operation by said another driving means is set smaller than a maximum amount of movement by said servo means.
JP62170940A 1987-07-10 1987-07-10 Probe microscope Expired - Fee Related JP2633858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62170940A JP2633858B2 (en) 1987-07-10 1987-07-10 Probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62170940A JP2633858B2 (en) 1987-07-10 1987-07-10 Probe microscope

Publications (2)

Publication Number Publication Date
JPS6415601A JPS6415601A (en) 1989-01-19
JP2633858B2 true JP2633858B2 (en) 1997-07-23

Family

ID=15914189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62170940A Expired - Fee Related JP2633858B2 (en) 1987-07-10 1987-07-10 Probe microscope

Country Status (1)

Country Link
JP (1) JP2633858B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084811Y2 (en) * 1988-02-23 1996-02-14 三菱農機株式会社 Rotary working machine
JPH0625643B2 (en) * 1990-01-12 1994-04-06 日本電子株式会社 Scanning tunnel microscope device
EP2130621B1 (en) 2007-03-30 2014-06-11 Nippon Steel & Sumitomo Metal Corporation Boring machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236903A (en) * 1987-03-25 1988-10-03 Agency Of Ind Science & Technol Scan type tunnel microscope
JPH0641841B2 (en) * 1987-03-25 1994-06-01 工業技術院長 Scanning tunneling microscope

Also Published As

Publication number Publication date
JPS6415601A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
US5162653A (en) Scanning tunneling microscope and surface topographic observation method
US5144128A (en) Surface microscope and surface microscopy
US4798989A (en) Scanning tunneling microscope installed in electron microscope
US5220555A (en) Scanning tunnel-current-detecting device and method for detecting tunnel current and scanning tunnelling microscope and recording/reproducing device using thereof
US6229607B1 (en) Fine movement mechanism unit and scanning probe microscope
US4987303A (en) Micro-displacement detector device, piezo-actuator provided with the micro-displacement detector device and scanning probe microscope provided with the piezo-actuator
US5371727A (en) Scanning tunnel microscopy information processing system with noise detection to correct the tracking mechanism
JP2633858B2 (en) Probe microscope
JPH04235302A (en) Micromotion mechanism of probe of tunnel microscope
JP2633858C (en)
JPS5830129A (en) Horizontal fine adjustment device
Zhang et al. Dual tunneling-unit scanning tunneling microscope for length measurement based on crystalline lattice
JP3091908B2 (en) Scanning probe microscope
Tsuyuzaki et al. High speed flat guide ceramic stage for electron‐beam lithography system
JP2691460B2 (en) Tunnel current detector
JP2812333B2 (en) Physical information detection device
JP3588701B2 (en) Scanning probe microscope and its measuring method
JP2000208825A (en) Actuator using electomechanical conversion element
JPH09304402A (en) Probe scanner
JPH04318404A (en) Fine and coarse adjustment interlocking type scanning tunnel microscope
JPH06258014A (en) Scanning probe microscope and recorder and/or reproducer employing it
JPH04348204A (en) Scanning probe apparatus
JPH05203443A (en) Scanning probemicroscope and observation method of sample using the same
JP2804032B2 (en) Physical information detection device
JPH06281445A (en) Scanner system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees