JP2630240B2 - Metal thin film resistors for superconducting integrated circuits - Google Patents

Metal thin film resistors for superconducting integrated circuits

Info

Publication number
JP2630240B2
JP2630240B2 JP5334489A JP33448993A JP2630240B2 JP 2630240 B2 JP2630240 B2 JP 2630240B2 JP 5334489 A JP5334489 A JP 5334489A JP 33448993 A JP33448993 A JP 33448993A JP 2630240 B2 JP2630240 B2 JP 2630240B2
Authority
JP
Japan
Prior art keywords
alloy
resistor
thin film
superconducting integrated
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5334489A
Other languages
Japanese (ja)
Other versions
JPH07202281A (en
Inventor
秀昭 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5334489A priority Critical patent/JP2630240B2/en
Publication of JPH07202281A publication Critical patent/JPH07202281A/en
Application granted granted Critical
Publication of JP2630240B2 publication Critical patent/JP2630240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • ing And Chemical Polishing (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Nb系超伝導集積回路に
おける金属薄膜抵抗に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal thin film resistor in an Nb-based superconducting integrated circuit.

【0002】[0002]

【従来の技術】金属の電気抵抗値は、残留抵抗の項、格
子振動による項、磁気的秩序による項の足し合わせで決
定される。極低温で動作する超伝導集積回路における抵
抗体では、残留抵抗が支配的に抵抗値を決定する。
2. Description of the Related Art The electric resistance value of a metal is determined by adding a term of residual resistance, a term of lattice vibration, and a term of magnetic order. In a resistor in a superconducting integrated circuit operating at a very low temperature, the residual resistance predominantly determines the resistance value.

【0003】Nb系超伝導集積回路においては、Moの薄膜
が、抵抗体として用いられることが多い。Moは、特性の
経時変化が小さい、反応性イオンエッチング法で加工で
きる、Nbとの接触抵抗が小さい、などの特徴があり、超
伝導回路における抵抗体として非常に使い易い。しか
し、Mo単体の残留抵抗値は小さく、所望の抵抗値を得る
ために長い抵抗体が必要であり、超伝導回路の高集積化
を妨げている。
In an Nb-based superconducting integrated circuit, a thin film of Mo is often used as a resistor. Mo has characteristics such as a small change over time in characteristics, a process that can be processed by a reactive ion etching method, and a small contact resistance with Nb, and is very easy to use as a resistor in a superconducting circuit. However, the residual resistance of Mo alone is small, and a long resistor is required to obtain a desired resistance, which hinders high integration of superconducting circuits.

【0004】逆に、高い電気抵抗率を有する元素として
は、例えばZrが良く知られているが、1993年発行のアイ
トリプル イー トランザクション オン アプライ
ドスーパーコンダクティヴィティ(IEEE Trans. on ASC)
誌、第3巻、第3号、3049頁に述べられているように、
抵抗体Zrと、超伝導配線Nbとの接触界面での酸素の拡散
が問題視され、超伝導回路における抵抗体として用いる
ためには、取り扱いが複雑になる。また、バイナリ ア
ロイ フェイズ ダイアグラムス(BINARY ALLOY PHASE
DIAGRAMS) 、第2版、第3巻、2789頁から引用したZr-N
b 系状態図を、図2に示した。この状態図からは、Nb/Z
r 界面において、Zrはα相、β相の複数の相が生じる可
能性が示され、拡散によるNb/Zr 界面の特性変化が大き
いと予想される。
[0004] Conversely, as an element having a high electric resistivity, for example, Zr is well known. However, I Triple E Transaction on Applied Superconductivity (IEEE Trans. On ASC) published in 1993 is known.
Journal, Vol. 3, No. 3, p. 3049,
Diffusion of oxygen at the contact interface between the resistor Zr and the superconducting wiring Nb is regarded as a problem, and handling as a resistor in a superconducting circuit becomes complicated. In addition, BINARY ALLOY PHASE
DIAGRAMS), 2nd edition, volume 3, page 2789, Zr-N
b The system phase diagram is shown in FIG. From this state diagram, Nb / Z
At the r interface, there is a possibility that a plurality of phases of α and β phases are generated in Zr, and it is expected that the characteristic change of the Nb / Zr interface due to diffusion is large.

【0005】さらに、これらMo, Zrなどの単一元素から
成る抵抗体では、抵抗率が一定であるので、膜厚、パタ
ーン幅、パターン長さなど、外形寸法で抵抗値を決定す
る。したがって、回路設計上の自由度が低い。
Further, since the resistance of these resistors made of a single element such as Mo and Zr is constant, the resistance value is determined by the external dimensions such as the film thickness, pattern width and pattern length. Therefore, the degree of freedom in circuit design is low.

【0006】本発明の目的は、高い抵抗率を有し、か
つ、その抵抗率が広い組成域で可変であり、さらに、取
り扱いに容易な超伝導集積回路用の合金抵抗体を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alloy resistor for a superconducting integrated circuit which has a high resistivity, whose resistivity is variable in a wide composition range, and which is easy to handle. is there.

【0007】[0007]

【課題を解決するための手段】本発明によれば、Nb系超
伝導集積回路において、MoまたはW を母材とし、この母
材中にMo, W, Ta, V, Nbのうちから前記母材とは異な
る、少なくとも1種類以上の合金元素を添加することに
より構成された全率固溶合金であることを特徴とする抵
抗体が得られる。
According to the present invention, in an Nb-based superconducting integrated circuit, Mo or W is used as a base material, and the base material is selected from the group consisting of Mo, W, Ta, V, and Nb. A resistor characterized by being an all-solid-solution alloy constituted by adding at least one or more alloying elements different from the material is obtained.

【0008】[0008]

【作用】一般に金属は、合金元素を添加することで残留
抵抗を増加させることができる。単一の合金元素に対し
ては、残留抵抗と濃度の関係は、ノルドハイムの法則に
従う。しかし、現実には規則相、化合物などの生成によ
り、抵抗値の濃度依存性は非常に複雑であり、通常は、
貴金属の希薄合金において活用されている。
In general, the residual resistance of a metal can be increased by adding an alloy element. For a single alloy element, the relationship between residual resistance and concentration follows Nordheim's law. However, in reality, the concentration dependence of the resistance value is very complicated due to the formation of ordered phases, compounds, and the like.
It is used in dilute alloys of precious metals.

【0009】一方、バイナリ アロイ フェイズ ダイ
アグラムス(BINARY ALLOY PHASE DIAGRAMS) 、第2版、
第3巻によれば、Mo, W, Ta, V, Nbの5元素は、V-Ta系
を唯一の例外として、互いに全率固溶することがわか
る。ここでは、一例として、Mo-W系の状態図を図1に引
用した。これらの組み合わせによる全率固溶合金では、
規則相、化合物の生成が無く、すべての組成域で単一相
であるために、広い組成域で高い残留抵抗値が得られ、
その残留抵抗値も組成比により制御することが可能であ
る。また、拡散などのによる抵抗値の経時変化が少な
い。さらに、配線層のNbと全率固溶するので、配線層の
Nbと合金抵抗体の界面においても、化合物、異相の生成
が無いために、接触抵抗が小さく、接触抵抗の経時変化
も小さい。
On the other hand, BINARY ALLOY PHASE DIAGRAMS, 2nd edition,
According to Volume 3, it can be seen that the five elements of Mo, W, Ta, V, and Nb are completely dissolved in each other, with the exception of the V-Ta system. Here, as an example, the phase diagram of the Mo-W system is cited in FIG. In the all-solid-solution alloy by these combinations,
Since there is no ordered phase or compound formation and a single phase in all composition ranges, a high residual resistance value is obtained in a wide composition range,
The residual resistance value can also be controlled by the composition ratio. In addition, a change in resistance with time due to diffusion or the like is small. Furthermore, since it is completely dissolved with Nb in the wiring layer,
Even at the interface between Nb and the alloy resistor, there is no generation of a compound or a different phase, so that the contact resistance is small and the change with time of the contact resistance is small.

【0010】ところで、固体のTa, V, Nb は、液体ヘリ
ウム温度で超伝導転移を起こすが、これらの元素を合金
の添加元素として用いる場合には、コヒーレンス長さ以
下の大きさで母材中に散在するので、本発明の合金抵抗
では超伝導転移を起こさず、悪影響を及ぼさない。
[0010] By the way, solid Ta, V, and Nb undergo a superconducting transition at the temperature of liquid helium. However, when these elements are used as an additive element of the alloy, they have a size smaller than the coherence length in the base material. Therefore, the alloy resistance of the present invention does not cause a superconducting transition and has no adverse effect.

【0011】また、Mo, W, Ta, V, Nbは、SF6 などのF
系のガスを用いた反応性イオンエッチング法で加工可能
であり、従来のMo単体の抵抗体を加工していた設備を用
いて、本発明の合金抵抗体を加工することができる。さ
らに、母材のMo, W のエッチング終点は、波長703.9nm
の光の強度変化により検出可能であるので、製造プロセ
ス上の制御性、信頼性が高い。
[0011] In addition, Mo, W, Ta, V , Nb is, F, such as SF 6
It can be processed by a reactive ion etching method using a system gas, and the alloy resistor of the present invention can be processed using equipment that has processed a conventional resistor of Mo alone. Further, the etching end point of the base material Mo and W is 703.9 nm in wavelength.
Therefore, the controllability and reliability in the manufacturing process are high.

【0012】本発明により非常に安定かつ高抵抗である
金属薄膜抵抗体を得ることができた。また、組成比によ
り抵抗値を制御できるので、回路設計上の自由度が高く
なった。この抵抗体を超伝導集積回路に用いることで回
路の高集積化が可能になった。
According to the present invention, a metal thin film resistor having a very stable and high resistance can be obtained. Further, since the resistance value can be controlled by the composition ratio, the degree of freedom in circuit design is increased. By using this resistor in a superconducting integrated circuit, high integration of the circuit has become possible.

【0013】[0013]

【実施例】図1は、本実施例の一例を説明するためのMo
-W系状態図である。バイナリ アロイ フェイズ ダイ
アグラムス(BINARY ALLOY PHASE DIAGRAMS) 、第2版、
第3巻、2685頁より引用した。MoとW は互いに全率固溶
することがわかる。Mo-W合金は全率固溶合金であるの
で、規則相、化合物の生成が無く、すべての組成域で単
一相である。したがって、広い組成域で高い抵抗値が得
られ、拡散などのによる抵抗値の経時変化が少ない。さ
らに、MoおよびW は、配線層のNbとも全率固溶するの
で、配線層のNbとMo-W合金抵抗体の界面においても、化
合物、異相の生成が無いために、接触抵抗が小さく、接
触抵抗の経時変化も小さい特徴を持つ。信頼性が高く、
高抵抗であるMo-W合金を超伝導集積回路の抵抗体として
用いた結果、超伝導回路の高集積化が可能になった。さ
らに、抵抗値を組成比により制御することが可能である
ので、回路設計上の自由度が高くなった。
FIG. 1 is a schematic diagram showing an embodiment of the present invention.
It is a -W system state diagram. BINARY ALLOY PHASE DIAGRAMS, 2nd edition,
Volume 3, p. 2685. It can be seen that Mo and W are completely dissolved in each other. Since the Mo-W alloy is an all-solid-solution alloy, there is no generation of ordered phases and compounds, and it is a single phase in all composition regions. Therefore, a high resistance value can be obtained in a wide composition range, and a change with time in the resistance value due to diffusion or the like is small. Further, since Mo and W are completely dissolved in Nb in the wiring layer, the contact resistance is small because no compound or heterophase is formed at the interface between the Nb in the wiring layer and the Mo-W alloy resistor. The change with time of the contact resistance is also small. High reliability,
As a result of using a high-resistance Mo-W alloy as a resistor in a superconducting integrated circuit, high integration of the superconducting circuit has become possible. Further, since the resistance value can be controlled by the composition ratio, the degree of freedom in circuit design is increased.

【0014】本実施例では、Mo-W合金について述べてい
るが、Moを母材とし、Ta, V, Nb のうちから、少なくと
も1種類以上の合金元素を添加することにより構成され
た全率固溶合金、あるいは、W を母材とし、Ta, V, Nb
のうちから少なくとも1種類以上の合金元素を添加する
ことにより構成された全率固溶合金でも同様の効果が得
られる。
In this embodiment, a Mo-W alloy is described. However, the total ratio of Mo as a base material and addition of at least one or more alloying elements of Ta, V, and Nb is described. Solid solution alloy or W as base material, Ta, V, Nb
The same effect can be obtained with a full-rate solid solution alloy formed by adding at least one or more alloy elements.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、経
時変化が少なく安定であり、かつ、高い抵抗値を持つ合
金抵抗体が得られ、超伝導回路の高集積化が可能になっ
た。また、抵抗値を組成比により制御できるので、回路
設計上の自由度が向上した。
As described above, according to the present invention, it is possible to obtain an alloy resistor that is stable with little change with time and has a high resistance value, and that a superconducting circuit can be highly integrated. . Further, since the resistance value can be controlled by the composition ratio, the degree of freedom in circuit design is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を説明するためのMo-W系状態
図。
FIG. 1 is a Mo-W system state diagram for explaining one embodiment of the present invention.

【図2】従来例の1つを説明するためのZr-Nb 系状態
図。
FIG. 2 is a Zr—Nb system state diagram for explaining one of the conventional examples.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Nb系超伝導集積回路において、Moまたは
W を母材とし、この母材中にMo, W, Ta, V, Nbのうちか
ら前記母材とは異なる、少なくとも1種類以上の合金元
素を添加することにより構成される合金薄膜抵抗。
In an Nb-based superconducting integrated circuit, Mo or Mo is used.
An alloy thin film resistor formed by using W as a base material and adding at least one or more alloy elements different from the base material among Mo, W, Ta, V, and Nb to the base material.
JP5334489A 1993-12-28 1993-12-28 Metal thin film resistors for superconducting integrated circuits Expired - Lifetime JP2630240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5334489A JP2630240B2 (en) 1993-12-28 1993-12-28 Metal thin film resistors for superconducting integrated circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5334489A JP2630240B2 (en) 1993-12-28 1993-12-28 Metal thin film resistors for superconducting integrated circuits

Publications (2)

Publication Number Publication Date
JPH07202281A JPH07202281A (en) 1995-08-04
JP2630240B2 true JP2630240B2 (en) 1997-07-16

Family

ID=18277977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5334489A Expired - Lifetime JP2630240B2 (en) 1993-12-28 1993-12-28 Metal thin film resistors for superconducting integrated circuits

Country Status (1)

Country Link
JP (1) JP2630240B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001689A (en) * 2002-06-28 2004-01-07 삼성전자주식회사 A wiring, a thin film transistor array panel including the wiring and a method for manufacturing the panel
US8852959B2 (en) * 2011-12-19 2014-10-07 Northrup Grumman Systems Corporation Low temperature resistor for superconductor circuits

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810299B2 (en) * 1988-03-11 1996-01-31 株式会社精工舎 Thin film transistor array

Also Published As

Publication number Publication date
JPH07202281A (en) 1995-08-04

Similar Documents

Publication Publication Date Title
KR101696526B1 (en) Low temperature resistor for superconductor circuits
JPH07126836A (en) Superconducting element
JPH0321001A (en) Method of forming molybdenum resistor in superconductive integrated circuit
US5477061A (en) Josephson device having an overlayer structure with improved thermal stability
JP2630240B2 (en) Metal thin film resistors for superconducting integrated circuits
JP2583431B2 (en) Thin-film solid-state equipment
Ames An overview of materials and process aspects of Josephson integrated circuit fabrication
US3999203A (en) Josephson junction device having intermetallic in electrodes
JPH0883932A (en) Current limiting element
JPS60140885A (en) Superconductive element ic
JPS61242039A (en) Semiconductor device
JP2002260463A (en) METHOD FOR MANUFACTURING SUPERCONDUCTING CONNECTION STRUCTURE USING Nb3Sn SUPERCONDUCTING WIRE BY POWDER METHOD
JPH05129224A (en) Formation of cu-zr wiring pattern
JPS5979584A (en) Resistor fot josephson integrated circuit
JPS603796B2 (en) Contacts for superconducting circuits
JP2678232B2 (en) Superconductor device
JPS6221283A (en) Superconductive integrated circuit
JPS59163852A (en) Manufacture of thin-film integrated circuit device
JPH0479153B2 (en)
JPS6167282A (en) Resistance element for superconductor integrated circuit and manufacture thereof
JPS5877268A (en) Manufacture of tunnel type josephson junction element
JPS602794B2 (en) Josefson junction element
JPS6143488A (en) Manufacture of superconductive contact
JPS6396973A (en) Manufacture of josephson junction element
JPS6167975A (en) Manufacture of josephson junction element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970304