JP2626582B2 - Wafer position measurement unit and wafer alignment unit and method - Google Patents
Wafer position measurement unit and wafer alignment unit and methodInfo
- Publication number
- JP2626582B2 JP2626582B2 JP26374194A JP26374194A JP2626582B2 JP 2626582 B2 JP2626582 B2 JP 2626582B2 JP 26374194 A JP26374194 A JP 26374194A JP 26374194 A JP26374194 A JP 26374194A JP 2626582 B2 JP2626582 B2 JP 2626582B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- center
- light
- shift
- hand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Manipulator (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ウエハ位置の計測ユニ
ットならびにアライメントユニットおよび方法に関し、
特にウエハのハンドリング時に行うオリエーテンション
フラット(以下オリフラと言う)合わせを行わないウエ
ハのセンター出しアライメントに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer position measuring unit and an alignment unit and method.
In particular, the present invention relates to a centering alignment of a wafer without performing an orientation flat (hereinafter, referred to as an orientation flat) alignment performed during wafer handling.
【0002】[0002]
【従来の技術】通常ウエハは、所定のウエハキャリアに
収納された状態で搬送され、ウエハにある工程の処理を
行う装置は、このウエハの裏面を吸着してウエハキャリ
アからウエハを取り出しその工程の処理のためにウエハ
のセンタリングを行う。このようなウエハのセンタリン
グを行う従来のウエハアライメントユニットは、ローツ
ェ株式会社カタログ1991.11P23に記載のクリ
ーンアライナ等がある。2. Description of the Related Art Usually, a wafer is carried in a state of being stored in a predetermined wafer carrier, and an apparatus for performing a process in a wafer picks up the back surface of the wafer, takes out the wafer from the wafer carrier, and removes the wafer from the process. Center the wafer for processing. As a conventional wafer alignment unit for performing such wafer centering, there is a clean aligner described in the catalog 1991.11P23 of Lhotse Corporation.
【0003】図5および図6はそれぞれ従来の一例を示
すウエハアライメントユニットの平面図および側面図で
ある。図5および図6に示すウエハアライメントユニッ
トは、外部のロボットハンド等とウエハ6の受け渡しを
行う受け渡し台11と、受け渡し台11に対しウエハ6
のロード/アンロードを行うためにZ軸方向の移動機能
を有すると共に、センター出しのためにX,Y,θ軸の
移動機能を有したアライメントステージ12と、ウエハ
6と同径の円周上に4個配置された光学式センサ群13
と、センサ群13からのON/OFF情報を基にアライ
メントステージ12を制御する制御部(図示略)とで構
成される。FIGS. 5 and 6 are a plan view and a side view, respectively, of a conventional wafer alignment unit showing an example. The wafer alignment unit shown in FIGS. 5 and 6 is provided with a transfer table 11 for transferring the wafer 6 to an external robot hand or the like, and a wafer 6 for the transfer table 11.
An alignment stage 12 having a function of moving in the Z-axis direction for loading / unloading the wafer, and a function of moving the X, Y, and θ axes for centering; Optical sensor group 13 arranged in four
And a control unit (not shown) that controls the alignment stage 12 based on ON / OFF information from the sensor group 13.
【0004】動作としては、ロボット等のハンドがウエ
ハキャリアから取り出したウエハ6をウエハアライメン
トユニットに設けられた受け渡し台11に置いた後に、
アライメントステージ12の載置テーブルがウエハ6を
受け取るため受け渡し台11直下に移動し、Z軸方向に
上昇することによりウエハ6をアライメントステージ1
2のテーブル上に移載する。次にアライメントステージ
12を所定量移動し、ウエハ6をアライメントステージ
のθ軸方向の機能で360°回転させ光学式センサ13
でウエハ6のオリフラ位置を予め検出した後、オリフラ
が光学式センサ13の位置をさけるようにウエハの向き
を決め、4個の光学式センサ13がすべてOFFからぎ
りぎりでONするようにアライメントステージ12が予
め定められたアルゴリズムに従って、カットアンドトラ
イで(少しずつ小刻みに)テーブルをX−Y方向に移動
させ、これによりウエハ6のセンサー位置出しを行う。
そしてこのようにしてウエハ6のセンタ位置が出された
状態を保ったまま受け渡し台11を所定位置に移動し、
アライメントステージ12とZ軸方向に下降させウエハ
6を受け渡し台11上に移載する。受け渡し台11上の
ウエハ6を再びロボット等のハンドが保持し、所定の位
置でハンドリングを行うことでセンター出しを行ったウ
エハを次工程に供給する。In operation, a hand such as a robot places a wafer 6 taken out of a wafer carrier on a transfer table 11 provided in a wafer alignment unit.
The mounting table of the alignment stage 12 moves directly below the transfer table 11 to receive the wafer 6, and moves up in the Z-axis direction to move the wafer 6 to the alignment stage 1.
Transfer to table 2 Next, the alignment stage 12 is moved by a predetermined amount, and the wafer 6 is rotated by 360 ° by the function of the alignment stage in the θ-axis direction, and the optical sensor 13 is rotated.
After detecting the position of the orientation flat of the wafer 6 in advance, the orientation of the wafer is determined so that the orientation flat avoids the position of the optical sensor 13, and the alignment stage 12 is turned on so that all four optical sensors 13 are turned on from barely to off. Moves the table in the X-Y direction by cutting and trying (in small increments) in accordance with a predetermined algorithm, thereby performing sensor position determination of the wafer 6.
Then, the delivery table 11 is moved to a predetermined position while maintaining the center position of the wafer 6 in this manner,
The wafer 6 is lowered on the alignment stage 12 in the Z-axis direction and transferred onto the transfer table 11. The wafer 6 on the transfer table 11 is again held by a hand such as a robot, and is handled at a predetermined position to supply the centered wafer to the next process.
【0005】[0005]
【発明が解決しようとする課題】上述した従来のウエハ
アライメントユニットは、アライメント動作が光学式セ
ンサのON/OFF情報のみでカットアンドトライ動作
をしていたため、ウエハの位置によってはアライメント
に多くの時間を要するという第一の欠点を有すること
と、このようにアライメント時間がかかるので次工程の
ためにウエハを保持し、運搬するためのハンドリングユ
ニット等とは別のユニットでウエハを保持してアライメ
ントを行う必要性があるため、ウエハキャリアを介して
次工程にウエハを供給するにあたりその間にアライメン
トユニットに対してもウエハの受け渡しを行うこととな
り、これはウエハに対してストレス等のダメージを与え
る機会が増加することを意味し、ウエハを破損する危険
性が増えるという第二の欠点を有することと、4個の光
学式センサでウエハセンター出しを行うためにオリフラ
合わせを行う必要性がなくても予めθ軸を360°回転
させオリフラ位置を検出しなければならないという第三
の欠点を有することになる。In the above-described conventional wafer alignment unit, since the alignment operation is a cut-and-try operation using only the ON / OFF information of the optical sensor, it takes a long time to perform the alignment depending on the position of the wafer. The first disadvantage is that the alignment process takes a long time, and the alignment time is long, so that the wafer is held in a unit other than a handling unit for holding and transporting the wafer for the next process, and alignment is performed. In order to supply the wafer to the next process via the wafer carrier, the wafer must be transferred to the alignment unit during that time. Means that the risk of wafer damage increases. Third, the θ-axis must be rotated 360 ° in advance to detect the orientation flat position even if it is not necessary to align the orientation flat in order to center the wafer with four optical sensors. Disadvantages.
【0006】[0006]
【課題を解決するための手段】本発明のウエハ位置の計
測ユニットは、互いに光軸が平行でそれぞれの幅方向が
放射状に配置され光軸に垂直な平面とそれぞれの光軸の
交点がウエハの外形と同一径の円周上に60度の中心角
ごとに等配で配置された6本の帯状光を出射する投光セ
ンサと、前記6本の帯状光の対応するものをそれぞれが
受光する6個の受光センサと、前記6個の受光センサの
受光量から前記帯状光の光軸に垂直な平面上で中心が6
本の前記帯状光の中心にほぼ位置するように置かれた前
記ウエハの外周と前記帯状光との交点の位置を求め、前
記ウエハの外周と前記帯状光との交点の前記帯状光の光
軸からのずれ量が大幅に異なる対向するものを除いた前
記帯状光の前記ウエハの外周の交点から前記ウエハの中
心位置を求める制御部とを備えている。According to the wafer position measuring unit of the present invention, the intersection of a plane perpendicular to the optical axis and a plane perpendicular to the optical axis, the optical axes of which are parallel to each other and whose width directions are radial, is defined as the wafer position measuring unit. A light emitting sensor that emits six strips of light arranged at equal intervals of a central angle of 60 degrees on a circumference having the same diameter as the outer shape, and receives light corresponding to the six strips of light, respectively. Six light receiving sensors and a center of 6 on a plane perpendicular to the optical axis of the band light are obtained from the light receiving amounts of the six light receiving sensors.
Obtain the position of the intersection of the outer periphery of the wafer and the band light, which is placed substantially at the center of the band light of the book, and determine the optical axis of the band light at the intersection of the outer periphery of the wafer and the band light. And a control unit for obtaining a center position of the wafer from an intersection of the belt-like light on the outer periphery of the wafer excluding opposing ones having a significantly different amount of deviation from the wafer.
【0007】本発明のウエハアライメント方法は、ウエ
ハを保持したロボットのハンドを中心がウエハ位置の計
測ユニットの6本の帯状光の中心に一致するように、し
かも前記ウエハが前記帯状光の光軸に垂直になるように
位置させ、前記ウエハの中心の前記ハンドの中心に対す
るずれ量およびずれ方向を求め、前記ハンドを中心が正
規位置から前記ずれ量だけ前記ずれ方向と逆の方向にシ
フトするように位置決めすることにより前記ウエハを中
心が前記正規位置となるように位置決めすることを特徴
とする。According to the wafer alignment method of the present invention, the center of the hand of the robot holding the wafer is aligned with the center of the six band lights of the wafer position measuring unit, and the wafer is aligned with the optical axis of the band light. And the shift amount and the shift direction of the center of the wafer with respect to the center of the hand are determined, and the center of the hand is shifted from the normal position by the shift amount in a direction opposite to the shift direction. , The wafer is positioned so that the center is at the normal position.
【0008】本発明のウエハアライメントユニットは、
ウエハを保持して運搬し、このウエハの中心の自らの中
心に対するずれ量だけ、かつずれ方向と逆方向に自らの
中心が正規位置からシフトするようにして前記ウエハの
中心を前記正規位置に位置決めするロボットのハンド
と、前記ハンドが中心を6本の帯状光の中心に一致さ
せ、しかも前記ハンドが保持した前記ウエハを前記帯状
光の光軸と垂直にさせた時の前記ウエハの中心の前記ハ
ンドの中心に対するずれ量およびずれ方向を求めるウエ
ハ位置の計測ユニットとを備えている。[0008] The wafer alignment unit of the present invention comprises:
Holds and transports the wafer, and positions the center of the wafer at the normal position by shifting the center of the wafer from its normal position by the amount of shift of the center of the wafer from its own center, and in the direction opposite to the shift direction. A robot hand, the center of which coincides with the center of six strips of light, and the center of the wafer when the wafer held by the hand is perpendicular to the optical axis of the strip of light. A measurement unit for measuring a wafer position for obtaining a shift amount and a shift direction with respect to the center of the hand.
【0009】[0009]
【実施例】次に、本発明について図面を参照して詳細に
説明する。Next, the present invention will be described in detail with reference to the drawings.
【0010】図1は、本発明の一実施例の平面図であり
図2は側面図である。FIG. 1 is a plan view of an embodiment of the present invention, and FIG. 2 is a side view.
【0011】本実施例のウエハアライメントユニット
は、ウエハキャリア5に収納されたウエハ6をロボット
4により取り出し、ロボット4が保持した状態でウエハ
6を受光センサ2等からなる計測ユニット7へ移動さ
せ、そこでウエハ6のセンター出しアライメントを行
う。計測ユニット7は、半導体レーザ等レーザ発生源か
ら出射されたレーザをレンズにより幅が10mm程度の
帯状光にする投光センサ1と、投光センサ1からの帯状
光をレンズを介して受光するフォトディテクタを有する
受光センサ2と、投光センサ1と受光センサ2を1セッ
トとし、帯状光の光軸に垂直な面による切断端9の中心
が、ウエハ6と同径の円周上の6箇所に60°等配で配
置し、且つ帯状光の幅方向が放射状になるように投光セ
ンサ1および受光センサ2を固定するスタンド3(一部
分図示略)と、受光センサ2が受光した帯状光の光量を
入力してウエハ6を与える移動量を求め、これをウエハ
6を保持運搬するロボット4へ指示する図示しない制御
部とで構成される。In the wafer alignment unit of the present embodiment, the wafer 6 housed in the wafer carrier 5 is taken out by the robot 4, and the wafer 6 is moved to the measuring unit 7 including the light receiving sensor 2 and the like while being held by the robot 4, Therefore, centering alignment of the wafer 6 is performed. The measurement unit 7 includes a light emitting sensor 1 that converts a laser beam emitted from a laser source such as a semiconductor laser into a band light having a width of about 10 mm by a lens, and a photodetector that receives the band light from the light projecting sensor 1 via a lens. The light receiving sensor 2 and the light projecting sensor 1 and the light receiving sensor 2 are set as one set, and the center of the cut end 9 by a plane perpendicular to the optical axis of the band light is located at six places on the circumference having the same diameter as the wafer 6. A stand 3 (partially not shown) for fixing the light-emitting sensor 1 and the light-receiving sensor 2 so as to be arranged at an equal angle of 60 ° so that the width direction of the band-shaped light is radial; And a control unit (not shown) for instructing the robot 4 that holds and transports the wafer 6 to obtain a movement amount for giving the wafer 6.
【0012】ウエハキャリア5に収納されたウエハ6を
ロボット4がハンド8によりその裏面を吸着して取り出
し、ロボット4がウエハ6を保持したまま計測ユニット
7の中心にハンド8の中心が一致するようにハンド8を
移動する。ウエハ6の中心とロボットハンド8の中心が
一致していれば、ウエハ6の中心は計測ユニット7の中
心と一致する。しかしウエハキャリア5内のガタ等でウ
エハ6の中心がロボットハンド8の中心からずれた状態
でハンド8がウエハ6を吸着保持すると、ウエハ6の中
心が計測ユニット7の中心からずれ各受光センサ2の受
光量が変化する。The robot 4 sucks the back surface of the wafer 6 accommodated in the wafer carrier 5 by the hand 8 and takes it out. The robot 4 holds the wafer 6 so that the center of the hand 8 coincides with the center of the measurement unit 7. Is moved to hand 8. If the center of the wafer 6 matches the center of the robot hand 8, the center of the wafer 6 matches the center of the measurement unit 7. However, if the hand 8 sucks and holds the wafer 6 in a state where the center of the wafer 6 is deviated from the center of the robot hand 8 due to backlash or the like in the wafer carrier 5, the center of the wafer 6 is deviated from the center of the measurement unit 7. Changes the amount of received light.
【0013】図3に示すようにウエハ6の中心と計測ユ
ニット7の中心が一致していれば、各投光センサ1から
の帯状光の切断端9の中心位置上にウエハ6の外周がく
るため投光センサ1の投光光量の半分がウエハ6により
遮光され、半分が受光センサ2に受光される。投光セン
サ1から照射された光は幅方向が放射状に配置された帯
状光になっているため、ウエハ6の外周の位置ずれに応
じて光を遮る範囲が変化しこの範囲に比例して受光量が
変化する。従ってウエハ6の外周が帯状光を遮る範囲か
ら、ウエハ6の中心の計測ユニット7の中心からのずれ
量を測定できる。ウエハ6の外周の位置ずれを6個の投
光センサ1および受光センサ2によりウエハ6の外周の
6箇所で測定できることになるが、ウエハにはオリフラ
という円周を切り欠いた部分が存在し、このオリフラが
投光センサ1からの帯状光が照射される位置にあると、
オリフラの影響で受光センサ2の受光量が変化し、ウエ
ハ6が位置ずれしているものと誤認識する。As shown in FIG. 3, when the center of the wafer 6 and the center of the measuring unit 7 coincide with each other, the outer periphery of the wafer 6 comes to the center position of the cut end 9 of the band light from each light emitting sensor 1. Therefore, half of the amount of light emitted from the light emitting sensor 1 is blocked by the wafer 6, and half is received by the light receiving sensor 2. Since the light emitted from the light emitting sensor 1 is band-shaped light arranged radially in the width direction, a range in which the light is blocked changes according to a positional shift of the outer periphery of the wafer 6, and light is received in proportion to this range. The amount changes. Therefore, the amount of deviation of the center of the wafer 6 from the center of the measurement unit 7 can be measured from the range in which the outer periphery of the wafer 6 blocks the band light. The position shift of the outer periphery of the wafer 6 can be measured at the six positions on the outer periphery of the wafer 6 by the six light emitting sensors 1 and the light receiving sensors 2. When this orientation flat is located at a position where the belt-like light from the light emitting sensor 1 is irradiated,
The amount of light received by the light receiving sensor 2 changes due to the influence of the orientation flat, and it is erroneously recognized that the wafer 6 is displaced.
【0014】図4に示すように帯状光の1つがオリフラ
を照射している場合は、そのオリフラを照射している帯
状光と、計測ユニット7の中心を間にして対向する帯状
光との一対の帯状光を受光する対向する一対の受光セン
サ2の受光量から求めるウエハ6の対向する位置の外周
間の距離がウエハ直径相当の距離を示さなくなる。ま
た、ウエハ6の中心が計測ユニット7の中心からずれて
いても計測ユニット7の中心を間にして、対向する一対
の帯状光がオリフラを照射していなければ、これら帯状
光を受光する一対の受光センサ2の受光量から求めるウ
エハ6の外周のずれ量はほぼ同じ値となるのに対して、
一対の帯状光の1つがオリフラを照射していればその帯
状光を受光する一対の受光センサ2の受光量から求める
ウエハ6の外周のずれ量は大幅に異る値となる。このよ
うに対向する一対の受光センサ2の受光量から求めたウ
エハ6の外周のずれ量が大幅に違う値を示す場合、この
対向する一対の受光センサ2から求まる結果をアライメ
ントのデータから削除することとし、残り4個の受光セ
ンサ2の受光量が示す外周のずれ量をもとにウエハ6の
中心を算出して、オリフラの影響によるウエハ位置の誤
認識を避ける。As shown in FIG. 4, when one of the band lights irradiates the orientation flat, a pair of the band light irradiating the orientation flat and the band light opposing the center of the measuring unit 7 therebetween. The distance between the outer peripheries of the opposing positions of the wafer 6 obtained from the light receiving amounts of the pair of opposing light receiving sensors 2 receiving the band light does not indicate the distance corresponding to the wafer diameter. Even if the center of the wafer 6 is deviated from the center of the measurement unit 7, if the pair of opposing band lights do not irradiate the orientation flat with the center of the measurement unit 7 interposed therebetween, a pair of band light receiving these band lights is received. While the amount of deviation of the outer periphery of the wafer 6 obtained from the amount of light received by the light receiving sensor 2 is substantially the same,
If one of the pair of band-shaped lights irradiates the orientation flat, the amount of deviation of the outer periphery of the wafer 6 obtained from the amount of light received by the pair of light-receiving sensors 2 that receive the band-shaped light has a significantly different value. When the deviation amount of the outer periphery of the wafer 6 obtained from the light reception amounts of the pair of opposing light receiving sensors 2 shows a significantly different value, the result obtained from the pair of opposing light receiving sensors 2 is deleted from the alignment data. In this case, the center of the wafer 6 is calculated based on the shift amount of the outer periphery indicated by the light receiving amounts of the remaining four light receiving sensors 2 to avoid erroneous recognition of the wafer position due to the influence of the orientation flat.
【0015】4個の受光センサ2の受光量で円形のウエ
ハ6の外周上の4点のずれ量(投光センサ1からの帯状
光の切断端9の中心からのずれ量)、すなわち外周上の
4点の位置が判明していれば、この4点のうちの任意の
2点を結ぶ線分の垂直二等分線と、その他2点を結ぶ線
分の垂直二等分線の交点をこれら4点を通る円の中心す
なわちウエハ6の中心として求めることができる。この
ウエハ6の中心を求める方法は、その他に測定された4
点より平行な2線分を作り、線分長の比か中心位置ずれ
量をウエハ中心を求める方法等もある。The amount of light received by the four light receiving sensors 2 is the amount of displacement of the four points on the outer periphery of the circular wafer 6 (the amount of deviation of the band-like light from the light emitting sensor 1 from the center of the cut end 9), that is, If the positions of the four points are known, the intersection of the vertical bisector of the line connecting any two of the four points and the vertical bisector of the line connecting the other two points The center of a circle passing through these four points, that is, the center of the wafer 6, can be obtained. The method of finding the center of the wafer 6 is the same as that of the other measured 4
There is also a method in which two line segments parallel to a point are formed, and the ratio of the line segment lengths or the center position shift amount is used to determine the wafer center.
【0016】この様にしてウエハ6の外周の位置ずれ情
報からウエハ6の中心の計測ユニット7の中心、すなわ
ちハンド8の中心からのずれ量を求める。このハンド8
とウエハ8とのずれ量の計測後に、ウエハ6をハンド8
に吸着したまま次工程での位置決めすべき位置(正規位
置)にロボット4で運搬する時に、計測ユニット7で計
測して求めた中心のずれ量だけ、方向は求めたずれの方
向と逆に、すなわち位置ずれを打ち消す方向にハンド8
の中心を正規位置からシフトしてハンド8を位置決めす
る。これによりロボット4のハンド8は、ウエハ6を正
規位置に位置決めできる。In this way, the amount of deviation of the center of the wafer 6 from the center of the measurement unit 7, ie, the center of the hand 8, is obtained from the positional deviation information on the outer periphery of the wafer 6. This hand 8
After measuring the amount of deviation between the wafer 6 and the
When the robot 4 transports to the position (regular position) to be positioned in the next process while being attracted to the surface, the direction is the amount of the center deviation measured and measured by the measurement unit 7, and the direction is opposite to the direction of the determined deviation. That is, the hand 8 moves in the direction to cancel the displacement.
Is shifted from the normal position to position the hand 8. Thereby, the hand 8 of the robot 4 can position the wafer 6 at the regular position.
【0017】[0017]
【発明の効果】本発明のウエハ位置の計測ユニットなら
びにウエハアライメントユニットおよび方法は、複数の
投光センサからの帯状光でウエハの外周を照射し、この
帯状光のウエハで遮られなかった部分の複数の受光セン
サの受光量からウエハの中心位置を求めるため、カット
アンドトライ動作を不要としアライメント時間を短くで
きるという第一の効果と、ロボットハンドにウエハを保
持したままウエハの中心位置を求めることができ、ロボ
ットハンドとウエハ位置の計測ユニット等の間でウエハ
の受け渡しを行わないで済みウエハにダメージを与える
機会が少いという第二の効果と、オリフラを予め検出す
るためにウエハを回転させる必要がないという第三の効
果がある。According to the wafer position measuring unit, the wafer alignment unit and the method of the present invention, the outer periphery of the wafer is illuminated with the band light from the plurality of light projection sensors, and the portion of the band light not blocked by the wafer is irradiated. The first effect is that the center position of the wafer is obtained from the light receiving amounts of a plurality of light receiving sensors, so that the cut-and-try operation is not required and the alignment time can be shortened. The second effect is that the wafer is not transferred between the robot hand and the wafer position measuring unit, etc., and the chance of damaging the wafer is small, and the wafer is rotated to detect the orientation flat in advance. There is a third effect that there is no need.
【図1】本発明の一実施例の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.
【図2】図1に示す実施例の側面図である。FIG. 2 is a side view of the embodiment shown in FIG.
【図3】図1中の計測ユニット7の6個の投光センサ1
が出射する帯状光のセンターとウエハ6のセンターが一
致した状態を示す平面図である。FIG. 3 shows six light emitting sensors 1 of the measuring unit 7 in FIG.
FIG. 5 is a plan view showing a state where the center of the band-shaped light emitted from the center of the wafer 6 coincides with the center of the wafer 6.
【図4】図1中の計測ユニットの投光センサ1が出射す
る帯状光の1つがウエハのオリフラを照射した状態を示
す平面図である。FIG. 4 is a plan view showing a state in which one of band-shaped lights emitted from the light projecting sensor 1 of the measurement unit in FIG. 1 irradiates an orientation flat of a wafer.
【図5】従来のウエハアライメントユニットの平面図で
ある。FIG. 5 is a plan view of a conventional wafer alignment unit.
【図6】従来のウエハアライメントユニットの側面図で
ある。FIG. 6 is a side view of a conventional wafer alignment unit.
1 投光センサ 2 受光センサ 3 スタンド 4 ロボット 5 ウエハキャリア 6 ウエハ 7 計測ユニット 8 ハンド 11 受け渡し台 12 アライメントステージ 13 光学式センサ REFERENCE SIGNS LIST 1 light emitting sensor 2 light receiving sensor 3 stand 4 robot 5 wafer carrier 6 wafer 7 measuring unit 8 hand 11 transfer table 12 alignment stage 13 optical sensor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B65G 49/07 B65G 49/07 C G01B 11/00 G01B 11/00 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B65G 49/07 B65G 49/07 C G01B 11/00 G01B 11/00 D
Claims (3)
放射状に配置され光軸に垂直な平面とそれぞれの光軸の
交点がウエハの外形と同一径の円周上に60度の中心角
ごとに等配で配置された6本の帯状光を出射する投光セ
ンサと、前記6本の帯状光の対応するものをそれぞれが
受光する6個の受光センサと、前記6個の受光センサの
受光量から前記帯状光の光軸に垂直な平面上で中心が6
本の前記帯状光の中心にほぼ位置するように置かれた前
記ウエハの外周と前記帯状光との交点の位置を求め、前
記ウエハの外周と前記帯状光との交点の前記帯状光の光
軸からのずれ量が大幅に異なる対向するものを除いた前
記帯状光の前記ウエハの外周の交点から前記ウエハの中
心位置を求める制御部とを含むことを特徴とするウエハ
位置の計測ユニット。1. An optical axis is parallel to each other, each width direction is radially arranged, and an intersection of a plane perpendicular to the optical axis and each optical axis is a central angle of 60 degrees on a circumference having the same diameter as the outer shape of the wafer. A light-emitting sensor that emits six strips of light arranged at equal intervals, six light-receiving sensors each receiving a corresponding one of the six strips of light, and a light-receiving sensor of the six light-receiving sensors. From the amount of received light, the center is 6 on a plane perpendicular to the optical axis of the band light.
Obtain the position of the intersection of the outer periphery of the wafer and the band light, which is placed substantially at the center of the band light of the book, and determine the optical axis of the band light at the intersection of the outer periphery of the wafer and the band light. A control unit for obtaining a center position of the wafer from an intersection of the outer periphery of the wafer with the belt-like light excluding opposing ones having a significantly different amount of deviation from the wafer position.
心が請求項1記載のウエハ位置の計測ユニットの6本の
帯状光の中心に一致するように、しかも前記ウエハが前
記帯状光の光軸に垂直になるように位置させ、前記ウエ
ハの中心の前記ハンドの中心に対するずれ量およびずれ
方向を求め、前記ハンドを中心が正規位置から前記ずれ
量だけ前記ずれ方向と逆の方向にシフトするように位置
決めすることにより前記ウエハを中心が前記正規位置と
なるように位置決めすることを特徴とするウエハアライ
メント方法。2. The robot hand holding a wafer, the center of which coincides with the center of six strip lights of the wafer position measuring unit according to claim 1, and the wafer is aligned with the optical axis of the strip light. It is positioned so as to be vertical, the shift amount and the shift direction of the center of the wafer with respect to the center of the hand are determined, and the center of the hand is shifted from the normal position by the shift amount in a direction opposite to the shift direction. A wafer alignment method, wherein the positioning is performed so that the center of the wafer is the normal position.
中心の自らの中心に対するずれ量だけ、かつずれ方向と
逆方向に自らの中心が正規位置からシフトするようにし
て前記ウエハの中心を前記正規位置に位置決めするロボ
ットのハンドと、前記ハンドが中心を6本の帯状光の中
心に一致させ、しかも前記ハンドが保持した前記ウエハ
を前記帯状光の光軸と垂直にさせた時の前記ウエハの中
心の前記ハンドの中心に対するずれ量およびずれ方向を
求める請求項1記載のウエハの位置の計測ユニットとを
含むことを特徴とするウエハアライメントユニット。3. A wafer is held and transported, and the center of the wafer is shifted from a normal position by an amount of shift of the center of the wafer from its own center and in a direction opposite to the direction of the shift so as to shift the center of the wafer. The robot hand positioned at the regular position, and the hand aligns the center with the center of six strip lights, and when the wafer held by the hand is perpendicular to the optical axis of the strip light. 2. A wafer alignment unit comprising: the wafer position measuring unit according to claim 1, wherein a shift amount and a shift direction of a center of the wafer with respect to a center of the hand are obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26374194A JP2626582B2 (en) | 1994-10-27 | 1994-10-27 | Wafer position measurement unit and wafer alignment unit and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26374194A JP2626582B2 (en) | 1994-10-27 | 1994-10-27 | Wafer position measurement unit and wafer alignment unit and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08124995A JPH08124995A (en) | 1996-05-17 |
JP2626582B2 true JP2626582B2 (en) | 1997-07-02 |
Family
ID=17393650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26374194A Expired - Lifetime JP2626582B2 (en) | 1994-10-27 | 1994-10-27 | Wafer position measurement unit and wafer alignment unit and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2626582B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100416791C (en) * | 2005-12-09 | 2008-09-03 | 北京圆合电子技术有限责任公司 | Method for placing silicon chip center on electrostatic chuck center |
JP2009123790A (en) * | 2007-11-13 | 2009-06-04 | Disco Abrasive Syst Ltd | Grinding device |
CN104690736B (en) * | 2015-02-12 | 2017-03-08 | 成都天马微电子有限公司 | Mechanical arm and its detecting system and detection method |
JP6802726B2 (en) * | 2017-02-14 | 2020-12-16 | 株式会社Screenホールディングス | Substrate transfer device, substrate processing device equipped with it, and substrate transfer method |
CN111645064A (en) * | 2019-03-04 | 2020-09-11 | 北京北方华创微电子装备有限公司 | Manipulator position calibration device and method and manipulator control system |
CN110091340B (en) * | 2019-05-07 | 2020-10-20 | 芯导精密(北京)设备有限公司 | Wafer picking and placing manipulator |
CN113675123B (en) * | 2021-07-29 | 2024-01-05 | 长鑫存储技术有限公司 | Wafer calibration device, method and system |
CN113725135B (en) * | 2021-08-30 | 2023-08-25 | 上海华力微电子有限公司 | Semiconductor reaction equipment and position calibration method thereof |
-
1994
- 1994-10-27 JP JP26374194A patent/JP2626582B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08124995A (en) | 1996-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107919310B (en) | Processing device | |
US6195619B1 (en) | System for aligning rectangular wafers | |
CN107924863B (en) | Conveying system, conveying robot and teaching method thereof | |
JP2000127069A5 (en) | Transport alignment method and transport system for transport system | |
JP5381029B2 (en) | Exposure equipment | |
JP2001338969A (en) | Carrying system of body to be processed and detection method of position deviation amount of the body to be processed | |
JP2626582B2 (en) | Wafer position measurement unit and wafer alignment unit and method | |
JPH10163302A (en) | Substrate carrier and semiconductor manufacturing apparatus capable of application thereof | |
KR20030010478A (en) | System and method of wafer transferring, and automated guided vehicle system | |
US7596425B2 (en) | Substrate detecting apparatus and method, substrate transporting apparatus and method, and substrate processing apparatus and method | |
US7109510B2 (en) | Method and apparatus for aligning a substrate on a stage | |
JP4289961B2 (en) | Positioning device | |
JP2001230597A (en) | Detection method for electrical component position | |
JPH106262A (en) | Instructing method and its device for robot | |
JP2009099998A (en) | Method of positioning disk-shaped object, device of positioning disk-shaped object using the method, conveying device, and semiconductor manufacturing apparatus | |
JPH01169939A (en) | Centering equipment for semiconductor wafer | |
JPH11274264A (en) | Substrate carrier vehicle, manufacture of micro device, and substrate-retaining device | |
JP4575727B2 (en) | Substrate state detection device, robot hand, and substrate transfer robot | |
JPH0685038A (en) | Wafer alignment and its device and transparent wafer alignment device | |
JPH0864654A (en) | Method and apparatus for transferring substrate | |
JPS62162342A (en) | Wafer alignment device | |
JPH11243131A (en) | Wafer positioning method | |
JP2009088398A (en) | Centripetalism method of disk object | |
JPH11150172A (en) | Transfer equipment | |
US20220415690A1 (en) | Aligner apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970218 |