JP2624666B2 - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JP2624666B2
JP2624666B2 JP62040236A JP4023687A JP2624666B2 JP 2624666 B2 JP2624666 B2 JP 2624666B2 JP 62040236 A JP62040236 A JP 62040236A JP 4023687 A JP4023687 A JP 4023687A JP 2624666 B2 JP2624666 B2 JP 2624666B2
Authority
JP
Japan
Prior art keywords
superconducting
channel
thin film
control electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62040236A
Other languages
Japanese (ja)
Other versions
JPS63208283A (en
Inventor
睦子 波多野
壽一 西野
晴弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62040236A priority Critical patent/JP2624666B2/en
Publication of JPS63208283A publication Critical patent/JPS63208283A/en
Application granted granted Critical
Publication of JP2624666B2 publication Critical patent/JP2624666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極低温で動作する超伝導素子に係り、特に制
御電極に印加する電圧で2ての超伝導電極間にチヤネル
を介して流れる電流を制御する超伝導スイツチングデバ
イスに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting element operating at a very low temperature, and in particular, a current flowing through a channel between two superconducting electrodes at a voltage applied to a control electrode. A superconducting switching device for controlling

〔従来の技術〕[Conventional technology]

半導体に接して設けられた2つの超伝導電極の間に流
れる超伝導電流の値を、制御電極に印加した電圧により
超伝導近接効果を変化させることによつて制御すること
を動作原理とする超伝導トランジスタについては、テイ
ー・デイー・クラーク(T.D.Clark)によつてジヤーナ
ル・オブ・アプライド・フイジイツクス(Journal of A
pplied Physics)51巻2736ページ(1980年)に論じられ
ている。
The operation principle is to control the value of the superconducting current flowing between two superconducting electrodes provided in contact with the semiconductor by changing the superconducting proximity effect by the voltage applied to the control electrode. For conducting transistors, the Journal of A Applied Physics by TDClark
pplied Physics, 51, 2736 (1980).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

電界効果型の超伝導素子を作製する際には、半導体基
板上に一定の距離Lだけ離して対向させた一対の超伝導
電極を設け、この対向部に制御電極を設けている。距離
Lの値は半導体中のコヒーレンス長さξの5〜10倍に
選ばれる。Lの値がこの範囲よりも大きいと超伝導電流
が流れない。すなわち約0.5μm以下に近接させる必要
があり高い精度の加工技術が必要であつた。また、制御
電圧を印加していない状態でも超伝導電極間の抵抗が小
さくなり電流が流れてしまい、素子の利得を向上させる
ことができないという欠点があつた。
When fabricating a field-effect type superconducting element, a pair of superconducting electrodes are provided on a semiconductor substrate so as to face each other at a predetermined distance L, and a control electrode is provided on the facing portion. The value of the distance L is selected to 5 to 10 times the coherence length xi] n in the semiconductor. If the value of L is larger than this range, no superconducting current flows. That is, it is necessary to make the distance close to about 0.5 μm or less, and a high-precision processing technique is required. Further, even when no control voltage is applied, the resistance between the superconducting electrodes is reduced and a current flows, so that the gain of the element cannot be improved.

本発明の目的は動作速度が速く、利得が高い集積回路
への応用に適した超伝導素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting element suitable for application to an integrated circuit having a high operation speed and a high gain.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的は、チヤネルに超薄膜を積層してなる超格子
構造をもつ膜を用いることにより達成される。
The above object is achieved by using a film having a super lattice structure in which an ultra thin film is laminated on a channel.

〔作用〕[Action]

厚さ10nm程度の超伝導薄膜と不純物を導入したn型あ
るいはp形は半導体を積層させ液体ヘリウム中の極低温
に冷却すると、超伝導体側から接触した半導体側に超伝
導素子がしみ出す。この様子を第3図に示す。このよう
に超伝導波動関数が半導体中に入り込み減衰する。制御
電極に電圧を印加しない状態での超伝導電子の存在確率
の変化の様子を第3図(a)に示す。超伝導薄膜7には
さまれた半導体薄膜中には、両超伝導体から超伝導電子
がしみ出す。このしみ出す範囲が互いに重なりを持たな
い。したがつてこの超格子層には超伝導電流が流れな
い。制御電極に電圧を印加すると半導体薄膜中のキヤリ
ア濃度が増し、第3図(b)に示すように、半導体薄膜
中でしみ出す範囲が重なり(図中の斜線部)、超伝導電
流が流れるようになる。この電流は、超格子層に接触し
た超伝導よりなるソース,ドレイン電極に流れ込む。
When a superconducting thin film having a thickness of about 10 nm and an n-type or p-type semiconductor into which impurities are introduced are laminated and cooled to extremely low temperature in liquid helium, the superconducting element exudes from the superconductor side to the contacted semiconductor side. This is shown in FIG. Thus, the superconducting wave function enters the semiconductor and is attenuated. FIG. 3A shows how the existence probability of superconducting electrons changes when no voltage is applied to the control electrode. In the semiconductor thin film sandwiched between the superconducting thin films 7, superconducting electrons exude from both superconductors. The oozing areas do not overlap each other. Therefore, no supercurrent flows through this superlattice layer. When a voltage is applied to the control electrode, the carrier concentration in the semiconductor thin film increases, and as shown in FIG. 3 (b), the areas oozing out in the semiconductor thin film overlap (shaded portions in the figure), and the superconducting current flows. become. This current flows into the superconducting source / drain electrodes in contact with the superlattice layer.

チヤネル部にこのように超格子層を用いると、電圧状
態での抵抗が大きくなる。例えば、超伝導体薄膜と半導
体薄膜を9層交互に積み上げた超格子層からなるチヤネ
ル部が電圧状態となつた場合の抵抗は、半導体のみから
なるチヤネルの抵抗の4倍もの値をもつことになる。し
たがつてデバイスとしてみた場合のリーク電流が減少
し、回路利得が向上することになる。
When the super lattice layer is used in the channel portion in this manner, the resistance in a voltage state increases. For example, when a channel portion composed of a superlattice layer in which nine superconductor thin films and semiconductor thin films are alternately stacked is in a voltage state, the resistance is four times as large as that of a channel composed of only a semiconductor. Become. Therefore, the leakage current when viewed as a device is reduced, and the circuit gain is improved.

〔実施例〕〔Example〕

以下、本発明を実施例を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

第1図を用いて本発明の第1の実施例を説明する。基
板8上に分子線成長法によつて厚さ約300nmのNbよりな
る超伝導体のソース電極1を形成したのち、大気中にさ
らすことなく真空に保つたままその表面に厚さ約10nmで
ホウ素不純物濃度5×1024m-3を含むSiよりなる半導体
薄膜と、厚さ約1nmでNbよりなる超伝導薄膜を分子線成
長法により交互に堆積して超格子層5を形成する。続い
てやはり大気中にとり出すことなく真空に保つた状態で
その表面に分子線成長法によつて厚さ約300nmのNbより
なるドレイン電極2を形成する。次にこれをホトレジス
トをマスクとしたイオンエツチング法によつて角度をつ
けた所望形状に加工し、この表面を酸素プラズマによつ
て酸化し、約15nmの絶縁膜4を得た。最後にDCマグネト
ロンスパツタ法によつてNbを約500nm堆積させ、CF4ガス
によるイオンエツチングによつてこれを加工し、制御電
極3を得る。以上によつて第1図に示した構造の超伝導
素子を作製することができた。
A first embodiment of the present invention will be described with reference to FIG. After forming a superconductor source electrode 1 made of Nb having a thickness of about 300 nm on a substrate 8 by a molecular beam growth method, the surface is formed to a thickness of about 10 nm while being kept in a vacuum without being exposed to the atmosphere. A superlattice layer 5 is formed by alternately depositing a semiconductor thin film of Si containing a boron impurity concentration of 5 × 10 24 m −3 and a superconducting thin film of Nb with a thickness of about 1 nm by a molecular beam growth method. Subsequently, a drain electrode 2 made of Nb and having a thickness of about 300 nm is formed on the surface thereof by a molecular beam growth method while keeping a vacuum without taking out the air. Next, this was processed into an angled desired shape by ion etching using a photoresist as a mask, and the surface was oxidized by oxygen plasma to obtain an insulating film 4 of about 15 nm. Finally it is about 500nm deposited Yotsute Nb to DC magnetron spa ivy method, processed this Te cowpea the ion Etsu quenching by CF 4 gas to obtain a control electrode 3. Thus, a superconducting element having the structure shown in FIG. 1 was manufactured.

以上の超伝導素子を液体ヘリウム中の極低温で動作さ
せたところ、電圧状態でのソース,ドレイン電極間の抵
抗が大きくなり、リークが少なく利得が向上した。また
ソース,ドレイン電極それぞれと半導体との界面の汚染
を防ぐことができ、良好なシヨツトキ障壁特性をもつ素
子が得られた。また超伝導電子は、超格子層をトンネル
して通過するため高速なスイツチング素子が得られた。
When the above superconducting element was operated at a very low temperature in liquid helium, the resistance between the source and drain electrodes in a voltage state was increased, the leakage was reduced, and the gain was improved. In addition, contamination at the interface between the source and drain electrodes and the semiconductor was prevented, and an element having good shot barrier properties was obtained. In addition, since the superconducting electrons pass through the superlattice layer by tunneling, a high-speed switching element was obtained.

次に第2図を用いて本発明の第2の実施例を説明す
る。
Next, a second embodiment of the present invention will be described with reference to FIG.

超格子層5の上と下にドレイン電極2とソース電極1
を積層し、その側壁部に絶縁膜4によつて隔てられた制
御電極3が設けられている。
Drain electrode 2 and source electrode 1 above and below superlattice layer 5
, And a control electrode 3 separated by an insulating film 4 is provided on the side wall.

基板8上に分子線成長法によつて厚さ300nmのNbから
なるソース電極1を形成した後、真空に保つた状態で分
子線成長法によつて厚さ約10nmのSiよりなる半導体薄膜
と厚さ約1nmのNbよりなる超伝導薄膜を交互に堆積して
超格子層5を形成する。その後、真空を保つた状態で分
子線成長法により厚さ約300nmのNbよりなるドレイン電
極2を形成する。次にホストレジストをマスクとしたイ
オンエツチング法によつて所望の形状に加工した後、溝
の表面を酸素プラズマによつて酸化し、約15nmの絶縁膜
4を得た。最後にDCマグネトロンスパツタ法でNbを約50
nm堆積させCF4ガスによるイオンエツチングによつてこ
れを加工し、制御電極3を得る。以上によつて第2図に
示した構造の超伝導素子を作製することができた。
A source electrode 1 made of Nb having a thickness of 300 nm is formed on a substrate 8 by a molecular beam growth method. Superlattice layers 5 are formed by alternately depositing superconducting thin films of Nb having a thickness of about 1 nm. Thereafter, a drain electrode 2 made of Nb having a thickness of about 300 nm is formed by a molecular beam growth method while maintaining a vacuum. Next, after processing into a desired shape by ion etching using a host resist as a mask, the surface of the groove was oxidized by oxygen plasma to obtain an insulating film 4 of about 15 nm. Finally, Nb is reduced to about 50 by DC magnetron spatter method.
This is processed by ion etching with CF 4 gas to obtain a control electrode 3. As described above, a superconducting element having the structure shown in FIG. 2 was manufactured.

本実施例によればソース,ドレイン電極間の抵抗が大
きくなるとともに、2つの超伝導素子を直列に接続でき
るため、一定の制御電圧に対する出力振幅を2杯にする
ことができ、利得が向上する。また、工程数も減少し、
加工も容易なため高集積化に適した素子が得られる。さ
らに、良好なシヨツトキ障壁をもつ高速なスイツチング
素子が得られた。
According to this embodiment, the resistance between the source and drain electrodes is increased, and two superconducting elements can be connected in series, so that the output amplitude for a given control voltage can be doubled and the gain is improved. . Also, the number of processes is reduced,
Since the processing is easy, an element suitable for high integration can be obtained. Furthermore, a high-speed switching element having a good shot barrier was obtained.

上記実施例では半導体材料にSiを用いたが、GaAs,Ge,
InAs,InP,InSb,GaSb等を用いてもよい。また半導体部分
の導電性を反対にしてもよい。また、超伝導体材料にNb
を用いたが、NbN,Nb3Ge,Nb3Sn,Nb3Al、などのNb化合
物、Pb−Au,Pb−In−Au,Pb−BiなどのPb合金を用いた場
合でも同様の結果が得られる。
In the above embodiment, Si was used as the semiconductor material, but GaAs, Ge,
InAs, InP, InSb, GaSb, etc. may be used. The conductivity of the semiconductor portion may be reversed. In addition, Nb
However, similar results were obtained when Nb compounds such as NbN, Nb 3 Ge, Nb 3 Sn, and Nb 3 Al, and Pb alloys such as Pb-Au, Pb-In-Au, and Pb-Bi were used. can get.

〔発明の効果〕〔The invention's effect〕

本発明によれば、電圧によつて制御する超伝導素子
を、再現制,均一性よく製造できる。また、超格子層と
チヤネルに用いることにより、利得が向上し、高速かつ
高集積の超伝導集積回路を実現できる効果がある。
According to the present invention, a superconducting element controlled by voltage can be manufactured with good reproducibility and uniformity. Further, the use of the superlattice layer and the channel has the effect of improving the gain and realizing a high-speed and highly integrated superconducting integrated circuit.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例を示す断面構造図、第2
図は第2の実施例を示す断面構造図、第3図は本発明の
動作原理を示す原理説明図である。 1……ソース電極、2……ドレイン電極、3……制御電
極、4……絶縁膜、5……半導体と超伝導体を交互に積
層してなる超格子層、6……半導体薄膜、7……超伝導
薄膜。
FIG. 1 is a sectional structural view showing a first embodiment of the present invention, and FIG.
FIG. 3 is a sectional structural view showing a second embodiment, and FIG. 3 is a principle explanatory view showing the operation principle of the present invention. DESCRIPTION OF SYMBOLS 1 ... Source electrode, 2 ... Drain electrode, 3 ... Control electrode, 4 ... Insulating film, 5 ... Superlattice layer formed by alternately laminating semiconductor and superconductor, 6 ... Semiconductor thin film, 7 ...... Superconducting thin film.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体薄膜と超伝導薄膜とを積層した超格
子構造を有するチャネルと、上記チャネルの最上層に接
して設けられた第一の超伝導電極と、上記チャネルの最
下層に接して設けられた第二の超伝導電極と、制御電極
とを有する超伝導素子であって、 上記制御電極は、絶縁膜によって隔てられて上記チャネ
ルと接し、かつ上記制御電極と上記チャネルとが接する
面は上記チャネルに積層された薄膜を含む面と0でない
角度を有することを特徴とする超伝導素子。
1. A channel having a superlattice structure in which a semiconductor thin film and a superconducting thin film are stacked, a first superconducting electrode provided in contact with an uppermost layer of the channel, and a channel in contact with a lowermost layer of the channel. A superconducting element having a second superconducting electrode provided and a control electrode, wherein the control electrode is in contact with the channel separated by an insulating film, and a surface where the control electrode and the channel contact. A superconducting device having a non-zero angle with a plane including a thin film laminated on the channel.
【請求項2】特許請求の範囲第1項記載の超伝導素子に
おいて、 上記チャネルに積層される半導体薄膜はn型あるいはp
型のいずれか一方の半導体薄膜であることを特徴とする
超伝導素子。
2. The superconducting device according to claim 1, wherein the semiconductor thin film laminated on the channel is n-type or p-type.
A superconducting element characterized in that the superconducting element is a semiconductor thin film of any one of the following types.
【請求項3】特許請求の範囲第1項記載の超伝導素子に
おいて、 上記チャネルに積層される超伝導薄膜は、Nb、Nb化合物
もしくはPb合金のいずれかよりなることを特徴とする超
伝導素子。
3. A superconducting element according to claim 1, wherein said superconducting thin film laminated on said channel is made of any one of Nb, Nb compound and Pb alloy. .
【請求項4】特許請求の範囲第1項記載の超伝導素子に
おいて、 上記制御電極は、絶縁膜によって隔てられて、上記第一
の超伝導電極及び上記第二の超伝導電極と接することを
特徴とする超伝導素子。
4. The superconducting device according to claim 1, wherein the control electrode is separated from the first superconducting electrode and the second superconducting electrode by an insulating film. Characterized superconducting element.
【請求項5】特許請求の範囲第1項記載の超伝導素子に
おいて、 上記制御電極と上記チャネルとが接する面は上記チャネ
ルに積層された薄膜を含む面とあらかじめ定められた所
定の角度を有することを特徴とする超伝導素子。
5. The superconducting device according to claim 1, wherein a surface where said control electrode and said channel are in contact has a predetermined angle with a surface including a thin film laminated on said channel. A superconducting element, characterized in that:
【請求項6】特許請求の範囲第1項記載の超伝導素子に
おいて、 上記制御電極と上記チャネルとが接する面は上記チャネ
ルに積層された薄膜を含む面とほぼ直交することを特徴
とする超伝導素子。
6. A superconducting device according to claim 1, wherein a surface where said control electrode and said channel are in contact is substantially orthogonal to a surface including a thin film laminated on said channel. Conduction element.
JP62040236A 1987-02-25 1987-02-25 Superconducting element Expired - Lifetime JP2624666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040236A JP2624666B2 (en) 1987-02-25 1987-02-25 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040236A JP2624666B2 (en) 1987-02-25 1987-02-25 Superconducting element

Publications (2)

Publication Number Publication Date
JPS63208283A JPS63208283A (en) 1988-08-29
JP2624666B2 true JP2624666B2 (en) 1997-06-25

Family

ID=12575085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040236A Expired - Lifetime JP2624666B2 (en) 1987-02-25 1987-02-25 Superconducting element

Country Status (1)

Country Link
JP (1) JP2624666B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150879A (en) * 1989-11-08 1991-06-27 Hitachi Ltd Superconducting switching device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160273A (en) * 1986-12-23 1988-07-04 Fujitsu Ltd High-speed semiconductor device

Also Published As

Publication number Publication date
JPS63208283A (en) 1988-08-29

Similar Documents

Publication Publication Date Title
US5416072A (en) Superconducting device having an thin superconducting channel formed of oxide superconducting material
US5621223A (en) Superconducting device having a reduced thickness of oxide superconducting layer and method for manufacturing the same
JP2624666B2 (en) Superconducting element
JP3123164B2 (en) Superconducting device
JPS62122287A (en) Superconductive transistor
JP2651143B2 (en) Superconducting transistor
JPS63250879A (en) Superconducting element
JPH02194665A (en) Field effect superconducting device and manufacture thereof
JPS61269385A (en) Superconductive device
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2614940B2 (en) Superconducting element and fabrication method
JP3212088B2 (en) Superconducting device
JPH06151988A (en) Superconducting three-terminal element
JP2597745B2 (en) Superconducting element and fabrication method
JPH04221866A (en) Superconducting single electron tunnel element and manufacture thereof
JPS61110481A (en) Superconductive transistor
JP3249370B2 (en) Superconducting device
JPH0294677A (en) Superconducting schottky junction structure and superconducting device
JPS63281482A (en) Superconducting transistor
JP2641966B2 (en) Superconducting element and fabrication method
JP3281248B2 (en) Superconducting resonant tunneling diode element
JP2597747B2 (en) Superconducting element and fabrication method
JP3002010B2 (en) Superconducting transistor
JPH0291984A (en) Superconducting transistor
JPS61206277A (en) Superconductive transistor