JP2623337B2 - Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method - Google Patents

Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method

Info

Publication number
JP2623337B2
JP2623337B2 JP1051435A JP5143589A JP2623337B2 JP 2623337 B2 JP2623337 B2 JP 2623337B2 JP 1051435 A JP1051435 A JP 1051435A JP 5143589 A JP5143589 A JP 5143589A JP 2623337 B2 JP2623337 B2 JP 2623337B2
Authority
JP
Japan
Prior art keywords
porcelain
dielectric loss
sio
low dielectric
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1051435A
Other languages
Japanese (ja)
Other versions
JPH02229777A (en
Inventor
汀 安藤
昌宏 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1051435A priority Critical patent/JP2623337B2/en
Publication of JPH02229777A publication Critical patent/JPH02229777A/en
Application granted granted Critical
Publication of JP2623337B2 publication Critical patent/JP2623337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特にマイクロ波誘電体材料として好適に利用
されるAl2O3系磁器,及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention particularly relates to an Al 2 O 3 based porcelain suitably used as a microwave dielectric material, and a method for producing the same.

〔従来の技術及び課題〕[Conventional technology and problems]

Al2O3系磁器はその低誘電率によりIC基板等の電子部
品に利用されている。
Al 2 O 3 ceramics are used for electronic components such as IC substrates due to their low dielectric constant.

しかし,近年注目されているマイクロ波誘電体用材
料,例えばマイクロ波集積回路(MIC)基板材料には誘
電特性についてより厳しい特性が要求されている。その
ため,従来のAl2O3系磁器では特に誘電損失の点で不充
分なものとなった。
However, microwave dielectric materials, which are attracting attention in recent years, such as microwave integrated circuit (MIC) substrate materials, are required to have stricter dielectric properties. As a result, conventional Al 2 O 3 porcelains were inadequate, especially in terms of dielectric loss.

〔課題の解決手段・作用・効果〕[Means for solving the problems, actions, and effects]

本発明はかかる課題を下記手段によって解決する。即
ち, (1)アルミナ含有率が99.7%以上であり,表面におけ
るSiO2とAl2O3のスペクトル強度比(オージェ分析)が
0.33以上であり,表面粗さ(Ra)が0.15μm以下である
ことを特徴とする低誘電損失Al2O3系磁器。
The present invention solves such a problem by the following means. (1) The alumina content is 99.7% or more, and the spectral intensity ratio (Auger analysis) of SiO 2 and Al 2 O 3 on the surface is
And 0.33 or more, a low dielectric loss Al 2 O 3 based ceramic surface roughness (Ra) is equal to or is 0.15μm or less.

(2)アルミナ含有率99.7%以上のAl2O3系焼結体を研
摩した後,Siをスパッタリングし酸化するか又はSiO2
スパッタリングすることを特徴とする低誘電損失Al2O3
系磁器の製造方法。
(2) After polishing an Al 2 O 3 based sintered body having an alumina content of 99.7% or more, a low dielectric loss Al 2 O 3 is characterized in that Si is oxidized by sputtering or SiO 2 is sputtered.
Method of manufacturing porcelain.

通常焼結磁器は最終工程として所定寸法に研削,研摩
加工されるが,この工程によって高周波損失が増大する
ことを本発明者は確認した。即ち,オージェ分析法によ
ってAl2O3磁器表面の成分濃度を分析したところ,焼成
したままの磁器は高いSiO2濃度を有するが,加工後にお
いては低濃度になることを確認した。そのため,加工後
のAl2O3系焼結磁器表面をSiでスパッタリングし酸化す
るか又はSiO2でスパッタリング処理することによって表
面におけるSiO2濃度を高め,誘電特性,特に誘電正接特
性も回復することを見出したものである。従って,他の
特性例えば表面平滑性,強度,熱膨張性を損うことな
く,誘電損失を著しく低減できる。
Normally, sintered porcelain is ground and polished to predetermined dimensions as a final step, but the present inventors have confirmed that this step increases high-frequency loss. That is, when the component concentration on the Al 2 O 3 porcelain surface was analyzed by Auger analysis, it was confirmed that the porcelain as fired had a high SiO 2 concentration but a low concentration after processing. Therefore, increasing the SiO 2 concentration in the surface by sputtering the Al 2 O 3 sintered ceramic surface after machining or SiO 2 sputtering was oxidized with Si, the dielectric properties, in particular the dielectric loss tangent characteristic recover Is found. Accordingly, dielectric loss can be significantly reduced without impairing other characteristics such as surface smoothness, strength, and thermal expansion property.

本発明において,Al2O3系磁器とは,Al2O3及びSiO2を必
須成分とする磁器(セラミックス)をいう。高周波例え
ば7〜45GHzのマイクロ波であっても,誘電率[ε]を
低く,例えば10以下,好ましくは9.9以下に維持でき
る。磁器全体として,Al2O3の量は99.7wt%以上とされ
る。99.7wt%未満では誘電損失等が損われる。尚,必要
に応じ,少量のMgO,CaO等の焼結助剤を含有するとよ
い。例えば,SiO2/MgO=1〜0.2の範囲にするとよい。
In the present invention, the Al 2 O 3 based porcelain refers to a porcelain (ceramic) containing Al 2 O 3 and SiO 2 as essential components. Even with microwaves of high frequency, for example, 7 to 45 GHz, the dielectric constant [ε] can be kept low, for example, 10 or less, preferably 9.9 or less. The amount of Al 2 O 3 in the whole porcelain is 99.7 wt% or more. If it is less than 99.7 wt%, dielectric loss and the like will be impaired. If necessary, a small amount of a sintering aid such as MgO or CaO may be contained. For example, it is preferable to set SiO 2 / MgO = 1 to 0.2.

磁器表面において,オージェ分析によるSiO2とAl2O3
のスペクトル強度比(SiO2/Al2O3)は0.33以上とする。
研削・研磨加工後にあっても高周波損失を低く維持する
ためである。好ましくは0.5以上にするとよい。「表
面」とは0〜100Å程度の深さ,好ましくは0〜20Å程
度の深さを指称する。勿論,各深さにおいてスペクトル
強度比は一律なものでなくてもよく,例えば最表面にお
ける強度比を最大とし,深くなるについて徐々に低減さ
せてもよい。オージェ分析とは固体物質に電子線を照射
した時に,固体から放射されるオージェ電子を利用した
化学分析法をいう。オージェ電子は数10〜2000eV程度の
範囲にあるので,表面から数乃至10数Åの深さまでの分
析ができる。
Auger analysis of SiO 2 and Al 2 O 3
Have a spectral intensity ratio (SiO 2 / Al 2 O 3 ) of 0.33 or more.
This is to keep the high-frequency loss low even after the grinding and polishing. Preferably, it is good to be 0.5 or more. “Surface” refers to a depth of about 0-100 °, preferably about 0-20 °. Of course, the spectral intensity ratio may not be uniform at each depth. For example, the intensity ratio at the outermost surface may be maximized, and may be gradually reduced as the depth increases. Auger analysis refers to a chemical analysis method using Auger electrons emitted from a solid when a solid substance is irradiated with an electron beam. Since Auger electrons are in the range of several tens to 2,000 eV, analysis can be performed from the surface to a depth of several to several tens of millimeters.

磁器の表面粗さ[Ra]は0.15μm以下とする。0.15μ
mを越えるとMIC基板などに好ましく適用できなくな
る。好ましくは0.10μm以下にするとよい。尚,下限は
量産性等の見地から0.09程度にするとよい。
The surface roughness [Ra] of the porcelain is 0.15 μm or less. 0.15μ
If it exceeds m, it cannot be preferably applied to a MIC substrate or the like. Preferably, the thickness is 0.10 μm or less. The lower limit should be about 0.09 from the viewpoint of mass productivity.

磁器の平均結晶粒径は1〜20μm,相対理論密度は98%
以上にするとよい。
Average crystal grain size of porcelain is 1-20μm, relative theoretical density is 98%
It is good to do above.

本発明のAl2O3系磁器は次のように製造される。所定
量の各原料粉末を粘結剤等と共に混合し,乾燥後,成形
及び焼成する。各原料の粉末粒径は1μm以下のものを
使用するとよい。粘結剤としては例えばポリビニルアル
コール,セルロース等が使用される。混合はライカイ機
などによる乾式混合,或いはボールミルなどによる湿式
混合によって行なう。この混合粉末を噴霧乾燥等により
乾燥して粒径10〜200μm程度の造粒粉末とする。造粒
粉末は所定形状に加圧成形されるが,その場合型圧成形
(成形圧500〜1000kg/cm2),次いで静水圧成形(成形
圧1500〜2000kg/cm2)の二段階成形によって行なうとよ
い。ピンホール低減により表面が平滑になる。次に得ら
れた成形体は加圧下又は非加圧下,酸化性又は非酸化性
雰囲気中で1500〜1700℃の温度にて所定時間焼成され
る。次に,得られた焼結体は所定の寸法に研削や研摩で
仕上げられる。
The Al 2 O 3 based porcelain of the present invention is manufactured as follows. A predetermined amount of each raw material powder is mixed with a binder and the like, dried, molded and fired. It is preferable to use a powder having a particle diameter of 1 μm or less for each raw material. As the binder, for example, polyvinyl alcohol, cellulose and the like are used. The mixing is performed by dry mixing using a raikai machine or the like or wet mixing using a ball mill or the like. The mixed powder is dried by spray drying or the like to obtain a granulated powder having a particle size of about 10 to 200 μm. The granulated powder is pressed into a predetermined shape. In this case, it is performed by two-stage pressing: die pressing (forming pressure 500 to 1000 kg / cm 2 ) and then hydrostatic pressing (forming pressure 1500 to 2000 kg / cm 2 ). Good. The surface becomes smooth due to the reduction in pinholes. Next, the obtained molded body is fired under a pressure or non-pressure in an oxidizing or non-oxidizing atmosphere at a temperature of 1500 to 1700 ° C. for a predetermined time. Next, the obtained sintered body is finished to predetermined dimensions by grinding or polishing.

本発明では,こうして研削・研摩仕上げされたAl2O3
系磁器についてスパッタリング処理を施す。既述のよう
に,従来の製法では最終工程としての研削・研摩加工に
よって高周波損失が増大することとなったが,これは焼
結磁器表面におけるSiO2濃度が研削・研摩加工によって
大幅に低減するためであった。しかし,本発明のように
研削・研摩仕上げされた磁器について後処理としてスパ
ッタリング処理を行なうことにより,表面のSiO2濃度を
焼成直後の当初の状態まで回復させ得る。そのため,Al2
O3系磁器の誘電損失を約90%低減できる。
In the present invention, Al 2 O 3 thus ground and polished
A sputtering process is performed on the porcelain. As described above, in the conventional manufacturing method, high-frequency loss increases due to grinding and polishing as the final step, but this is because the SiO 2 concentration on the sintered porcelain surface is greatly reduced by grinding and polishing. It was because. However, by subjecting the porcelain that has been ground and polished as in the present invention to a sputtering treatment as a post-treatment, the SiO 2 concentration on the surface can be restored to the initial state immediately after firing. Therefore, Al 2
The dielectric loss of O 3 porcelain can be reduced by about 90%.

スパッタリング処理は試料(陰極)としてSiO2を用い
た高周波スパッタリング,或いはSiを用いた反応性スパ
ッタリングによって行なうとよい。この場合は,前者は
10-3〜10-4Torr,後者は10-2〜10-3Torrの圧力下で夫々
行なうとよい。又,イオンプレーティング,CVD,蒸着等
によっても同様の効果を得ることができる。但し,装置
の扱い易さ,安定性(再現性)などの点においてスパッ
タリングが有利である。
The sputtering may be performed by high-frequency sputtering using SiO 2 as a sample (cathode) or reactive sputtering using Si. In this case, the former
It is preferable to carry out the treatment at a pressure of 10 -3 to 10 -4 Torr, and the latter at a pressure of 10 -2 to 10 -3 Torr. Similar effects can be obtained by ion plating, CVD, vapor deposition, and the like. However, sputtering is advantageous in terms of ease of handling and stability (reproducibility) of the apparatus.

本発明に係るAl2O3系磁器は,マイクロ波誘電体材
料,例えばMIC基板,パッケージ,誘電体共振器,マイ
クロ波線路,マイクロ波透過窓材などに好適に使用され
る。特に使用周波数12〜20GHzにおいて好ましい。尚,
通常の電子部品例えばIC基板等にも適用できることは勿
論である。又,板状,円柱状などいかなる形状の焼成体
に対しても有効である。
Al 2 O 3 based ceramic according to the present invention, microwave dielectric materials, e.g. MIC substrate, package, dielectric resonators, microwave line, is suitably used in such as a microwave transmission window material. Particularly, it is preferable at a used frequency of 12 to 20 GHz. still,
Of course, it can be applied to ordinary electronic components such as an IC substrate. It is also effective for fired bodies of any shape, such as a plate or a column.

〔実施例〕〔Example〕

以下,本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

アルミナ (市販品・純度99.995%,平均粒径0.5μm) 300 g 無水珪酸(試薬特級,平均粒径0.5μm) 0.45g 炭酸マグネシウム(試薬特級,平均粒径0.3μm)0.95g 脱イオン水 250 ml ポリビニルアルコール 3 g 以上を純度99.99%のアルミナ球石(10φ,600g)と共
にポリエチレン製ボールミルに入れ120rpmで72時間混合
した。こうして得られた泥奬を噴霧乾燥し平均粒径60μ
mの造粒粉末とした。この造粒粉末を金型プレス法に
て,サイズ65×65×2mm tの円板状基板を圧力800kg/cm2
で成形し,更に圧力1500kg/cm2で静水圧成形した後,165
0℃の温度で1時間大気雰囲気中で電気炉焼成した。こ
の後,この焼成基板をサイズ50.8×50.8×0.75mmに研磨
加工した。
Alumina (commercial product, purity 99.995%, average particle size 0.5 μm) 300 g Silicic anhydride (special grade reagent, average particle size 0.5 μm) 0.45 g Magnesium carbonate (special grade reagent, average particle size 0.3 μm) 0.95 g deionized water 250 ml 3 g or more of polyvinyl alcohol was put into a polyethylene ball mill together with 99.99% pure alumina cobblestone (10φ, 600 g) and mixed at 120 rpm for 72 hours. The thus obtained plasma is spray-dried and the average particle size is 60μ.
m of granulated powder. This granulated powder is pressed by a die pressing method to a disc-shaped substrate having a size of 65 × 65 × 2 mm t at a pressure of 800 kg / cm 2.
In molding, after isostatic pressing further pressure 1500 kg / cm 2, 165
It was fired in an electric furnace at a temperature of 0 ° C. for 1 hour in an air atmosphere. Thereafter, the fired substrate was polished to a size of 50.8 × 50.8 × 0.75 mm.

次に,この焼成・研摩基板に対して硅素(純度99.99
%)のターゲット板を用意し圧力10-2Torrのアルゴンガ
ス雰囲気中で基板を温度500℃に保持しながら20分間ス
パッタを実施した。
Next, silicon (purity 99.99%) was applied to the fired and polished substrate.
%), And sputtering was performed for 20 minutes in an argon gas atmosphere at a pressure of 10 -2 Torr while maintaining the substrate at a temperature of 500 ° C.

次に,こうして得られた磁器基板及び研摩したままの
もの(比較例)について,電気特性及び表面のSiO2,Mg
O,Al2O3の濃度を測定した。
Next, the electrical characteristics and surface SiO 2 , Mg 2 of the porcelain substrate thus obtained and the polished one (comparative example) were measured.
The concentrations of O and Al 2 O 3 were measured.

(a)電気特性の測定: 空洞共振器法によって測定した。即ち,直径D,長さH
(2M+L)の導体円筒空洞の中央に誘電体円板試料(直
径D,厚さL)を挿入して構成する。TE011モードの共振
周波数(fo)の測定値より各種特性値を測定する。
(A) Measurement of electrical characteristics: Measurement was performed by the cavity resonator method. That is, diameter D, length H
A dielectric disk sample (diameter D, thickness L) is inserted into the center of a (2M + L) conductor cylindrical cavity. Various characteristic values are measured from the measured value of the resonance frequency (fo) in the TE 011 mode.

比誘電率: ε={(πLfo)/C}[x2−Y2{L/(2M)}]+
1 誘電正接: tan δ=A/(Qu)−RSB (A=1+(W1/W2), B=PC/(ωRSW1), RS=(Wμo)/2δ W1,W2は領域[I][II]の電界の蓄積エネルギー) 比誘電率の温度係数(τ):25℃〜80℃の温度範囲に
おける比誘電率から求める。尚,これらの測定において
共振周波数(fo)≒15GHzとした。
Relative permittivity: ε r = {(πLfo) / C} 2 [x 2 −Y 2 {L / (2M)} 2 ] +
1 Dielectric loss tangent: tan δ = A / (Qu ) -R S B (A = 1 + (W 1 / W 2), B = P C / (ωR S W 1), R S = (Wμo) / 2δ W 1 , W 2 is the area [I] [II] the temperature coefficient of stored energy) the relative dielectric constant of the electric field (tau): calculated from the dielectric constant in the temperature range of 25 ° C. to 80 ° C.. In these measurements, the resonance frequency (fo) was set to 15 GHz.

(b)Al2O3,SiO2及びMgOのスペクトル強度測定: オージェ分析に拠った。尚,エネルギ約50eVのAlピー
ク,エネルギ約70eVのSiピークによりSiO2/Al2O3強度比
を算出した。
(B) Measurement of spectral intensity of Al 2 O 3 , SiO 2 and MgO: Based on Auger analysis. The SiO 2 / Al 2 O 3 intensity ratio was calculated from the Al peak at an energy of about 50 eV and the Si peak at an energy of about 70 eV.

この結果を下記第1表に示す。尚,MgOのスペクトル強
度は殆んど検出されず、又磁器基板の強度は3100kg/cm2
程度,熱膨張率は8.1×10-6程度であった。
The results are shown in Table 1 below. The spectrum intensity of MgO was hardly detected, and the intensity of the porcelain substrate was 3100 kg / cm 2
Degree and thermal expansion coefficient were about 8.1 × 10 -6 .

上記第1表から明らかなように,研摩後,スパッタリ
ング処理されたAl2O3系磁器は,表面におけるSiO2/Al2O
3強度比が大となり,マイクロ波領域において誘電正接
が小さく,誘電損失の著しく改善されたものであること
がわかる。又,SiO2/Al2O3強度比と誘電正接(tanδ)と
に相関があり,磁器表面のSiO2濃度を規定することによ
り,誘電正接の水準を判断し,調整できる。
As is evident from Table 1 above, the Al 2 O 3 porcelain that has been polished and sputtered has a SiO 2 / Al 2 O
3 It can be seen that the intensity ratio is large, the dielectric loss tangent is small in the microwave region, and the dielectric loss is significantly improved. Further, there is a correlation between the SiO 2 / Al 2 O 3 intensity ratio and the dielectric loss tangent (tan δ), and the level of the dielectric loss tangent can be determined and adjusted by defining the SiO 2 concentration on the porcelain surface.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミナ含有率が99.7%以上であり,表面
におけるSiO2とAl2O3のスペクトル強度比(オージェ分
析)が0.33以上であり,表面粗さ(Ra)が0.15μm以下
であることを特徴とする低誘電損失Al2O3系磁器。
(1) The alumina content is 99.7% or more, the spectral intensity ratio of SiO 2 and Al 2 O 3 on the surface (Auger analysis) is 0.33 or more, and the surface roughness (Ra) is 0.15 μm or less. A low dielectric loss Al 2 O 3 porcelain.
【請求項2】アルミナ含有率99.7%以上のAl2O3系焼結
体を研摩した後,Siをスパッタリングし酸化するか又はS
iO2をスパッタリングすることを特徴とする低誘電損失A
l2O3系磁器の製造法。
2. After polishing an Al 2 O 3 based sintered body having an alumina content of 99.7% or more, Si is sputtered and oxidized or
Low dielectric loss A characterized by sputtering iO 2
l 2 O 3 porcelain manufacturing method.
JP1051435A 1989-03-03 1989-03-03 Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method Expired - Lifetime JP2623337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051435A JP2623337B2 (en) 1989-03-03 1989-03-03 Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051435A JP2623337B2 (en) 1989-03-03 1989-03-03 Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method

Publications (2)

Publication Number Publication Date
JPH02229777A JPH02229777A (en) 1990-09-12
JP2623337B2 true JP2623337B2 (en) 1997-06-25

Family

ID=12886851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051435A Expired - Lifetime JP2623337B2 (en) 1989-03-03 1989-03-03 Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2623337B2 (en)

Also Published As

Publication number Publication date
JPH02229777A (en) 1990-09-12

Similar Documents

Publication Publication Date Title
KR100496115B1 (en) Sputtering target of dielectrics with high strength and a method for manufacturing the same
CN1117708C (en) Low temp. sinterable and low loss dielectric ceramic compositions and method thereof
JP4892160B2 (en) Dielectric ceramic composition and dielectric resonator
US6800182B2 (en) Sputtering target, process for its production and film forming method
KR100762081B1 (en) Sputtering target and process for producing the same
US20080210555A1 (en) High density ceramic and cermet sputtering targets by microwave sintering
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP2623337B2 (en) Low dielectric loss A (1) (2) O (3) ceramics and their manufacturing method
GB2026040A (en) Dielectric thin film
JPH06128041A (en) Silicon nitride-based sintered compact and its production
JP3129233B2 (en) Sputtering target for forming a high dielectric film comprising a composite oxide sintered body of Ba, Sr and Ti
JP2001058871A (en) Electroconductive titanium oxide sintered compact, its rroduction and sputtering target using the same
JPH11335824A (en) Target material essentially consisting of mgo and its production
JP4017220B2 (en) BaxSr1-xTiO3-y target material for sputtering
JP4196438B2 (en) Vapor deposition material and manufacturing method thereof
JP3127824B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JPH10310471A (en) Sputtering target for forming high dielectric film
JP3417457B2 (en) Target containing MgO as main component and method for producing the same
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPH11172423A (en) Production of electrically conductive high-density titanium oxide target
US5248465A (en) Preparation process of high-permittivity material
JPH0512299B2 (en)
JP2001003164A (en) Sputtering target for forming high dielectric film free from generation of cracking even in the case of high speed film formation
JPH06264230A (en) Target material for production of thin film having high dielectric and its production
JP3384610B2 (en) Microwave dielectric porcelain composition and method for producing the same