JP2621907B2 - Laser marker - Google Patents

Laser marker

Info

Publication number
JP2621907B2
JP2621907B2 JP63041932A JP4193288A JP2621907B2 JP 2621907 B2 JP2621907 B2 JP 2621907B2 JP 63041932 A JP63041932 A JP 63041932A JP 4193288 A JP4193288 A JP 4193288A JP 2621907 B2 JP2621907 B2 JP 2621907B2
Authority
JP
Japan
Prior art keywords
liquid crystal
laser
liquid
crystal cell
pattern information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63041932A
Other languages
Japanese (ja)
Other versions
JPH01216851A (en
Inventor
眞 矢野
皓二 桑原
清 斉藤
清栄 岩木
実 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63041932A priority Critical patent/JP2621907B2/en
Publication of JPH01216851A publication Critical patent/JPH01216851A/en
Application granted granted Critical
Publication of JP2621907B2 publication Critical patent/JP2621907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make possible the improvement of a laser utility factor by using a liquid with an index of refraction indicating a specific range of physical property value as a coolant. CONSTITUTION:A laser marker projects a linear polarized laser beam 6 to be emitted from a pulsed laser to a liquid crystal mask 4 equipped with a liquid crystal cell part 1 to which pattern information is provided from the outside and with cooling parts 3a, 3b consisting of the liquid crystal cell part 1 sandwiched with sheet glass 2a, 2b on both sides and cooled by a coolant. The laser beam, which reflects the pattern information, of the transmission light penetrating the liquid crystals mask 4 is projected to a workpiece 7. In this way, the patter information is marked on the surface of the workpiece. The laser marker uses a liquid with a physical property value within a range of 1.4 to 1.53 of refractive index, for instance, silicone oil 8a, 8b, in addition to the sheet glass 2a, 2b employed in conformity with the wavelength of a linear deflected laser beam. Thus the reflection of the laser beam 6 in the surface between the liquid crystal mask 4 and an atmosphere and the Fresnel reflection generat ed in the sheet glass 2a, 2b, silicone oil 8a, 8b and the glass bases 9a, 9b of the liquid crystal cell part 1 are almost eliminated. Consequently, the laser marker which enables the laser utility factor to be improved is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザマーカに関するものである。Description: TECHNICAL FIELD The present invention relates to a laser marker.

〔従来の技術〕[Conventional technology]

レーザマーカは外部からパターン情報が与えられ液晶
セル部と、この液晶セル部を両側からガラス板で挾んで
設けられた冷却部とを備えた液晶マスクに、パルスレー
ザから射出される直線偏光のレーザ光を照射する。そし
て液晶マスクを透過した透過光のうちパターン情報を反
映したレーザ光を被加工物に照射し、被加工物面上にパ
ターン情報を刻印する。
The laser marker is a linearly polarized laser beam emitted from a pulse laser on a liquid crystal mask provided with a liquid crystal cell part to which pattern information is given from the outside and a cooling part provided between both sides of the liquid crystal cell part by glass plates. Is irradiated. Then, the workpiece is irradiated with laser light reflecting the pattern information out of the transmitted light transmitted through the liquid crystal mask, and the pattern information is engraved on the workpiece surface.

このように構成されたレーザマーカに関して液晶セル
を外部より冷却する手段については、特開昭62−32422
号公報に記載されている。
With respect to the means for cooling the liquid crystal cell from the outside with respect to the laser marker configured as described above, see JP-A-62-32422.
No., published in Japanese Unexamined Patent Publication No.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術で液晶セル部の冷却は主として表示装置
の画質向上のためになされたもので、高エネルギーパル
スレーザ光を用いるレーザマーカとしてのレーザ利用率
の点について配慮がなされておらず、被加工物への照射
エネルギーの低下や刻印不良を招く問題があつた。
In the above prior art, the cooling of the liquid crystal cell portion was mainly performed to improve the image quality of the display device, and no consideration was given to the laser utilization rate as a laser marker using a high-energy pulsed laser beam. There is a problem that the irradiation energy to the laser is reduced and the engraving is inferior.

本発明は以上の点に鑑みなされたものであり、レーザ
利用率の向上を可能としたレーザマーカを提供すること
を目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a laser marker capable of improving a laser utilization rate.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、ガラス板表面に直線偏光のレーザ光の波
長に合わせた無反射コーテイングを施し、かつ冷媒に屈
折率1.4から1.53の範囲の物性値を有する液体を使用す
ることにより、達成される。
The above object is achieved by providing a glass plate surface with an anti-reflection coating in accordance with the wavelength of linearly polarized laser light, and using a liquid having a physical property value in the range of 1.4 to 1.53 as a refrigerant.

〔作用〕[Action]

ガラス板表面に直線偏光のレーザ光の波長に合わせた
無反射コーテイングを施したので、大気と液晶マスクと
の界面でのレーザ光の反射は殆んどなくなる。そして冷
媒に屈折率1.4から1.53の範囲の物性値を有する液体を
使用したので、この液体とガラス板および液晶セル部の
ガラス基盤との屈折率がほぼ等しくなつて、この部分の
フレネル反射も小さくできる。このように反射が殆んど
なくなつたので、液晶マスクに入射される直線偏光のレ
ーザ光を殆んど反射させないで利用することができるよ
うになり、レーザ利用率を向上することができる。
Since the surface of the glass plate is provided with an anti-reflection coating according to the wavelength of the linearly polarized laser light, the reflection of the laser light at the interface between the atmosphere and the liquid crystal mask is almost eliminated. Since a liquid having a physical property value in the range of 1.4 to 1.53 was used for the refrigerant, the refractive index of this liquid was almost equal to that of the glass plate and the glass substrate of the liquid crystal cell part, and the Fresnel reflection of this part was also small. it can. Since the reflection is almost eliminated, the linearly polarized laser light incident on the liquid crystal mask can be used without being substantially reflected, and the laser utilization can be improved.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。
第1図には本発明の一実施例が示されている。レーザマ
ーカは外部からパターン情報が与えられた液晶セル部1
と、この液晶セル部1を両側からガラス板2a,2bで挾ん
で設けられ、かつ冷媒で冷却する冷却部3a,3bとを備え
た液晶マスク4に、パルスレーザ5から射出される直線
偏光のレーザ光6を照射し、液晶マスク4を透過した透
過光のうちパターン情報を反映したレーザ光を被加工物
7に照射し、被加工物面上にパターン情報を刻印する。
このように構成されたレーザマーカで本実施例ではガラ
ス板2a,2bを直線偏光のレーザ光6の波長に合わせ、か
つ冷媒に屈折率1.4から1.53の範囲の物性値を有する液
体、例えばシリコーン油8a,8bを使用した。このように
することにより液晶マスク4と大気との界面におけるレ
ーザ光6の反射、ガラス板2a,2b、シリコーン油8a,8bお
よび液晶セル部1のガラス基盤9a,9bの部分におけるフ
レネル反射が殆んどなくなつて、レーザ利用率の向上を
可能としたレーザマーカを得ることができる。
Hereinafter, the present invention will be described based on the illustrated embodiments.
FIG. 1 shows an embodiment of the present invention. The laser marker is a liquid crystal cell unit 1 to which pattern information is externally given.
And a liquid crystal mask 4 provided with the liquid crystal cell part 1 sandwiched between glass plates 2a and 2b from both sides and provided with cooling parts 3a and 3b cooled by a refrigerant. The workpiece 7 is irradiated with a laser beam 6 and a laser beam reflecting the pattern information of the transmitted light transmitted through the liquid crystal mask 4 is applied to the workpiece 7 to imprint the pattern information on the workpiece surface.
In the present embodiment, the glass plates 2a and 2b are adjusted to the wavelength of the linearly polarized laser light 6 with the laser marker configured as described above, and the coolant has a physical property value in the range of 1.4 to 1.53, such as silicone oil 8a. , 8b was used. By doing so, the reflection of the laser beam 6 at the interface between the liquid crystal mask 4 and the atmosphere, the Fresnel reflection at the glass plates 2a and 2b, the silicone oils 8a and 8b, and the glass substrates 9a and 9b of the liquid crystal cell unit 1 are almost eliminated. It is possible to obtain a laser marker capable of improving the laser utilization rate.

すなわちパルスレーザ5は可視から近赤外までの波長
範囲のなかに発振波長を有すものであり、YAGレーザに
代表される。パルスレーザ5から射出される直線偏光の
レーザ光(ここではP偏光とする)6は、凹状および凸
状のシリンドリカルレンズを組み合わせたエキスパンダ
10により拡大され、液晶マスク4に照射される。液晶マ
スク4は液晶セル部1と冷却部3a,3bとにわけられる。
液晶セル部1は1対のガラス基盤9a,9bに酸化すず、あ
るいはインジウム−すず酸化物からなる透明電極11a,11
bを蒸着し、かつ配向膜12a,12b処理したもので、液晶例
えばツイストネマテイツク液晶13が挾み込まれている。
この液晶セル部1を包み込むように冷却部3a,3bが設け
られる。この冷却部3a,3bは使用するパルスレーザ5の
発振波長に合わせた無反射コーテイング14a,14bを施し
たホウケイ酸クラウンガラス、あるいは石英ガラスから
なる1対のガラス板2a,2bと、冷媒流入口15a,15b、冷媒
流出口16a,16bとで液晶セル部1との間に隔室を形成
し、内部に冷媒、例えばシリコーン油8a,8bを図中矢印
のように流すようにした。
That is, the pulse laser 5 has an oscillation wavelength in a wavelength range from visible to near infrared, and is represented by a YAG laser. The linearly polarized laser light (here, P-polarized light) 6 emitted from the pulse laser 5 is an expander combining concave and convex cylindrical lenses.
The liquid crystal mask 4 is enlarged by 10 and illuminated. The liquid crystal mask 4 is divided into a liquid crystal cell section 1 and cooling sections 3a and 3b.
The liquid crystal cell part 1 has transparent electrodes 11a, 11 made of tin oxide or indium-tin oxide on a pair of glass substrates 9a, 9b.
The liquid crystal, for example, a twisted nematic liquid crystal 13 is sandwiched between the layers b by evaporating and treating the alignment films 12a and 12b.
Cooling units 3a and 3b are provided so as to surround the liquid crystal cell unit 1. The cooling units 3a and 3b are composed of a pair of glass plates 2a and 2b made of borosilicate crown glass or quartz glass provided with anti-reflection coatings 14a and 14b according to the oscillation wavelength of the pulse laser 5 to be used, and a refrigerant inlet. A compartment is formed between the liquid crystal cell section 1 and the refrigerant outlets 15a and 15b and the refrigerant outlets 16a and 16b, and a refrigerant, for example, silicone oils 8a and 8b flows therein as shown by arrows in the figure.

透明電極11a,11bには液晶13に駆動・制御する電源部1
7が接続され、更に刻印すべきパターン情報を指示する
中央制御部18に接続されている。
A power supply unit 1 for driving and controlling the liquid crystal 13 is provided on the transparent electrodes 11a and 11b.
7 is connected, and further connected to a central control unit 18 for designating pattern information to be imprinted.

P偏光レーザ光6は液晶マスク4通過後にビームスプ
リツタ19によつて、刻印用パターン情報を反映したレー
ザ光であるP偏光レーザ光20と、刻印用パターン情報を
反映したS偏光レーザ光21とに分離される。このうちP
偏光レーザ光20はレンズ22で結像され、被加工物7へ照
射され、刻印が行われる。S偏光レーザ光21は吸収体23
に向い吸収される。
After passing through the liquid crystal mask 4, the P-polarized laser light 6 is converted by a beam splitter 19 into a P-polarized laser light 20 which is a laser light reflecting the pattern information for engraving and an S-polarized laser light 21 which reflects the pattern information for engraving. Is separated into P
The polarized laser light 20 is imaged by the lens 22 and is irradiated on the workpiece 7 to perform engraving. S-polarized laser light 21 is absorbed by absorber 23
It is absorbed toward.

液晶マスク4のレーザ入射・反射面には無反射コーテ
イング14a,14bを施したので、大気と液晶マスク4との
界面での反射は殆んどなくなる。また、冷媒には、冷媒
と接しているガラス基盤9a,9b、ガラス板2a,2bの屈折率
とほぼ等しい屈折率1.4から1.53の範囲の液体、例えば
シリコーン油8a,8bを使用したので、この部分のフレネ
ル反射も小さくでき、レーザ利用率を向上することがで
きる。
Since the non-reflective coatings 14a and 14b are applied to the laser incidence / reflection surface of the liquid crystal mask 4, reflection at the interface between the atmosphere and the liquid crystal mask 4 is almost eliminated. Further, as the refrigerant, a glass substrate 9a, 9b in contact with the refrigerant, a liquid having a refractive index in the range of 1.4 to 1.53, which is substantially equal to the refractive index of the glass plates 2a, 2b, for example, silicone oils 8a, 8b, was used. Fresnel reflection at a portion can also be reduced, and the laser utilization can be improved.

パルスレーザ5からレーザ光6を液晶マスク4に照射
したとき、液晶温度がどのように変化するかを示したの
が第2図である。横軸が時間t、縦軸が温度Tである。
図中曲線〔I〕が冷却なし、曲線〔II〕が本実施例の場
合である。パルス照射時に液晶は急激に温度上昇し、パ
ルス休止期間で冷却され、次のパルス照射時にまた急激
に温度が上る鋸歯状の温度特性を示し、次第に飽和温度
T1,T2に近づいている。
FIG. 2 shows how the liquid crystal temperature changes when the liquid crystal mask 4 is irradiated with the laser light 6 from the pulse laser 5. The horizontal axis represents time t, and the vertical axis represents temperature T.
In the figure, a curve [I] shows the case without cooling, and a curve [II] shows the case of the present embodiment. During pulse irradiation, the temperature of the liquid crystal rises sharply and cools during the pulse pause, and the temperature rises sharply again at the next pulse irradiation.
T 1 and T 2 are approaching.

パルス照射時間が数100μSと短いためパルス照射期
間中の熱拡散は極めて小さく、どちらの曲線〔I〕,
〔II〕でも1パルス毎の温度上昇ΔTは等しい。ところ
が冷却なしの曲線〔I〕の場合、液晶セル部全体の温度
が上昇しているので、飽和温度T1は曲線〔II〕の飽和温
度T2より高い。
Since the pulse irradiation time is as short as several 100 μS, the thermal diffusion during the pulse irradiation period is extremely small.
Also in [II], the temperature rise ΔT for each pulse is equal. However, in the case of the curve without cooling [I], the temperature of the entire liquid crystal panel is increased, the saturation temperatures T 1 is higher than the saturation temperature T 2 of the curve (II).

実際にモールドパツケージを刻印する場合、1パルス
で3ジユールもの高エネルギーが必要である。この条件
では曲線〔I〕の飽和温度T1が約130℃になり、液晶動
作限界温度Tc(約60℃)を越えてしまい、刻印不良を招
く。曲線〔II〕の飽和温度T2は約45℃に抑えられてお
り、長時間連続して刻印加工できる。
When actually engraving a mold package, as high as 3 joules per pulse is required. Saturation temperature T 1 of the curve (I) is about 130 ° C. In this condition, we are beyond the liquid crystal operating limit temperature Tc (about 60 ° C.), leading to marking defects. The saturation temperature T 2 of the curve [II] is suppressed to about 45 ° C., so that engraving can be performed continuously for a long time.

このように本実施例によればレーザ利用率が向上し、
連続刻印加工のできるレーザマーカ、液晶マスク式ワン
シヨツトマーカが得られる。
Thus, according to the present embodiment, the laser utilization rate is improved,
A laser marker and a liquid crystal mask type one-shot marker which can be continuously engraved are obtained.

〔発明の効果〕〔The invention's effect〕

上述のように本発明はレーザ利用率が向上するように
なつて、レーザ利用率の向上を可能としたレーザマーカ
を得ることができる。
As described above, according to the present invention, the laser marker can be improved by improving the laser utilization rate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のレーザマーカの一実施例のレーザマー
カの構成を示す説明図、第2図は同じく一実施例による
液晶温度上昇特性図である。 1……液晶セル部、2a,2b……ガラス板、3a,3b……冷却
部、4……液晶マスク、5……パルスレーザ、6……直
線偏光のレーザ光、7……被加工物、8a,8b……シリコ
ーン油、14a,14b……無反射コーテイング。
FIG. 1 is an explanatory view showing the configuration of a laser marker according to an embodiment of the laser marker of the present invention, and FIG. 2 is a graph showing a temperature rise characteristic of a liquid crystal according to the embodiment. 1 ... liquid crystal cell part, 2a, 2b ... glass plate, 3a, 3b ... cooling part, 4 ... liquid crystal mask, 5 ... pulse laser, 6 ... linearly polarized laser light, 7 ... workpiece , 8a, 8b: Silicone oil, 14a, 14b: Non-reflective coating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩木 清栄 茨城県日立市国分町1丁目1番1号 株 式会社日立製作所国分工場内 (72)発明者 藤本 実 茨城県日立市国分町1丁目1番1号 株 式会社日立製作所国分工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kiyoei Iwaki 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (72) Minoru Fujimoto 1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1 In the Kokubu Plant of Hitachi, Ltd.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外部からパターン情報が与えられた液晶セ
ル部と、この液晶セル部を両側からガラス板で挾んで設
けられ、かつ冷媒で冷却する冷却部とを備えた液晶マス
クに、パルスレーザから射出させる直線偏光のレーザ光
を照射し、前記液晶マスクを透過した透過光のうち前記
パターン情報を反映したレーザ光を被加工物に照射し、
前記被加工物面上に前記パターン情報を刻印するレーザ
マーカにおいて、前記冷媒に屈折率1.4から1.53の範囲
の物性値を有する液体が使用されたものであることを特
徴とするレーザマーカ。
A pulse laser is provided on a liquid crystal mask provided with a liquid crystal cell portion to which pattern information is externally applied and a cooling portion provided between both sides of the liquid crystal cell portion by glass plates and cooled by a coolant. Irradiating the linearly polarized laser light emitted from the, the laser light reflecting the pattern information out of the transmitted light transmitted through the liquid crystal mask, irradiates the workpiece,
A laser marker for imprinting the pattern information on the workpiece surface, wherein a liquid having a property value in a range of 1.4 to 1.53 is used as the coolant.
【請求項2】前記液体が、シリコーン油である特許請求
の範囲第1項記載のレーザマーカ。
2. The laser marker according to claim 1, wherein said liquid is silicone oil.
【請求項3】前記ガラス板が、その表面に前記直線偏光
のレーザ光の波長に合わせた無反射コーテイングが施さ
れたものである特許請求の範囲第1項記載のレーザマー
カ。
3. The laser marker according to claim 1, wherein said glass plate is provided with an anti-reflection coating on a surface thereof in accordance with a wavelength of said linearly polarized laser light.
JP63041932A 1988-02-26 1988-02-26 Laser marker Expired - Lifetime JP2621907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041932A JP2621907B2 (en) 1988-02-26 1988-02-26 Laser marker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041932A JP2621907B2 (en) 1988-02-26 1988-02-26 Laser marker

Publications (2)

Publication Number Publication Date
JPH01216851A JPH01216851A (en) 1989-08-30
JP2621907B2 true JP2621907B2 (en) 1997-06-18

Family

ID=12622004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041932A Expired - Lifetime JP2621907B2 (en) 1988-02-26 1988-02-26 Laser marker

Country Status (1)

Country Link
JP (1) JP2621907B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540759B1 (en) * 1991-05-21 1997-09-10 Seiko Epson Corporation Optical device and optical machining system using the optical device
CN103963480B (en) * 2014-05-22 2016-01-20 广州创乐激光设备有限公司 A kind of probe of laser marking machine

Also Published As

Publication number Publication date
JPH01216851A (en) 1989-08-30

Similar Documents

Publication Publication Date Title
ES2202894T3 (en) LASER MARKING PROCEDURE.
JPH09192857A (en) Laser beam scribing on glass with using nd:yag laser beam
JP2621907B2 (en) Laser marker
JPH0632922A (en) Method for processing light-transmitting material with high-energy light
JP2003012346A (en) Method for coloring plate glass
JP2002348147A (en) Method for decolorizing colored glass
JP2003201149A (en) Method of coloring glass
JPS60174671A (en) Laser printer
CN1026473C (en) UV laser micro-flag printer
US5670280A (en) Optically controlled imaging phase mask element
JP2618416B2 (en) Laser marker
KR100441522B1 (en) Transfer film for forming microimages useful for construction of transfer optical system and forming complicated pattern, and apparatus for forming microimages
JPS54103063A (en) Projection type crystal display device and driving method thereof
JP2004002056A (en) Method of coloring tempered glass
JPH0643514A (en) Wavelength converting laser device and wavelength converting laser processing device
JPH06198466A (en) Rainbow color development processing method
JPH026095A (en) Laser marker device
JPS5970486A (en) Conversion method of laser energy distribution
JPH01257821A (en) Laser marker
US20060091124A1 (en) Method for transformation of color images into point arrangement for production of laser-induced color images inside transparent materials
JP2582452B2 (en) Multilayer printed wiring board and marking method
EP0193673A3 (en) Apparatus for photomask repair
JPS55150224A (en) Apparatus for printing pattern
JP2004352561A (en) Coloring method for glass
JPS56117345A (en) Optical recording medium