JP2617529B2 - Metal film forming method - Google Patents

Metal film forming method

Info

Publication number
JP2617529B2
JP2617529B2 JP63208236A JP20823688A JP2617529B2 JP 2617529 B2 JP2617529 B2 JP 2617529B2 JP 63208236 A JP63208236 A JP 63208236A JP 20823688 A JP20823688 A JP 20823688A JP 2617529 B2 JP2617529 B2 JP 2617529B2
Authority
JP
Japan
Prior art keywords
gas
substrate
geh
selective growth
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63208236A
Other languages
Japanese (ja)
Other versions
JPH0258217A (en
Inventor
仁 石井
秀男 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63208236A priority Critical patent/JP2617529B2/en
Publication of JPH0258217A publication Critical patent/JPH0258217A/en
Application granted granted Critical
Publication of JP2617529B2 publication Critical patent/JP2617529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基板表面上の所望の領域にのみ金属膜を選択
的に形成することのできる金属膜の形成方法に関する。
Description: TECHNICAL FIELD The present invention relates to a metal film forming method capable of selectively forming a metal film only in a desired region on a substrate surface.

[従来の技術] 従来、半導体上,金属上あるいはそれらの化合物,混
合物上の所望の領域のみタングステン(W)を成長させ
るWの選択成長法では、WF6とH2を用いてWF6を水素によ
って還元することによりWを成長させていた。この方法
では例えば地下がSiやGeである場合に第3図に示すよう
な下地Si,Geの喰刻、すなわちエンクローチメント現象
が起こり、この方法を用いて製作したデバイスの特性を
劣化させるという問題があった。これを解決する手段と
して気相から、SixHyの形の分子構造を持つSiを構成元
素とするいわゆるシラン系のガスを用いてWF6を還元し
て成長させることにより、気相からSiを供給して下地の
エンクローチメントを防ぐ方法が提案されている。しか
しこの方法では、シラン系ガスに根本的に選択成長性が
ないために、選択性を良好に保つために、成長温度を30
0℃以下にしなければならず、このために成長したW膜
と下地との密着性が悪いという欠点があった。また当然
のことながら、上述のようにシラン系ガスはマスク膜に
対する選択成長性がないので、たとえば、SiO2をマスク
膜に用いた場合、たとえ低温であってもこの膜の上にも
シラン系ガスは吸着しSiの微小核成長が生じ、この上に
Wの成長が起こるので、本来の目的である選択成長が破
れ易いという欠点があった。また、エンクローチメント
を防ぐ別の手段として、第4図(A)に示すようにSi基
板1上にSiO2膜2を形成しパターニング後、Si基板1が
露出した開口部を形成し、化学気相成長(CVD)法によ
ってポリSiを堆積(第4図(B)),公知のエッチバッ
ク法によりSi開口部にのみあらかじめポリSi層4を形成
し(第4図(C)),ポリSi層4上にW層3を選択成長
させる(第4図(D))ことによって、Si基板1へのエ
ンクローチメントを防ぐ方法が提案されている。しか
し、この方法ではWの選択成長のために複雑な工程を増
やすことになり、工程数を減らすことができるというW
の選択成長法の特徴を生かせないという欠点があった。
[Prior Art] Conventionally, in a selective growth method of W in which tungsten (W) is grown only in a desired region on a semiconductor, a metal, or a compound or mixture thereof, WF 6 is hydrogenated using WF 6 and H 2. To grow W by reduction. In this method, for example, when the underground is made of Si or Ge, the underlying Si and Ge are etched as shown in FIG. 3, that is, an encroachment phenomenon occurs, which degrades the characteristics of a device manufactured using this method. was there. As a means for solving this, WF 6 is reduced and grown from a gas phase using a so-called silane-based gas containing Si having a molecular structure in the form of Si x H y as a constituent element. Has been proposed to prevent ground encroachment. However, in this method, since the silane-based gas has basically no selective growth property, the growth temperature is set at 30 to maintain good selectivity.
The temperature must be set to 0 ° C. or lower, and there is a disadvantage that the adhesion between the grown W film and the base is poor. Naturally, the silane-based gas has no selective growth property with respect to the mask film as described above. Therefore, for example, when SiO 2 is used for the mask film, the silane-based gas The gas is adsorbed, and micronucleus growth of Si occurs, and W grows on this, which has a disadvantage that the selective growth, which is the original purpose, is easily broken. As another means for preventing encroachment, as shown in FIG. 4A, an SiO 2 film 2 is formed on a Si substrate 1 and after patterning, an opening where the Si substrate 1 is exposed is formed. Poly-Si is deposited by a phase growth (CVD) method (FIG. 4 (B)), and a poly-Si layer 4 is previously formed only on the Si opening by a known etch-back method (FIG. 4 (C)). A method has been proposed in which the W layer 3 is selectively grown on the layer 4 (FIG. 4D) to prevent encroachment on the Si substrate 1. However, this method increases the number of complicated steps for selective growth of W, and can reduce the number of steps.
There is a drawback that the characteristics of the selective growth method cannot be utilized.

[発明が解決しようとする課題] そこで、本発明の目的は、上述した問題点を解消し、
基板へのエンクローチメントを防止し、基板表面の所望
の領域に金属膜を選択的に成長させ、工程を簡略化する
ことのできる金属膜の成長方法を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to solve the above-described problems,
An object of the present invention is to provide a method for growing a metal film that can prevent encroachment on a substrate, selectively grow a metal film in a desired region on the surface of the substrate, and simplify the process.

[課題を解決するための手段] このような目的を達成するために、本発明による金属
膜の形成方法は、基板上に絶縁膜を形成しパターニング
して、該絶縁膜の一部に前記基板が露出した開口部を形
成する工程と、金属とハロゲン元素との化合物と、ジメ
チルゲルマン[Ge(CH32H2]およびジエチルゲルマン
[Ge(C2H52H2]のうちの少なくとも1種を含む気体
とを、前記基板上に導入し、前記開口部に前記金属を成
長させ、金属膜を形成する工程とを含むことを特徴とす
る。
Means for Solving the Problems In order to achieve the above object, a method for forming a metal film according to the present invention comprises forming an insulating film on a substrate and patterning the insulating film, and forming the insulating film on a part of the insulating film. a step but forming an opening portion exposed, a compound of a metal and a halogen element, dimethyl germane [Ge (CH 3) 2 H 2] and diethyl germane [Ge (C 2 H 5) 2 H 2] of the Introducing a gas containing at least one gas onto the substrate, growing the metal in the opening, and forming a metal film.

[作用] 本発明の主旨は、WF6の還元ガスとしてSiH4とは異な
り、それ自身に選択成長性があり、そのガスの中心元素
のフッ化物が揮発性であるガスを用いて高温においても
選択成長法が破れることなく、下地との密着性よくかつ
エンクローチメントを生じせしめることのないWの選択
成長法を提供することにある。この主旨に沿ってGeH4
還元ガスに用いた例を以下に記す。まずGeH4を用いたGe
のCVD法では300℃以上の高温でも選択成長が可能である
ことを示す。GeH4を用いたCVD法ではSiH4と異なり絶縁
膜上にはGeが堆積せず、Si,Ge,GaAsおよび金属上にのみ
選択的にGeが堆積する選択成長性を持つことを、先願発
明(特開昭61−203633号公報)にて示した。すなわち、
たとえば、Si基板1上にSiO2層2を形成しこの表面の一
部をエッチングしてSi表面を露出したSi基板1を形成し
(第1図(A))、これに、GeH4 25sccm,H2 2000sccm
を基板温度410℃にて導入すると、Si露出表面上にのみG
eH4の表面吸着分解反応が起こり、Ge層5がSi露出表面
上にのみ堆積速度〜70A/minでエピタキシャルかつ選択
的に成長する(第1図(B))。このような選択成長が
可能な温度範囲は室温から600℃程度までの広い温度範
囲に渡る。すなわち、SiH4を用いた場合は上述のような
選択成長性が全く見られないのに対し、GeH4を用いた場
合は広い温度範囲にわたり選択成長性があり、SiO2上へ
のGeの成長は起こらない。
[Action] The gist of the present invention is that, unlike SiH 4 , as a reducing gas for WF 6 , it has a selective growth property itself, and a gas in which the fluoride of the central element of the gas is volatile is used even at high temperatures. An object of the present invention is to provide a selective growth method of W having good adhesion to a base and without causing encroachment without breaking the selective growth method. An example in which GeH 4 is used as a reducing gas in accordance with the gist is described below. First, Ge using GeH 4
It is shown that selective growth is possible even at a high temperature of 300 ° C. or more in the CVD method. In the CVD method using GeH 4 without Ge is deposited on the insulating film different from SiH 4, Si, Ge, and have a selective growth only selectively Ge is deposited GaAs and the metal, prior application This is shown in the invention (JP-A-61-203633). That is,
For example, to form a SiO 2 layer 2 on the Si substrate 1 to form a Si substrate 1 exposed the Si surface by etching a part of the surface (FIG. 1 (A)), in which, GeH 4 25 sccm, H 2 2000sccm
Is introduced at a substrate temperature of 410 ° C, G
The surface adsorption decomposition reaction of eH 4 occurs, and the Ge layer 5 grows epitaxially and selectively only on the exposed Si surface at a deposition rate of 70 A / min (FIG. 1 (B)). The temperature range in which such selective growth is possible covers a wide temperature range from room temperature to about 600 ° C. In other words, when SiH 4 is used, the selective growth property as described above is not observed at all, whereas when GeH 4 is used, the selective growth property is obtained over a wide temperature range, and the growth of Ge on SiO 2 Does not happen.

WF6の還元ガスとして、あるいはW選択成長前の開口
部にあらかじめ堆積させる層の原料ガスとしてGeH4等の
本質的に選択成長性を持ったガスを用いるので、従来の
技術とは異なり300℃以上の高温で選択性を確保できか
つ下地との密着性が著しく良好な、エンクローチメント
のないWの選択成長が可能である。
As a reducing gas WF 6, or so using a W inherently selective growth of having a gas GeH 4 such as a source gas of the layer to be previously deposited on the opening of the pre-selection growth, unlike the prior art 300 ° C. At the above-mentioned high temperature, selectivity of W without encroachment, in which selectivity can be ensured and adhesion to the substrate is extremely good, is possible.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 WF6の還元ガスにGeH4を用いた例を説明する。Geを供
給した場合、SiO2上へのGeの核成長がなく、したがっ
て、Ge核を成長核とするSiO2上へのWの成長による選択
性破れが起こらず、Si上にのみエンクローチメントを生
じせしめないWの選択成長が可能である。
Example 1 An example in which GeH 4 is used as a reducing gas for WF 6 will be described. When Ge is supplied, there is no Ge nucleus growth on SiO 2 , and therefore, selectivity is not broken by the growth of W on SiO 2 with the Ge nucleus as a growth nucleus, and encroachment is performed only on Si. Selective growth of W that does not occur is possible.

GeH4をWF6の還元ガスに用いた場合には WF6(g)+3/2GeH4(g) →W(s)+3/2GeH4(g)+3H2(g) (1) (g):気体,(s):固体 なる反応によってWが堆積する。本方法を実現するガス
系としては、上述のようにWF6とGeH4の混合系の他にWF6
とGeH4とAr等の不活性ガスとの混合ガス系、あるいはWF
6,GeH4およびH2、さらにはWF6,GeH4,不活性ガスおよ
びH2との混合ガス系を用いてもよいことは言うまでもな
い。
When GeH 4 is used as a reducing gas for WF 6 , WF 6 (g) + 3 / 2GeH 4 (g) → W (s) + 3 / 2GeH 4 (g) + 3H 2 (g) (1) (g): W is deposited by the reaction of gas, (s): solid. As a gas system for realizing this method, in addition to the mixed system of WF 6 and GeH 4 as described above, WF 6
Mixed gas system of inert gas such as GeH 4 and Ar, or WF
It goes without saying that a mixed gas system of 6 , GeH 4 and H 2 , and further, WF 6 , GeH 4 , an inert gas and H 2 may be used.

なお、SiH4還元による方法においても、あるいは本実
施例によるGeH4還元による方法においても、還元反応の
他の副反応が起こるためW膜中に前者ではSiが、後者で
はGeが混入し、Wの抵抗を上げてしまう欠点があること
はいずれの方法においても否めない。本発明の主たる目
的はW成長初期のエンクローチメントを防止することに
あるので、成長したWの抵抗を下げるため以下のような
成長方法をとってもよい。すなわち成長初期にWF6とGeH
4を導入しWF6をGeH4で還元し、Wを堆積したのち、WF6
とSiが直接接触しなくなったところで、GeH4の導入を停
止し、H2によってWF6を還元して高純度のWを連続的に
成長する。このような2段階成長方法によってGeの混入
を低減し、堆積するWの抵抗を下げることができる。WF
6の還元ガスとしては、GeH4の他にも選択成長が可能で
あり、かつ還元反応によって生ずるそのガスの中心元素
のフッ化物が揮発性であればよい。このような選択成長
性を持つ還元性ガスとしては、Ge(CH3)H2,あるいはG
e(C2H52H2がある(特願昭63−23881号。これらのガ
スでは、 WF6(g)+3GeR2H2(g)→W(s)+3GeR2H
2(g)+3H2(g) (2) R:アルキル基 なる反応によってWF6を還元する。これらのガスも700℃
程度まで選択成長性を持つので、高温でWF6の還元反応
を行うことができ、したがって、下地との密着性のよい
W膜を形成することが可能である。またIII−V族(例
えばGaAs)のガスソース分子線エピタキシー(Gas Sour
ce MBE)法であるいは有機金属気相成長(MOCVD)法で
用いられ、300℃以上の高温でも選択成長することが公
知であるAsH3はそのフッ化物AsF3が揮発性であるので、
やはりWF6の還元ガスとして利用可能である。このガス
を用いた場合の還元反応は WF6+2AsH3(g)→W(s)+2AsF3(g)+3H
2(g) (3) である。この反応の結果、GeH4を用いた場合と同様に高
温において密着性のよいWの選択成長がAsH3においても
可能である。また選択成長をもつ被還元ガスとしては、
WF6の他にMoF6がMoの選択成長において知られている
が、このガスの還元ガスとしてGeH4,Ge(CH32H2,Ge
(C2H52H2あるいはAsH3を用いても上述と同様の効果
を得られることは言うまでもない。
In the method using the SiH 4 reduction or the method using the GeH 4 reduction according to the present embodiment, Si is mixed in the W film in the former and Ge is mixed in the W film because the other side reaction of the reduction reaction occurs. It is undeniable that any of the methods has a disadvantage of increasing the resistance. Since the main object of the present invention is to prevent encroachment in the early stage of W growth, the following growth method may be employed to reduce the resistance of the grown W. That is, WF 6 and GeH
4 to introduce the reduction of WF 6 in GeH 4, after the deposition of the W, WF 6
When Si and Si are no longer in direct contact, the introduction of GeH 4 is stopped and WF 6 is reduced by H 2 to continuously grow high-purity W. By such a two-stage growth method, the contamination of Ge can be reduced, and the resistance of the deposited W can be reduced. WF
As the reducing gas of 6 , it is sufficient that selective growth is possible in addition to GeH 4 and that the fluoride of the central element of the gas generated by the reduction reaction is volatile. As a reducing gas having such selective growth properties, Ge (CH 3 ) H 2 or G
There is e (C 2 H 5 ) 2 H 2 (Japanese Patent Application No. 63-23881. In these gases, WF 6 (g) + 3GeR 2 H 2 (g) → W (s) + 3GeR 2 H
2 (g) + 3H 2 (g) (2) R: alkyl group Reduction of WF 6 700 ° C for these gases
Since it has a selective growth property to a certain extent, the reduction reaction of WF 6 can be performed at a high temperature, and therefore, it is possible to form a W film having good adhesion to the base. Gas source molecular beam epitaxy of III-V group (for example, GaAs) (Gas Sour
ce MBE) method or in used metal organic chemical vapor deposition (MOCVD) method, since the AsH 3 is also known to selectively grown at a high temperature of at least 300 ° C. fluorides AsF 3 is volatile,
Also it is available as a reducing gas of WF 6. The reduction reaction using this gas is WF 6 + 2AsH 3 (g) → W (s) + 2AsF 3 (g) + 3H
2 (g) (3). As a result of this reaction, as with GeH 4 , selective growth of W with good adhesion at high temperatures is possible with AsH 3 as well. In addition, as a reduced gas having selective growth,
In addition to WF 6 , MoF 6 is known for selective growth of Mo. GeH 4 , Ge (CH 3 ) 2 H 2 , Ge
It goes without saying that the same effect as described above can be obtained even when (C 2 H 5 ) 2 H 2 or AsH 3 is used.

実施例2 本実施例では、Si下地へのエンクローチメントを抑え
金属の安定な選択成長のための他の方法を示す。まずWF
6によってWを成長させる前に基板開口部Si上にあらか
じめGeを、選択成長性を持ったGe層を構成原子とするガ
スのCVD法によって形成して、このGe層上にW層を選択
的に成長させてSi基板のエンクローチメントを防ぐ方法
を述べる。第2図(A)に示すごとくSi基板1上にSiO2
層2を形成したのち、Si基板1が露出するように開口部
を形成する(第2図(B))。この後、GeH425sccm,H22
000sccm温度410℃にてSi基板1上に導入し、Si基板1の
露出面上に300ÅのGe層5を選択的に形成する(第2図
(C))。この後、WF610sccm,H21800sccmを導入し、開
口部に成長させたGe層5上にのみW層5を1μm形成す
る(第2図(D))。このとき WF6(g)+3/2Ge(s)→W(s)+3/2GeF4(g) なる反応によってGeが若干喰刻を受けるが、デバイスの
特性劣化の原因となるSi基板に及ぶ喰刻はない。本実施
例では、あらじめ選択成長させるGe層の厚さを300Åと
したが、この厚さは喰刻が基板に及ばない範囲におい
て、厚くあるいは薄くしてもよいことはもちろんであ
る。
Embodiment 2 In this embodiment, another method for suppressing the encroachment on the Si base and stably growing the metal selectively will be described. First WF
Prior to the growth of W by step 6 , Ge is formed in advance on the substrate opening Si by a CVD method using a gas having a Ge layer having selective growth as a constituent atom, and a W layer is selectively formed on the Ge layer. The method for preventing the encroachment of the Si substrate by growing it on the substrate is described. As shown in FIG. 2 (A), SiO 2
After forming the layer 2, an opening is formed so that the Si substrate 1 is exposed (FIG. 2 (B)). After this, GeH 4 25sccm, H 2 2
The substrate is introduced onto the Si substrate 1 at a temperature of 000 sccm at 410 ° C., and a Ge layer 5 of 300 ° is selectively formed on the exposed surface of the Si substrate 1 (FIG. 2C). Thereafter, WF 6 10 sccm and H 2 1800 sccm are introduced, and a W layer 5 is formed to a thickness of 1 μm only on the Ge layer 5 grown in the opening (FIG. 2 (D)). At this time, Ge is slightly etched by the reaction of WF 6 (g) + 3 / 2Ge (s) → W (s) + 3 / 2GeF 4 (g), but the etching reaches the Si substrate, which causes device characteristic deterioration. There is no time. In the present embodiment, the thickness of the Ge layer to be selectively grown was previously set at 300 °, but this thickness may of course be increased or decreased as long as the etching does not reach the substrate.

Ge層を形成するためのCVD原料ガスとしては、GeH4とH
2の混合ガス系の他に,GeH4のみでもよく、あるいは前
述したGe(CH32H2,Ge(C2H52H2あるいはやはりGeの
選択成長が可能であるGeCl4とH2の混合ガス(特開昭62
−179113号公報)であってもよいことはいうまでもな
い。さらに、Ge層の抵抗を下げるために、Geを堆積する
ための原料ガス、たとえばGeH4とともにPH3,AsH3,B2H
3等のガスを微量添加する通常のCVD法と同様の方法ガス
を微量添加する通常のCVD法と同様の方法で、n型,p型
いずれのGe層も形成することが可能であることはいうま
でもない。
GeH 4 and H 2 are used as CVD source gases for forming the Ge layer.
In addition to the mixed gas system of 2 , GeH 4 alone may be used, or Ge (CH 3 ) 2 H 2 , Ge (C 2 H 5 ) 2 H 2 as described above, or GeCl 4 which can also selectively grow Ge a mixed gas of H 2 (JP 62
-179113). Further, in order to lower the resistance of the Ge layer, PH 3 , AsH 3 , and B 2 H are used together with a source gas for depositing Ge, for example, GeH 4.
A method similar to the normal CVD method in which a small amount of gas such as 3 is added.A method similar to the normal CVD method in which a small amount of gas is added can form both n-type and p-type Ge layers. Needless to say.

[発明の効果] 以上説明したように、本発明によれば、WF6あるいはM
oF6の還元ガスとして、あるいはW選択成長前の開口部
にあらかじめ堆積される層の原料ガスとして、半導体
上,金属上あるいはそれらの化合物,混合物上にそのガ
スの中心元素からなる膜を堆積させ、SiO2等の絶縁膜上
には堆積しない選択成長性を300℃以上でもち、なおか
つ還元後の成長物であるそのガスのフッ化物が揮発性を
もつガス、すなわちGeH4,Ge(CH32H2,Ge(C2H52H2
あるいはAsH3を用いることによって、下地のSiやGeのエ
ンクローチメントを抑え、300℃以上の高温成長におい
ても選択性の良好な、密着性のよいWあるいはMoの選択
成長が可能である。
As it has been described [Effects of the Invention According to the present invention, WF 6 or M
As a reducing gas of oF 6 or as a source gas of a layer to be deposited in advance in an opening before selective growth of W, a film composed of a central element of the gas is deposited on a semiconductor, a metal, or a compound or mixture thereof. Gas having a selective growth property of not higher than 300 ° C. which is not deposited on an insulating film such as SiO 2 and SiO 2 , and a gas obtained by reducing the fluoride which is a growth product after reduction, ie, GeH 4 , Ge (CH 3 ) 2 H 2 , Ge (C 2 H 5 ) 2 H 2
Alternatively, by using AsH 3 , encroachment of underlying Si or Ge is suppressed, and selective growth of W or Mo with good selectivity and good adhesion is possible even at a high temperature of 300 ° C. or higher.

【図面の簡単な説明】[Brief description of the drawings]

第1図はGH4を用いてGeを選択成長させる工程を示す断
面図、 第2図は本発明の実施例の工程を示す断面図、 第3図はWF6による下地基板のエンクローチメントを示
す断面図、 第4図は従来の選択成長法の工程を示す断面図である。 1…Si基板、2…SiO2層、3…W層、4…ポリSi層、5
…Ge層。
Figure 1 is a sectional view showing a step of selectively growing a Ge with GH 4, cross-sectional view FIG. 2 showing a process embodiment of the present invention, Figure 3 shows the encroachment of the underlying substrate by WF 6 FIG. 4 is a sectional view showing steps of a conventional selective growth method. 1 ... Si substrate, 2 ... SiO 2 layer, 3 ... W layer, 4 ... poly-Si layer, 5
... Ge layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−177419(JP,A) 特開 昭62−189721(JP,A) 特開 昭62−179113(JP,A) 特開 平1−103831(JP,A) 特開 平2−58225(JP,A) 特開 平2−44772(JP,A) 特開 平1−74720(JP,A) 特開 平1−214116(JP,A) 特開 平4−334019(JP,A) 特開 平1−5011(JP,A) 特公 平6−66262(JP,B2) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-177419 (JP, A) JP-A-62-189721 (JP, A) JP-A-62-179113 (JP, A) JP-A-1- 103831 (JP, A) JP-A-2-58225 (JP, A) JP-A-2-44772 (JP, A) JP-A-1-74720 (JP, A) JP-A-1-214116 (JP, A) JP-A-4-334019 (JP, A) JP-A-1-5011 (JP, A) JP-B-6-66262 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に絶縁膜を形成しパターニングし
て、該絶縁膜の一部に前記基板が露出した開口部を形成
する工程と、 金属とハロゲン元素との化合物と、ジメチルゲルマン
[Ge(CH32H2]およびジエチルゲルマン[Ge(C2H5
2H2]のうちの少なくとも1種を含む気体とを、前記基
板上に導入し、前記開口部に前記金属を成長させ、金属
膜を形成する工程と を含むことを特徴とする金属膜の形成方法。
A step of forming an insulating film on a substrate and patterning the insulating film to form an opening exposing the substrate in a part of the insulating film; a compound of a metal and a halogen element; (CH 3 ) 2 H 2 ] and diethylgermane [Ge (C 2 H 5 )
A gas containing at least one of 2 H 2 ] on the substrate, growing the metal in the opening, and forming a metal film. Forming method.
JP63208236A 1988-08-24 1988-08-24 Metal film forming method Expired - Lifetime JP2617529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208236A JP2617529B2 (en) 1988-08-24 1988-08-24 Metal film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208236A JP2617529B2 (en) 1988-08-24 1988-08-24 Metal film forming method

Publications (2)

Publication Number Publication Date
JPH0258217A JPH0258217A (en) 1990-02-27
JP2617529B2 true JP2617529B2 (en) 1997-06-04

Family

ID=16552908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208236A Expired - Lifetime JP2617529B2 (en) 1988-08-24 1988-08-24 Metal film forming method

Country Status (1)

Country Link
JP (1) JP2617529B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711670B2 (en) * 1988-03-11 1998-02-10 富士通株式会社 Repeater monitoring method
EP0420597B1 (en) * 1989-09-26 1996-04-24 Canon Kabushiki Kaisha Process for forming a deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device
JP2721023B2 (en) * 1989-09-26 1998-03-04 キヤノン株式会社 Deposition film formation method
JPH03150874A (en) * 1989-11-07 1991-06-27 Nec Corp Semiconductor device
JPH05259103A (en) * 1992-03-16 1993-10-08 Fujitsu Ltd Pretreatment method in formation of metal for wiring

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666264B2 (en) * 1986-02-03 1994-08-24 日本電信電話株式会社 Method and apparatus for manufacturing semiconductor device
JPS62189721A (en) * 1986-02-17 1987-08-19 Nippon Telegr & Teleph Corp <Ntt> Semiconductor film forming method and apparatus therefor
JPS63177419A (en) * 1987-01-16 1988-07-21 Nippon Telegr & Teleph Corp <Ntt> Thin film forming method
JPS6474720A (en) * 1987-09-17 1989-03-20 Toshiba Corp Formation of high melting metal film
JPH01214116A (en) * 1988-02-23 1989-08-28 Nec Corp Method of filling in contact hole
JPH0244772A (en) * 1988-08-05 1990-02-14 Hitachi Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH0258217A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US7547615B2 (en) Deposition over mixed substrates using trisilane
US7531395B2 (en) Methods of forming a layer comprising epitaxial silicon, and methods of forming field effect transistors
US4270960A (en) Method of manufacturing a semiconductor device utilizing a mono-polycrystalline deposition on a predeposited amorphous layer
JP2617529B2 (en) Metal film forming method
US8709918B2 (en) Method for selective deposition of a semiconductor material
JPS60145376A (en) Growing method of tungsten silicide film
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
US8546249B2 (en) Selective growth of polycrystalline silicon-containing semiconductor material on a silicon-containing semiconductor surface
CN109360786B (en) Lateral epitaxial growth method and semiconductor structure
JP2845464B2 (en) Compound semiconductor growth method
JPS63250463A (en) Formation of thin metallic film
EP0543759A2 (en) A poly-emitter structure with improved interface control
JPH06291058A (en) Manufacture of semiconductor substrate
JP2751606B2 (en) Wiring formation method
JP3013992B2 (en) Method for growing compound semiconductor crystal
EP0484056A1 (en) Process for forming germanium-containing layer on oxygen-containing insulation layer
JPH05129230A (en) Method for forming tungsten film
JPS60130825A (en) Manufacture of semiconductor device
JPS61131434A (en) Manufacture of semiconductor device
JPS6298747A (en) Manufacture of semiconductor device
JPH065541A (en) Manufacture of semiconductor device
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors
JPH08139017A (en) Manufacture of semiconductor device
JPH03191520A (en) Vapor deposition process
JPH11288886A (en) Manufacture of compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12