JPS60145376A - Growing method of tungsten silicide film - Google Patents

Growing method of tungsten silicide film

Info

Publication number
JPS60145376A
JPS60145376A JP24824583A JP24824583A JPS60145376A JP S60145376 A JPS60145376 A JP S60145376A JP 24824583 A JP24824583 A JP 24824583A JP 24824583 A JP24824583 A JP 24824583A JP S60145376 A JPS60145376 A JP S60145376A
Authority
JP
Japan
Prior art keywords
aperture
layer
film
insulating film
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24824583A
Other languages
Japanese (ja)
Other versions
JPS6261668B2 (en
Inventor
Yoshimi Shiotani
喜美 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24824583A priority Critical patent/JPS60145376A/en
Publication of JPS60145376A publication Critical patent/JPS60145376A/en
Publication of JPS6261668B2 publication Critical patent/JPS6261668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To flatten the surface of a film at one stage by covering a silicon substrate with an insulating film formed with an aperture, embedding the aperture with a W layer under specific conditions and forming further W-Si on the insulating film and the W layer under specific conditions. CONSTITUTION:An insulating film (PSG, etc.) 2 is formed on the surface of a silicon substrate 1 and an aperture 4 is formed to the point where contact is taken. Gaseous WF6 and N2 are then supplied as gaseous raw material and the temp. of a reactor is maintained at 300-350 deg.C to grow a W layer 6 on the surface of the substrate 1 in the aperture 4 in chemical vapor phase under the reduced pressure. The W layer 6 having good adhesion is thus obtd. with decrease penetration 5. WF4 and SiH4 are then supplied and W-Si is uniformly grown on the film 2 and on the W layer 6 in the aperture 4 at 350-450 deg.C under the reduced pressure with good adhesion. The step (h) in the aperture 4 is thereby considerably decreased to about 0-3,000Angstrom .

Description

【発明の詳細な説明】 技術分野 本発明はシリコン基板上に形成された絶縁膜上及び絶縁
膜の窓部にタングステンシリサイド膜を形成する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for forming a tungsten silicide film on an insulating film formed on a silicon substrate and in a window portion of the insulating film.

従来技術 第1図のごとく、シリコン基板1上に形成された絶縁膜
2上及び絶縁膜の窓部4にタングステンシリサイド膜3
を形成する際、絶縁膜2とシリコン基板1との段差構造
によシタングステンシリサイド膜3の表面には段差りが
生ずる。この段差はタングステンシリサイド膜を配線と
して用いるためにできるだけ小さくシ、平坦化するのが
望ましい。段差のある配線は段差切れを生じる等障害と
なる。
Prior art As shown in FIG.
When forming the tungsten silicide film 3, a step is formed on the surface of the tungsten silicide film 3 due to the step structure between the insulating film 2 and the silicon substrate 1. In order to use the tungsten silicide film as a wiring, it is desirable that this step be as small as possible and flattened. Wiring with steps may cause problems such as breakage at the steps.

発明の目的 本発明はタングステン膜とタングステンシリサイド膜を
連続的に成長し、一度の工程で穴埋めおよび配線ができ
るようにし、平坦化を図ることを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to continuously grow a tungsten film and a tungsten silicide film so that hole filling and wiring can be performed in a single process, thereby achieving planarization.

発明の構成及び作用 以下、実施例とともに本発明の詳細な説明する。Structure and operation of the invention Hereinafter, the present invention will be described in detail along with examples.

第2図Aにおいて、シリコン基板1の表面に絶縁膜(例
えばPSG等)2を形成し、コンタクトをとる箇所に開
口4を形成し、減圧CVD法によりりングステン(W)
層6を形成し、次に図Bのようにタングステンシリサイ
ド層7を連続して形成する。
In FIG. 2A, an insulating film (for example, PSG, etc.) 2 is formed on the surface of a silicon substrate 1, an opening 4 is formed at a contact point, and ringsten (W) is formed by low pressure CVD.
Layer 6 is formed and then tungsten silicide layer 7 is formed successively as shown in Figure B.

減圧CVDは第5図の拡散炉方式のリアクタ9に原料ガ
ス8を供給してシリコン基板1に熱分解反応によpw又
はW −Siを堆積する方法が量産に向いている。また
第4図のように平行平板方式のリアクタを用いることも
できる。基台11上にシリコン基板1を置き原料ガス8
を供給し−trA分解でシリコン基板1上に膜を形成す
る。本発明においてはWの選択成長とW −Stの成長
を原料ガスの切換えとリアクタの温度を制御することに
よ多連続して行なう。以下にこの連続処理を詳記すると
、(1)開口4内のシリコン基板10表面へのWの選択
成長 原料ガスとしてWF、と窒素ガスN2を供給し、リアク
タの温度を600〜550°Cとして減圧下でWを成長
する。N2の他にN2を加えることもできるが、N2が
加わるとW成長の選択性が低下する。Wの成長時にWF
6と下地のシリコンが反応するためにおる程度シリコン
表面が喰われる。
Low-pressure CVD is suitable for mass production by supplying raw material gas 8 to a diffusion furnace type reactor 9 shown in FIG. 5 and depositing pw or W-Si on silicon substrate 1 through a thermal decomposition reaction. Further, a parallel plate type reactor as shown in FIG. 4 can also be used. The silicon substrate 1 is placed on the base 11 and the source gas 8
A film is formed on the silicon substrate 1 by supplying -trA decomposition. In the present invention, the selective growth of W and the growth of W-St are performed multiple times in succession by switching the source gas and controlling the temperature of the reactor. This continuous process is detailed below: (1) Selective growth of W on the surface of the silicon substrate 10 in the opening 4 WF and nitrogen gas N2 are supplied as source gases, and the temperature of the reactor is set at 600 to 550°C. Grow W under reduced pressure. Although N2 can be added in addition to N2, the selectivity of W growth decreases when N2 is added. WF during the growth of W
Because 6 reacts with the underlying silicon, the silicon surface is eaten away to some extent.

反応はWF6 +St→W+SiF4が生じ、Wがシリ
コン表面に析出する。形成されるW層は数百乃至数千λ
程度に形成できる。リアクタの温度を350°C以上に
上げると前記のシリコン表面の喰込み5が多くなυ、素
子に対するコンタクトとして不適当でおシ、また300
°C以下では密着性の点で問題が生じる。300°C〜
350°Cにおいて下地のシリコンの喰込み少なく密着
性の良いW膜が選択的に形成され、開口4が埋められる
The reaction occurs as follows: WF6 +St→W+SiF4, and W is deposited on the silicon surface. The formed W layer has a thickness of several hundred to several thousand λ
Can be formed to a certain extent. If the temperature of the reactor is raised to 350°C or higher, the aforementioned silicon surface will be etched into a large amount υ, making it unsuitable as a contact for the element, and
Below °C, problems arise in terms of adhesion. 300°C~
At 350° C., a W film with good adhesion and little biting into the underlying silicon is selectively formed, and the opening 4 is filled.

(It) WStの成長 原料ガスをWF6とSシH4に切換え、350°C〜4
50°Cで減圧下でW−8tを絶縁膜2及び開口内のW
上に一様に成長する。原料ガスにN2を混入することも
でき、N2の混入でWが多いW −Siが形成される。
(It) Switch the WSt growth source gas to WF6 and S-H4, and heat at 350°C to 4.
W-8t was applied to the insulating film 2 and the W inside the opening under reduced pressure at 50°C.
Grows uniformly upwards. It is also possible to mix N2 into the raw material gas, and by mixing N2, W-Si containing a large amount of W is formed.

温度を350°C〜450°Cとするのはこの範囲で絶
縁膜2と密着性が良いW−8iが形成されるからである
The reason why the temperature is set to 350° C. to 450° C. is that W-8i having good adhesion to the insulating film 2 is formed within this range.

次に、減圧CVDにおけるリアクタ内の圧力について説
明すると、本発明においては1 torr以下の減圧下
で成長が行なわれ、0.1〜1 toreが実用される
範囲であシ、特に0.1〜0.4torrでは成長層の
白濁が生ぜず(反応が激しいと生ずる大きな粒子又は気
相で成長したものが付着する)、形成された膜中に水素
やフッ素が含まれず密着性の良い膜が得られる(H’p
Fが含まれると膜がはがれ易い)。
Next, to explain the pressure inside the reactor in low pressure CVD, in the present invention, growth is performed under a reduced pressure of 1 torr or less, and the practical range is 0.1 to 1 torr, particularly 0.1 to 1 torr. At 0.4 torr, the grown layer does not become cloudy (large particles that occur when the reaction is intense or those grown in the gas phase adhere), and the formed film does not contain hydrogen or fluorine, resulting in a film with good adhesion. (H'p
If F is included, the film will peel off easily).

次に原料ガス供給についてリアクタが平行平板の場合で
具体的数値を例示すると(1)のWの選択成長ではWF
6が1〜10 ”7’g4.rLHN2が200 ”1
gain位。
Next, to give an example of specific values for the raw material gas supply when the reactor is a parallel plate, in (1) selective growth of W, WF
6 is 1-10 ”7'g4.rLHN2 is 200 ”1
gain position.

N2が100C輪14位で行い、(11)のW Stの
成長ではWF6が1〜10”/n5iB r 5tH4
が10〜” 00”/1rot?Lで行なう。
N2 is 100C ring 14th, and in (11) W St growth, WF6 is 1 to 10"/n5iBr 5tH4
Is it 10~”00”/1rot? Do it with L.

発明の効果 以上、本発明によれば1つのCVD装置で連続的に良好
なコンタクトが形成できるとともに平坦化されたW −
S i配線ができるもので、例えば1μ毒の絶縁層の場
合、従来1μ犠近い段差が出来たのに対し、本発明によ
れば段差はO〜3000 、!位と大幅に低減できる。
As can be seen from the effects of the invention, according to the present invention, good contacts can be continuously formed using one CVD device, and flattened W −
For example, in the case of an insulating layer with a thickness of 1μ, which can be used for Si wiring, a step of nearly 1μ was created in the conventional method, but according to the present invention, the step is 0~3000! can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のW −S を膜形成を示す説明図、第2
図A、Bは本発明の成長方法を説明する工程図、第3図
は本発明に用いる減圧CVD装置の説明図、第4図は本
発明に用いる他の減圧CVD装置の説明図。 第2図〜第4図において 主な符号 1・・・シリコン基板、2・・・絶縁膜、4・・・開口
(置部)、5・・・喰込み、6・・・タングステン層、
7・・・タングステンシリサイド層、8・・・原料ガス
、9・・・拡散炉方式のリアクタ 特許出願人富士通株式会社 代理人弁理士玉蟲久五部(外1名) 第1図 第2図 第3図 第4図
Figure 1 is an explanatory diagram showing the film formation of conventional W-S.
FIGS. A and B are process diagrams for explaining the growth method of the present invention, FIG. 3 is an explanatory diagram of a low pressure CVD apparatus used in the present invention, and FIG. 4 is an explanatory diagram of another low pressure CVD apparatus used in the present invention. In FIGS. 2 to 4, main symbols 1... silicon substrate, 2... insulating film, 4... opening (placement), 5... biting, 6... tungsten layer,
7... Tungsten silicide layer, 8... Raw material gas, 9... Diffusion furnace type reactor Patent applicant Fujitsu Ltd. Representative Patent Attorney Gobe Tamamushi (one other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 シリコン基板上を覆い一部に開口が形成された絶縁膜の
表面及び該開口内のシリコン基板表面にタングステンシ
リサイド膜を形成するにhfcD。 WF、を原料ガスとして用い300〜350°Cでタン
グステンを前記開口のシリコン基板表面に減圧状態で化
学気相成長せしめ、次いでWF6とS t H4を原料
ガスとして用い650〜4506Cでタングステンシリ
サイドを前記絶縁膜と開口のタングステン上に連続的に
減圧状態で化学気相成長することを特徴とするタングス
テンシリサイド膜の成長方法。
Claims: hfcD for forming a tungsten silicide film on the surface of an insulating film that covers a silicon substrate and has an opening partially formed therein, and on the surface of the silicon substrate within the opening. Tungsten is grown by chemical vapor deposition on the silicon substrate surface of the opening under reduced pressure at 300 to 350°C using WF as a source gas, and then tungsten silicide is grown at 650 to 4506C using WF6 and S t H4 as source gas. A method for growing a tungsten silicide film, which is characterized by continuous chemical vapor deposition under reduced pressure on an insulating film and tungsten in an opening.
JP24824583A 1983-12-30 1983-12-30 Growing method of tungsten silicide film Granted JPS60145376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24824583A JPS60145376A (en) 1983-12-30 1983-12-30 Growing method of tungsten silicide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24824583A JPS60145376A (en) 1983-12-30 1983-12-30 Growing method of tungsten silicide film

Publications (2)

Publication Number Publication Date
JPS60145376A true JPS60145376A (en) 1985-07-31
JPS6261668B2 JPS6261668B2 (en) 1987-12-22

Family

ID=17175307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24824583A Granted JPS60145376A (en) 1983-12-30 1983-12-30 Growing method of tungsten silicide film

Country Status (1)

Country Link
JP (1) JPS60145376A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311668A (en) * 1986-06-30 1988-01-19 Ulvac Corp Cvd method
JPS6311669A (en) * 1986-06-30 1988-01-19 Ulvac Corp Cvd method
JPS6326369A (en) * 1986-07-19 1988-02-03 Ulvac Corp Cvd method
JPS6326366A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6326368A (en) * 1986-07-19 1988-02-03 Ulvac Corp Cvd method
JPS6326367A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6417866A (en) * 1987-07-10 1989-01-20 Toshiba Corp Formation of film of high-melting-point metal
JPH0390572A (en) * 1989-08-25 1991-04-16 Applied Materials Inc Cvd vapor deposition method for forming tungsten layer on semiconductor wafer
JPH03223462A (en) * 1990-01-27 1991-10-02 Fujitsu Ltd Formation of tungsten film
US5230847A (en) * 1990-06-26 1993-07-27 L'air Liquide, Societe Anonyme L'etude Et L'exploitation Des Procedes Georges Claude Method of forming refractory metal free standing shapes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311668A (en) * 1986-06-30 1988-01-19 Ulvac Corp Cvd method
JPS6311669A (en) * 1986-06-30 1988-01-19 Ulvac Corp Cvd method
JPS6326366A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6326367A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6326369A (en) * 1986-07-19 1988-02-03 Ulvac Corp Cvd method
JPS6326368A (en) * 1986-07-19 1988-02-03 Ulvac Corp Cvd method
JPS6417866A (en) * 1987-07-10 1989-01-20 Toshiba Corp Formation of film of high-melting-point metal
JPH0390572A (en) * 1989-08-25 1991-04-16 Applied Materials Inc Cvd vapor deposition method for forming tungsten layer on semiconductor wafer
JPH03223462A (en) * 1990-01-27 1991-10-02 Fujitsu Ltd Formation of tungsten film
US5230847A (en) * 1990-06-26 1993-07-27 L'air Liquide, Societe Anonyme L'etude Et L'exploitation Des Procedes Georges Claude Method of forming refractory metal free standing shapes

Also Published As

Publication number Publication date
JPS6261668B2 (en) 1987-12-22

Similar Documents

Publication Publication Date Title
EP0216157B1 (en) A method of depositing metal contact regions on a silicon substrate
US4923715A (en) Method of forming thin film by chemical vapor deposition
US5201995A (en) Alternating cyclic pressure modulation process for selective area deposition
US5231056A (en) Tungsten silicide (WSix) deposition process for semiconductor manufacture
US4141765A (en) Process for the production of extremely flat silicon troughs by selective etching with subsequent rate controlled epitaxial refill
EP0394665A1 (en) Selective deposition of amorphous and polycrystalline silicon
KR100497262B1 (en) Epitaxy Method on Vapor Phase of Compound Semiconductor
US7084049B2 (en) Manufacturing method for buried insulating layer-type semiconductor silicon carbide substrate
JPS60145376A (en) Growing method of tungsten silicide film
US3941647A (en) Method of producing epitaxially semiconductor layers
GB2035687A (en) Method of forming layers on a semiconductor device
US6174805B1 (en) Titanium film forming method
KR970005943B1 (en) Semiconductor device and method of manufacturing the same
JPH07100860B2 (en) Method for forming tungsten silicide film
JP3080809B2 (en) Method for manufacturing semiconductor device
JPH0258217A (en) Metallic film forming method
US4981723A (en) Chemical vapor deposition of tungsten silicide using silicon sub-fluorides
JP2538607B2 (en) Vapor growth method
JPH0645876B2 (en) Reduced pressure vapor deposition method and apparatus
JP3018408B2 (en) Method for manufacturing semiconductor device
JPS61131434A (en) Manufacture of semiconductor device
JPH0421751B2 (en)
JPS6376875A (en) Vapor growth method
JPS61264720A (en) Manufacture of polycrystalline silicon
EP0548407B1 (en) Tungsten chemical vapor deposition method