JP2616181B2 - Method for producing high-gloss titanium foil with excellent moldability - Google Patents

Method for producing high-gloss titanium foil with excellent moldability

Info

Publication number
JP2616181B2
JP2616181B2 JP2230330A JP23033090A JP2616181B2 JP 2616181 B2 JP2616181 B2 JP 2616181B2 JP 2230330 A JP2230330 A JP 2230330A JP 23033090 A JP23033090 A JP 23033090A JP 2616181 B2 JP2616181 B2 JP 2616181B2
Authority
JP
Japan
Prior art keywords
titanium foil
rolling
surface roughness
annealing
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2230330A
Other languages
Japanese (ja)
Other versions
JPH04110454A (en
Inventor
一芳 藤沢
毅 吉田
大治 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2230330A priority Critical patent/JP2616181B2/en
Publication of JPH04110454A publication Critical patent/JPH04110454A/en
Application granted granted Critical
Publication of JP2616181B2 publication Critical patent/JP2616181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、優れた成形性並びに表面光沢を有してい
てスピーカー用振動板としても十分に満足できるチタン
箔の工業的に安定した製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an industrially stable method for producing titanium foil which has excellent formability and surface gloss and can be sufficiently satisfied as a speaker diaphragm. It is about.

〈従来技術〉 近年、音質,外観,耐久性能等の面からスピーカー用
振動板にチタン箔を適用する例が増えつつあるが、従
来、スピーカー用振動板に供されるチタン箔は、チタン
材を冷間圧延して50μm以下に仕上げ、続いて巻取った
コイルを真空中にてバッチ焼鈍する方法で製造されるの
が一般的であった。この場合、“焼鈍温度”は、使用す
る炉毎に測定のバラツキがあって真の温度を捕らえにく
いことから、製品の結晶粒度で焼鈍温度を推定すること
が行われており、結晶粒度がASTM No.で12.0〜14.0の範
囲に入ってさえいれば最大限の性能が得られるものと考
えられ、それに従った操業が行われてきた。
<Prior art> In recent years, the use of titanium foil for speaker diaphragms has been increasing in terms of sound quality, appearance, durability, and the like, but titanium foil conventionally used for speaker diaphragms is made of titanium material. It is generally manufactured by a method of performing cold rolling to finish to 50 μm or less, and subsequently batch annealing the wound coil in a vacuum. In this case, it is difficult to capture the true temperature because the annealing temperature varies depending on the furnace used, so the annealing temperature is estimated based on the grain size of the product. It is considered that the maximum performance can be obtained as long as it is within the range of 12.0 to 14.0 in No., and the operation has been performed according to it.

ところが、最近、スピーカーにはデザイン面でもこれ
までにない斬新さが求められるようになり、スピーカー
素材の成形条件(形状,プレス深さ等)にも一段と厳し
い要求がなされるようになってきたこともあって、チタ
ン箔のプレス成形時に割れを生じる率が高まったとの指
摘が出始めている。また、チタンは摩擦係数が高いこと
から焼付を生じやすく、そのため普通鋼やステンレス鋼
に比べて冷間圧延が難しいが、これを克服して表面光沢
度の高いチタン箔を安定に製造する技術についても未だ
十分とは言えなかった。
However, in recent years, speakers have been required to be novel in design, and new requirements have been imposed on the molding conditions (shape, press depth, etc.) of speaker materials. For this reason, it has been pointed out that the rate of cracking during press forming of titanium foil has increased. In addition, titanium has a high coefficient of friction and is susceptible to seizure, which makes it difficult to cold-roll compared to ordinary steel and stainless steel.However, this technology overcomes this problem and stably produces titanium foil with a high surface gloss. Was still not enough.

このようなことから、本発明が目的としたのは、複雑
形状へのプレス成形が十分に可能である“優れた成形
性”を備えると共に、外観が重視されるスピーカー用振
動板としても十分満足できる“高い表面光沢度”を有し
たチタン箔の工業的に安定した量産手段を確立すること
であった。
In view of the above, the object of the present invention is to provide “excellent moldability” capable of sufficiently performing press molding into a complex shape, and to be sufficiently satisfactory as a speaker diaphragm in which appearance is emphasized. The objective was to establish an industrially stable means for mass-producing titanium foil having a "high surface glossiness".

〈課題を解決するための手段〉 そこで、本発明者等は上記課題を解決すべく様々な観
点に立って鋭意研究を重ねた結果、次のような知見を得
ることができる。
<Means for Solving the Problems> The inventors of the present invention have conducted intensive studies from various viewpoints in order to solve the above problems, and as a result, the following findings can be obtained.

(a) チタン箔の成形性はエリクセン値により評価で
きるが、このチタン箔の成形性には焼鈍条件(焼鈍温度
=結晶粒度)が影響することもさることながら仕上冷間
圧下率も大きな影響を与えており、エリクセン値の良好
な高成形性チタン箔を安定に製造するには最適焼鈍条件
と最適仕上冷間圧下率とを組み合わせることが極めて重
要である。
(A) The formability of a titanium foil can be evaluated by the Erichsen value, but the formability of this titanium foil is influenced not only by the annealing conditions (annealing temperature = crystal grain size) but also by the finish cold reduction rate. In order to stably produce a highly formable titanium foil having a good Erichsen value, it is extremely important to combine the optimum annealing condition and the optimum finish cold rolling reduction.

(b) 一方、チタン箔の表面光沢度は圧延の際に使用
するロールの表面粗度を細かくするほど良好となるが、
ロールの表面粗度を細かくすると圧延中にテレスコープ
(巻取るコイルがタケノコ状に巻き崩れる現象)の発生
頻度が多くなって作業性を著しく損なう弊害を生じる。
ところが、上手パス(上流側のパス)には表面粗度の比
較的粗いロールを用い、それ以外の最終2パスで表面粗
度の細かいロールを使用して仕上冷間圧延を実施する
と、上手に表面粗度の粗いロールが存在することからテ
レスコープの発生が効果的に抑制されるばかりか、最終
2パスに設置された表面粗度の細かいロールによってチ
タン箔の表面光沢度も十分に高い値が確保されることと
なり、高光沢チタン箔の安定した生産が可能となる。
(B) On the other hand, the surface glossiness of the titanium foil becomes better as the surface roughness of the roll used for rolling becomes finer,
When the surface roughness of the roll is reduced, the frequency of occurrence of a telescope (a phenomenon in which a coil to be wound is broken in a bamboo-shape) increases during rolling, and a workability is significantly impaired.
However, when a good pass (upstream side pass) uses a roll with a relatively rough surface roughness, and the other two final passes use a roll with a fine surface roughness to perform finish cold rolling, The existence of rolls with a rough surface roughness not only effectively suppresses the occurrence of telescopes, but also makes the surface gloss of the titanium foil sufficiently high due to the rolls with a fine surface roughness installed in the last two passes. , And stable production of high-gloss titanium foil becomes possible.

(c) また、冷間仕上圧延されたチタン箔を連続光輝
焼鈍炉でArガス雰囲気中にて焼鈍するとコイル長手方向
の品質均一化がなされるが、このような処理が施された
チタン箔表面には、通常、数十Å程度の酸化皮膜が存在
している。この数十Å程度の酸化皮膜は圧延時の焼付防
止に有効であるとされていたことから、冷間圧延に先立
つ軟化焼鈍の際に焼鈍炉の露点を調整して被圧延チタン
材表面に30〜50Å程度の酸化皮膜を積極的に形成させる
ことが行われてきた。ところが、この酸化皮膜が最終焼
鈍後のチタン表面に残存すると、酸化皮膜自身は硬くて
脆いためプレス成形時にプレス割れの起点となり、プレ
ス成形の不良率を上げる原因となる。しかるに、仕上冷
間圧延において上述の如き“ロール表面粗度が比較的粗
いロールでのパス工程”を取り入れた場合には、圧延中
に酸化皮膜の剥離が推進されて圧延後の皮膜厚さが30Å
未満となり、プレスの不良率が激減するようになるばか
りか、圧延時の焼付増大を招くこともない。
(C) When the cold-finished rolled titanium foil is annealed in a continuous bright annealing furnace in an Ar gas atmosphere, the quality in the coil longitudinal direction can be made uniform. Usually has an oxide film of about several tens of millimeters. Since this oxide film of about several tens of millimeters was considered to be effective in preventing seizure during rolling, the dew point of the annealing furnace was adjusted during softening annealing prior to cold rolling, so that 30 An oxide film of about 50 ° has been actively formed. However, if this oxide film remains on the titanium surface after the final annealing, the oxide film itself is hard and brittle, so that it becomes a starting point of press cracking at the time of press molding, which causes an increase in the defective rate of press molding. However, when the above-mentioned "pass process with a roll having a relatively rough surface roughness" is adopted in the finish cold rolling, the oxide film is peeled off during the rolling and the film thickness after the rolling is reduced. 30Å
, The rejection rate of the press is drastically reduced, and the seizure during rolling is not increased.

(d) 更に、上記圧延工程において圧延油として粘
度:10cst以下と言う低粘度のものを適用すると、チタン
箔の表面光沢度は一段と向上する。
(D) Further, when a rolling oil having a low viscosity of 10 cst or less is used as the rolling oil in the rolling step, the surface glossiness of the titanium foil is further improved.

本発明は、上記知見事項等に基づいてなされたもの
で、 「圧延によりチタン箔を製造するに際し、仕上冷間圧
延工程の上手パス(最終2パスを除いた上流側のパス)
で表面粗度がRmax:0.8μm以上のロールを、そして最終
2パスで表面粗度がRmax:0.5μm以下のロールをそれぞ
れ用いると共に、10cst以下の粘度を有する低粘度圧延
油を使用し圧下率:50〜70%で仕上圧延を行った後、AST
M No.で12.0〜14.0の結晶粒度が得られる焼純温度にて
焼鈍することにより、成形性に優れた高光沢チタン箔を
安定して量産し得るようにした点」に大きな特徴を有し
ている。
The present invention has been made on the basis of the above findings and the like. "When producing titanium foil by rolling, the successful pass of the finish cold rolling process (the upstream pass excluding the last two passes)
Rolls having a surface roughness of Rmax: 0.8 μm or more in the final pass, and rolls having a surface roughness of Rmax: 0.5 μm or less in the last two passes, and a rolling reduction using a low-viscosity rolling oil having a viscosity of 10 cst or less. : After finishing rolling at 50-70%, AST
Annealing at an annealing temperature at which a crystal grain size of 12.0 to 14.0 can be obtained with M No. enables high-gloss titanium foil with excellent formability to be stably mass-produced. '' ing.

ここで、本発明において仕上冷間圧延ロールの表面粗
度,仕上冷間圧延下率,圧延油の粘度並びに焼鈍条件を
前記の如くに限定したのは次の理由による。
Here, in the present invention, the surface roughness of the finish cold rolling roll, the reduction rate of the finish cold rolling, the viscosity of the rolling oil, and the annealing conditions are limited as described above for the following reasons.

a)圧延ロールの表面粗度 使用するロールの表面粗度を細かくするほど箔表面の
光沢度は良好となるな、逆に圧延中にテレスコープの発
生頻度が多くなる。しかし、上手パスにはテレスコープ
の発生しにくい表面粗度の粗いロールを用い、最終2パ
スで表面粗度の細かいロールを使用することにより、テ
レスコープの発生なく表面光沢の良好なチタン箔の製造
が可能となる。この場合、最終2パスで使用するロール
の表面粗度がRmax:0.5μmを上回ると、チタン箔に例え
ばスピーカ−用振動板等として十分に満足できる高光沢
度が得られない。また、上手パスで表面粗度の粗いロー
ルを用いるとテレスコープ度の発生が抑えられることは
上述した通りであるが、これに加え、ロール表面粗度の
粗いロールでのパス工程を取り入れたことにより圧延中
に酸化皮膜の剥離が推進されプレス成形の不良率が極力
低減される。ただ、この粗面ロールの効果は、ロールの
表面粗度がRmax:0.8μmを下回ると不十分となる。
a) Surface roughness of rolling rolls The finer the surface roughness of the rolls used, the better the glossiness of the foil surface, but the more frequently the telescope occurs during rolling. However, the good pass uses a roll with a rough surface that is less likely to generate a telescope, and the last two passes use a fine roll with a finer surface roughness. Manufacturing becomes possible. In this case, if the surface roughness of the roll used in the last two passes exceeds Rmax: 0.5 μm, it is not possible to obtain a sufficiently high gloss on the titanium foil, for example, as a diaphragm for a speaker. In addition, as described above, the use of a roll having a rough surface roughness in a good pass can suppress the occurrence of telescope degree, but in addition to this, a pass process using a roll having a rough surface roughness is adopted. As a result, peeling of the oxide film is promoted during rolling, and the defective rate of press forming is reduced as much as possible. However, the effect of the rough roll is insufficient when the surface roughness of the roll falls below Rmax: 0.8 μm.

なお、第1図はJIS1種チタン板を表面粗度の異なるロ
ール(Rmax:1μm,Rmax:0.3μm)を用い圧下率:65%で
冷間圧延して0.025mm厚に仕上げ、結晶粒度がASTM No.
で13.7となる条件(推定焼純温度:640℃)で連続光輝焼
純したチタン箔について表面光沢度を比較したグラフで
あるが、この第1図からも、使用するロールの表面粗度
の細かい方の箔が表面光沢度は高くなることを確認でき
る。
Fig. 1 shows a JIS Class 1 titanium plate cold rolled with rolls (Rmax: 1µm, Rmax: 0.3µm) with different surface roughness at a rolling reduction of 65% to a thickness of 0.025mm and a grain size of ASTM. No.
Is a graph comparing the surface glossiness of titanium foils continuously bright baked under the conditions (estimated baking temperature: 640 ° C.) that is 13.7. FIG. 1 also shows that the roll used has a fine surface roughness. It can be confirmed that one foil has a higher surface glossiness.

また、第2図は、表面粗度の粗いロールを用いてJIS1
種チタン板を圧下率:58%で冷間圧延して0.025mm厚に仕
上げ、連続光輝焼純にて結晶粒度をASTM No.:12.0〜14.
0に調整したチタン箔について、その表面に残留した酸
化皮膜の厚さとプレス成形不良率との関係を調査したグ
ラフであるが、この第2図からは、表面粗度の粗いロー
ルによって酸化皮膜の剥離が推進されるほどプレス成形
不良率が下がり、特に圧延後の酸化皮膜厚さが30Å未満
になるとプレス成形の不良が殆んど発生しなくなること
が分かる。
Fig. 2 shows a JIS1
The seed titanium plate was cold rolled at a draft of 58% to a thickness of 0.025 mm, and the grain size was determined by continuous brightening pure ASTM No .: 12.0 to 14.
FIG. 2 is a graph showing the relationship between the thickness of the oxide film remaining on the surface of the titanium foil adjusted to 0 and the percentage of press-forming defects. FIG. 2 shows that the oxide film was formed by a roll having a rough surface roughness. It can be seen that the more the exfoliation is promoted, the lower the press-forming defect rate decreases, and in particular, when the thickness of the oxide film after rolling is less than 30 °, almost no press-forming defects occur.

b)冷間圧延圧下率 仕上冷間圧延圧下率が50%を下回っても70%を上回っ
ても得られるチタン箔のエレクセン値が低下し、例えば
スピーカー用振動板等の如き苛酷なプレス成形を要する
製品の安定製造が叶わなくなる。
b) Cold rolling reduction If the final cold rolling reduction is less than 50% or more than 70%, the Eleksen value of the obtained titanium foil decreases, and severe press forming such as a diaphragm for a speaker is performed. Stable production of required products will not be realized.

第3図は、JIS1種チタン板を種々圧下率で冷間圧延し
て0.025mm厚に仕上げ、結晶粒度がASTM No.で13.7とな
る条件(推定焼鈍温度:640℃)で連続光輝焼鈍したチタ
ン箔についてエリクセン値を比較したグラフであるが、
この第3図からも、圧下率が50〜70%の範囲で良好なエ
リクセン値を確保できることが確認できる。
Fig. 3 shows a titanium sheet that has been subjected to continuous bright annealing under the condition that the grain size becomes 13.7 in ASTM No. (estimated annealing temperature: 640 ° C). It is a graph comparing the Erichsen values for foil,
FIG. 3 also confirms that a good Erichsen value can be ensured when the rolling reduction is in the range of 50 to 70%.

c)圧延油の粘度 チタン箔の仕上冷間圧延では、粘度:10cst以下の低粘
度の圧延油を用いると非常に良好な表面光沢を確保でき
るが、圧延油の粘度が10cstを超えて高くなると所望の
高光沢が確保できなくなる。
c) Viscosity of rolling oil In the finish cold rolling of titanium foil, a very good surface gloss can be ensured by using a low-viscosity rolling oil having a viscosity of 10 cst or less, but when the viscosity of the rolling oil increases beyond 10 cst. The desired high gloss cannot be secured.

第4図には、JIS1種チタン板を圧下率:58%で冷間圧
延して(最終2パスは表面粗度がRmax:0.3μm)厚さ:
0.025mmに仕上げ、結晶粒度がASTM No.で12.5となる条
件(推定焼鈍温度:680℃)で連続高輝焼鈍したチタン箔
についての、使用圧延油の粘度と表面光沢度との関係を
調査した結果が示されているが、この第4図からも、10
cst以下の低粘度の圧延油を用いることによって良好な
表面光沢が確保されることを確認できる。
FIG. 4 shows that a JIS Class 1 titanium plate is cold-rolled at a reduction ratio of 58% (the final two passes have a surface roughness of Rmax: 0.3 μm).
Investigation of the relationship between the viscosity of the rolling oil used and the surface gloss of titanium foil finished to 0.025 mm and continuously bright annealed under the condition that the grain size is 12.5 in ASTM No. (estimated annealing temperature: 680 ° C) FIG. 4 also shows that 10
It can be confirmed that good surface gloss is secured by using a low-viscosity rolling oil of cst or less.

d)焼鈍条件 冷間圧延されたチタン箔は一般的な連続光輝焼鈍炉を
用いて焼鈍されるが、良好なエリクセン値を確保するた
めにはこの際の焼鈍温度も極めて重要な因子となる。た
だ、先にも述べたように、焼鈍温度は使用する炉毎に測
定バラツキが出がちであることから真の焼鈍温度の把握
が難しい上、製品の結晶粒度と適切に対応することか
ら、製品の結晶粒度で焼鈍条件を設定した方が的確な操
業につながる。そして、本発明においも、結晶粒度がAS
TM No.で12.0を下回ったり、逆に14.0を上回った場合に
は所望のエリクセン値を確保することができない。
d) Annealing conditions The cold-rolled titanium foil is annealed using a general continuous bright annealing furnace, and the annealing temperature at this time is also an extremely important factor in order to secure a good Erichsen value. However, as described earlier, the annealing temperature tends to vary depending on the furnace used, making it difficult to grasp the true annealing temperature. If the annealing conditions are set with the grain size, the operation will be more accurate. In the present invention, the grain size is AS
If the TM No. falls below 12.0 or exceeds 14.0, the desired Erichsen value cannot be secured.

なお、第5図はJIS1種チタン板を圧下率:52%で冷間
圧延して0.025mm厚に仕上げた後連続光輝焼鈍したチタ
ン箔の“焼鈍温度とエリクセン値との関係”を、また第
6図は同様チタン箔の“結晶粒度とエリクセン値との関
係”をそれぞれ示しているが、この第5図と第6図から
もエリクセン値に対しては焼鈍温度と結晶粒度が良く対
応して影響していることが分かる。そして、第6図に示
される結果からは、焼鈍条件をチタン箔の結晶粒度がAS
TM No.で12.0〜14.0となるように設定すると良好なエリ
クセン値が確保されることも確認できる。
FIG. 5 shows the "relationship between annealing temperature and Erichsen value" of a titanium foil which was subjected to cold rolling at a rolling reduction of 52% to a thickness of 0.025 mm after continuous rolling of a JIS Class 1 titanium plate to a thickness of 52%. FIG. 6 similarly shows the "relationship between the crystal grain size and the Erichsen value" of the titanium foil, respectively. From FIGS. 5 and 6, the annealing temperature and the crystal grain size well correspond to the Erichsen value. You can see that it is affecting. From the results shown in FIG. 6, it was found that the annealing conditions were such that the grain size of the titanium foil was AS
It can also be confirmed that when the TM No. is set to be 12.0 to 14.0, a good Erichsen value is secured.

続いて、本発明の効果を実施例によって更に具体的に
説明する。
Next, the effects of the present invention will be described more specifically with reference to examples.

〈実施例〉 まず、JIS1種チタン板を準備し、これに第1表で示す
条件の仕上冷間圧延及び連続光輝焼鈍を施して0.025mm
厚のチタン箔を製造した。
<Example> First, a JIS Class 1 titanium plate was prepared and subjected to finish cold rolling and continuous bright annealing under the conditions shown in Table 1 to obtain a 0.025 mm
Thick titanium foil was produced.

次に、このようにして得られたチタン箔について“表
面光沢度”及び“エリクセン値”を調査したが、その結
果を第1表に併せて示した。
Next, the "surface glossiness" and "Erichsen value" of the titanium foil thus obtained were examined. The results are shown in Table 1.

なお、表面光沢度は入射角60゜での測定値であり、ま
たエリクセン値は基本的にはJIS Z2247に規定された試
験方法に準じて測定された。ただ、エリクセン値の測定
に当ってはダイスとしわ押えとの間に試験片の厚さに相
当するクリアランスのみを設け、グラファイトグリース
は使用しなかった。
The surface gloss was measured at an incident angle of 60 °, and the Erichsen value was basically measured according to a test method specified in JIS Z2247. However, in measuring the Erichsen value, only a clearance corresponding to the thickness of the test piece was provided between the die and the wrinkle holder, and no graphite grease was used.

第1表に示される結果からも、本発明で規定する条件
に従えば、優れた表面光沢とエリクセン値を有し、スピ
ーカー用振動板としても十分に満足できるチタン箔を製
造できることが分かる。
From the results shown in Table 1, it can be seen that, under the conditions specified in the present invention, a titanium foil having excellent surface gloss and Erichsen value and sufficiently satisfying as a speaker diaphragm can be produced.

〈効果の総括〉 以上に説明した如く、この発明によれば、優れた成形
性と高光沢度を有したチタン箔を工業的に安定して量産
することが可能となるなど、産業上有用な効果がもたら
される。
<Summary of Effects> As described above, according to the present invention, titanium foil having excellent moldability and high glossiness can be mass-produced industrially stably, and is industrially useful. The effect is brought.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、ロールの表面粗度及び圧下率と得られるチタ
ン箔の表面光沢度との関係を示すグラフである。 第2図は、チタン箔の酸化皮膜厚さとプレス成形不良率
との関係を示すグラフである。 第3図は、冷間圧延圧下率と得られるチタン箔のエリク
セン値との関係を示すグラフである。 第4図は、圧延油の粘度と得られるチタン箔の表面光沢
度との関係を示すグラフである。 第5図は、焼鈍温度と得られるチタン箔のエリクセン値
との関係を示すグラフである。 第6図は、チタン箔の結晶粒度とエリクセン値との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the surface roughness and rolling reduction of a roll and the surface glossiness of the obtained titanium foil. FIG. 2 is a graph showing the relationship between the thickness of the oxide film of the titanium foil and the defective rate of press molding. FIG. 3 is a graph showing the relationship between the cold rolling reduction and the Erichsen value of the obtained titanium foil. FIG. 4 is a graph showing the relationship between the viscosity of the rolling oil and the surface glossiness of the obtained titanium foil. FIG. 5 is a graph showing the relationship between the annealing temperature and the Erichsen value of the obtained titanium foil. FIG. 6 is a graph showing the relationship between the crystal grain size of the titanium foil and the Erichsen value.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−201451(JP,A) 特開 平2−179199(JP,A) 特開 昭60−145202(JP,A) 特開 昭60−238465(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-201451 (JP, A) JP-A-2-179199 (JP, A) JP-A-60-145202 (JP, A) JP-A-60-145 238465 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧延によるチタン箔の製造に際して、仕上
冷間圧延工程の上手パスでは表面粗度がRmax:0.8μm以
上のロールを、また最終2パスでは表面粗度がRmax:0.5
μm以下のロールをそれぞれ用いると共に、粘度が10cs
t以下の低粘度圧延油を使用し圧下率:50〜70%で仕上圧
延を行った後、ASTM No.で12.0〜14.0の結晶粒度が得ら
れる焼鈍温度にて焼鈍することを特徴とする、成形性に
優れた高光沢チタン箔の製造方法。
In the production of titanium foil by rolling, a roll having a surface roughness of Rmax: 0.8 μm or more is used in a successful pass of the finish cold rolling step, and a surface roughness of Rmax: 0.5 in a final two passes.
Use rolls of μm or less and have a viscosity of 10cs
t, using a low-viscosity rolling oil having a rolling reduction of 50 to 70%, and then annealing at an annealing temperature at which a grain size of 12.0 to 14.0 is obtained in ASTM No. Manufacturing method of high gloss titanium foil with excellent moldability.
JP2230330A 1990-08-31 1990-08-31 Method for producing high-gloss titanium foil with excellent moldability Expired - Fee Related JP2616181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230330A JP2616181B2 (en) 1990-08-31 1990-08-31 Method for producing high-gloss titanium foil with excellent moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230330A JP2616181B2 (en) 1990-08-31 1990-08-31 Method for producing high-gloss titanium foil with excellent moldability

Publications (2)

Publication Number Publication Date
JPH04110454A JPH04110454A (en) 1992-04-10
JP2616181B2 true JP2616181B2 (en) 1997-06-04

Family

ID=16906149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230330A Expired - Fee Related JP2616181B2 (en) 1990-08-31 1990-08-31 Method for producing high-gloss titanium foil with excellent moldability

Country Status (1)

Country Link
JP (1) JP2616181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868288A (en) * 2018-03-15 2020-10-30 西铁城时计株式会社 Titanium member, method for producing titanium member, and decorative article comprising titanium member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291362A (en) * 2006-08-04 2006-10-26 Kobe Steel Ltd Titanium sheet excellent in press moldability and surface gloss
CN103282975B (en) 2011-11-15 2016-03-23 古河电气工业株式会社 The manufacture method of superconducting wire substrate, superconducting wire substrate and superconducting wire
JP5925040B2 (en) * 2012-04-25 2016-05-25 株式会社神戸製鋼所 Titanium sheet rolling method
CN103084389B (en) * 2012-11-06 2016-03-02 陈建兴 Cold rolling titanium foil material process
CN113578959B (en) * 2021-06-27 2022-06-03 中国科学院金属研究所 Preparation method of fine-grain TA15 titanium alloy foil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238465A (en) * 1984-05-11 1985-11-27 Nippon Stainless Steel Co Ltd Manufacture of bright-annealed titanium and titanium alloy material with superior formability
JPH0623424B2 (en) * 1988-02-08 1994-03-30 株式会社神戸製鋼所 Method for manufacturing Ti thin plate
JPH02179199A (en) * 1988-12-29 1990-07-12 Nippon Stainless Steel Co Ltd Manufacture of colored titanium diaphragm for loudspeaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868288A (en) * 2018-03-15 2020-10-30 西铁城时计株式会社 Titanium member, method for producing titanium member, and decorative article comprising titanium member

Also Published As

Publication number Publication date
JPH04110454A (en) 1992-04-10

Similar Documents

Publication Publication Date Title
JP5570078B2 (en) Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet
JPH0839103A (en) Manufacture of cold rolled stainless steel strip
GB2095136A (en) Processes for making can end stock from roll cast aluminum and product
CN102744255A (en) Process for producing battery aluminium foil
JP2616181B2 (en) Method for producing high-gloss titanium foil with excellent moldability
EP3406361B1 (en) Titanium plate
CN113145642B (en) Pickling plate and preparation method thereof
US11920221B2 (en) Aluminum alloy sheet
JP2011110594A (en) Method of manufacturing cold-rolled ferritic stainless steel strip excellent in surface gloss
JP2543933B2 (en) Manufacturing method of metal foil
JP2018123376A (en) Aluminum alloy sheet and manufacturing method therefor
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP2812898B2 (en) Method for manufacturing clad plate with excellent formability
JPS63111156A (en) Cold rolled steel sheet having excellent press formability and vividness after painting and its production
JP3476495B2 (en) Sheet steel for press working
Oluwole et al. Effect of draw ratio and sheet thickness on earing and drawability of Al1200 cups
CN115654225B (en) Small-caliber 6xxx series aluminum alloy pipe and preparation process thereof
JPS63111153A (en) Aluminum alloy sheet for vertical magnetic disk and its production
JP2006142343A (en) METHOD FOR MANUFACTURING Mo-ADDED FERRITIC STAINLESS STEEL SHEET EXCELLENT IN ANTIDAZZLE CHARACTERISTIC
JP6266905B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JPH02112802A (en) Aluminum and aluminum alloy sheet for bulging
JP2748815B2 (en) Stainless steel cold rolled steel strip excellent in press formability and method for producing the same
WO2022138837A1 (en) Titanium material
JP2992216B2 (en) Manufacturing method of high gloss stainless steel strip
JP3043186B2 (en) Cold rolling method of titanium sheet with small sheet crown

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees