JP2615670B2 - Heat resistant plastic optical fiber - Google Patents

Heat resistant plastic optical fiber

Info

Publication number
JP2615670B2
JP2615670B2 JP62248298A JP24829887A JP2615670B2 JP 2615670 B2 JP2615670 B2 JP 2615670B2 JP 62248298 A JP62248298 A JP 62248298A JP 24829887 A JP24829887 A JP 24829887A JP 2615670 B2 JP2615670 B2 JP 2615670B2
Authority
JP
Japan
Prior art keywords
optical fiber
polymer
plastic optical
polymerization
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62248298A
Other languages
Japanese (ja)
Other versions
JPS6490406A (en
Inventor
久晃 小林
忠興 松永
平六 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62248298A priority Critical patent/JP2615670B2/en
Publication of JPS6490406A publication Critical patent/JPS6490406A/en
Application granted granted Critical
Publication of JP2615670B2 publication Critical patent/JP2615670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,耐熱性及び透光性能に優れた芯鞘構造を有
するプラスチック光ファイバーに関するものである。
Description: TECHNICAL FIELD The present invention relates to a plastic optical fiber having a core-sheath structure excellent in heat resistance and light transmission performance.

[従来の技術] 従来より,光ファイバーは石英ガラスあるいはプラス
チックを利用して製造されている。石英系の光ファイバ
ーは,優れた透光性能を持ち長距離通信用等に実用化さ
れているが,加工性や可撓性が良くないばかりでなく高
価である。これに対し,プラスチック光ファイバーは,
透光性能は劣るが,可撓性が良く,また軽くて加工性が
良く,更に安価である等の利点があり,短距離で利用さ
れつつある。
[Prior Art] Conventionally, optical fibers have been manufactured using quartz glass or plastic. Quartz-based optical fibers have excellent light transmission performance and have been put to practical use for long-distance communication and the like, but are not only poor in workability and flexibility but also expensive. In contrast, plastic optical fibers are
Although light transmission performance is inferior, it has advantages such as good flexibility, lightness, good workability, and low cost, and is being used for short distances.

このプラスチック光ファイバーの芯成分としては,一
般的にポリメタクリル酸メチルが使用される。このポリ
メタクリル酸メチルは,プラスチックの中において,透
光性能をはじめ,耐候性・機械的特性等優れた特性を持
っているが,耐熱性に関しては充分ではない。そのた
め,これを芯成分とした光ファイバーは,高温にさらさ
れる用途においてはその使用上限が約80℃と制限されて
おり,耐熱性の向上に対する要求が強い。
As a core component of the plastic optical fiber, polymethyl methacrylate is generally used. This polymethyl methacrylate has excellent properties such as weather resistance and mechanical properties, such as light transmission performance, among plastics, but is insufficient in heat resistance. Therefore, the use of optical fibers containing this as a core component is limited to about 80 ° C. in applications exposed to high temperatures, and there is a strong demand for improved heat resistance.

このプラスチック光ファイバーの耐熱性向上には,次
の様な方法が知られている。
The following methods are known for improving the heat resistance of the plastic optical fiber.

(1)ポリカーボネート等の透明性が高く,且つガラス
転移温度の高い縮合系ポリマーを使用する(特開昭57−
46204号)。
(1) Use a condensation polymer having high transparency and high glass transition temperature such as polycarbonate (Japanese Patent Application Laid-Open No.
46204).

(2)メタクリル酸ボルニル,メタクリル酸アダマンチ
ル等かさ高いエステルを有するメタクリル酸をメタクリ
ル酸メチルと共重合させる(特開昭59−20020号)。
(2) Methacrylic acid having a bulky ester such as bornyl methacrylate or adamantyl methacrylate is copolymerized with methyl methacrylate (JP-A-59-22020).

(3)メタクリル酸メチルを重合してポリマーとした
後,アミン等を反応させて分子内架橋させる。
(3) After methyl methacrylate is polymerized to form a polymer, an amine or the like is reacted to cause intramolecular crosslinking.

しかしながら,(1)を芯成分に使用した光ファイバ
ーは,耐熱性は良好ではあるが,透光性能及び耐熱耐久
性においては充分ではない。これは,重合反応の際に生
成した副生物の除去が困難であったり,副生物やポリマ
ーの分解物によって着色するためである。
However, the optical fiber using (1) as a core component has good heat resistance, but is not sufficient in light transmission performance and heat resistance durability. This is because it is difficult to remove by-products generated during the polymerization reaction, or it is colored by by-products or decomposition products of the polymer.

また,(2)を芯成分に使用した光ファイバーは,ガ
ラス転移温度の向上が不充分なために,多くは充分な耐
熱性が得られない。また,その成分の共重合組成比を高
くしてガラス転移温度を向上させようとした場合には,
充分な機械的特性が得られなかったり,かさ高いエステ
ル基が分解しやすくて耐熱耐久性に問題がある。
In addition, optical fibers using (2) as a core component often do not have sufficient heat resistance due to insufficient improvement of the glass transition temperature. In addition, when an attempt is made to increase the glass transition temperature by increasing the copolymer composition ratio of the component,
Sufficient mechanical properties cannot be obtained, and bulky ester groups are easily decomposed, and there is a problem in heat resistance and durability.

更に,(3)を芯成分に使用した光ファイバーは副反
応物が多く,着色して透光性能の良好なファイバーは得
られない。
Further, the optical fiber using (3) as a core component has many by-products, so that a fiber which is colored and has good light transmitting performance cannot be obtained.

更にこのような耐熱性を改良するために,ポリメタク
リル酸メチル系重合体中にヒンダードフェノールを配合
する試み(特開昭60−222804号)等が知られているが,
これらも光ファイバーの透光性能を損なうことなしに,
実用性能を満足する耐熱性を与えるものではなかった。
In order to further improve such heat resistance, attempts have been made to incorporate hindered phenol into a polymethyl methacrylate polymer (Japanese Patent Application Laid-Open No. 60-222804).
These also do not impair the light transmission performance of the optical fiber,
It did not provide heat resistance satisfying practical performance.

以上の理由でプラスチック系の耐熱性光ファイバー
は,実用化に至っていない。
For these reasons, plastic heat-resistant optical fibers have not been put to practical use.

[発明が解決しようとする問題点] 本発明の目的は,優れた透光性能や機械的特性を有
し,且つ耐熱性の優れたプラスチック光ファイバーを提
供するものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a plastic optical fiber having excellent light transmission performance and mechanical properties and excellent heat resistance.

[問題点を解決するための手段] 上記の目的のために種々検討を重ねた結果,本発明に
到達した。
[Means for Solving the Problems] As a result of various studies for the above-described purpose, the present invention has been reached.

即ち本発明は,芯鞘構造を有するプラスチック光ファ
イバーにおいて,該芯成分が脂肪族系のN−置換マレイ
ミドモノマー単位を含む重合体であって,該芯成分にp
−アルコキシフェノールを含有することを特徴とする耐
熱性に優れたプラスチック光ファイバーに関するもので
ある。
That is, the present invention relates to a plastic optical fiber having a core-sheath structure, wherein the core component is a polymer containing an aliphatic N-substituted maleimide monomer unit,
-It relates to a plastic optical fiber excellent in heat resistance characterized by containing an alkoxyphenol.

本発明は,脂肪族系のN−置換マレイミドモノマー単
位を含んでなる重合体であれば特に限定されないが,副
反応の可能性が少なく,可視領域に特性吸収のないN−
置換基が炭化水素系のものが好ましい。更に,ポリマー
の機械的特性や熱安定性が優れ,ガラス転移温度が高い
N−置換基が炭素数1から6までの炭化水素が良く,具
体的にはメチル,エチル,イソプロピル,イソブチル,
第2ブチル,t−ブチル,2,2−ジメチルプロピル,シクロ
ヘキシル等の置換体が挙げられる。更に最も好ましく
は,モノマーの純度を高めるため精製がしやすいイソプ
ロピル,イソブチル,第2ブチル,t−ブチル,2,2−ジメ
チルプロピル等のN−置換基である。
The present invention is not particularly limited as long as it is a polymer containing an aliphatic N-substituted maleimide monomer unit, but has a low possibility of side reaction and has no characteristic absorption in the visible region.
Those having a hydrocarbon substituent are preferred. Further, a polymer having excellent mechanical properties and thermal stability, and having a high glass transition temperature and a hydrocarbon having an N-substituent of 1 to 6 carbon atoms, such as methyl, ethyl, isopropyl, isobutyl,
Substitutes such as sec-butyl, t-butyl, 2,2-dimethylpropyl, cyclohexyl and the like can be mentioned. Most preferably, it is an N-substituent such as isopropyl, isobutyl, sec-butyl, t-butyl, 2,2-dimethylpropyl, etc., which can be easily purified to increase the purity of the monomer.

なお,N−置換マレイミドのうち芳香族の置換体(特開
昭61−77806号)は,モノマー自身が黄色あるいは淡黄
色の結晶であるため,そのモノマー単位を含む重合体も
黄色となって透光性能の優れたファイバーは得られな
い。
In the case of an aromatic substituent of N-substituted maleimide (JP-A-61-77806), since the monomer itself is a yellow or pale yellow crystal, the polymer containing the monomer unit also turns yellow and becomes transparent. Fibers with excellent optical performance cannot be obtained.

N−置換マレイミドと共重合する第2成分は,得られ
るファイバーの透光性能,機械的特性及び生産性等を考
慮すれば,メタクリル酸メチルが最も好ましいが,共重
合性が良好なモノマーであればこれに限定されるもので
はない。更に,第2成分以外のアクリル酸メチル,アク
リル酸エチル,スチレン等の第3成分が数種類含まれて
も良い。
The second component copolymerized with the N-substituted maleimide is most preferably methyl methacrylate in consideration of the light transmission performance, mechanical properties, and productivity of the obtained fiber, but any monomer having good copolymerizability may be used. However, it is not limited to this. Further, several types of third components other than the second component, such as methyl acrylate, ethyl acrylate, and styrene, may be contained.

この共重合組成としては,脂肪族系のN−置換マレイ
ミドモノマー単位が5−70%が好ましく,更に好ましく
は,N−置換マレイミドモノマー単位が10−50%の時であ
る。N−置換マレイミドモノマー単位が5%未満では充
分な耐熱性が付与できないし,70%を超えるとファイバ
ーの機械的特性が著しく低下するからである。
The copolymer composition preferably has 5 to 70% of aliphatic N-substituted maleimide monomer units, and more preferably 10 to 50% of N-substituted maleimide monomer units. If the amount of the N-substituted maleimide monomer unit is less than 5%, sufficient heat resistance cannot be imparted, and if it exceeds 70%, the mechanical properties of the fiber will be significantly reduced.

こうして,芯成分に脂肪族系のN−置換マレイミドモ
ノマー単位を含む重合体を用いることにより,従来より
耐熱性の向上したファイバーが得られた。ところが,そ
れでもなお長時間高温環境下で使用する場合には,ファ
イバーに着色が生じて透光性能が低下するという問題が
あった。そこでこの問題を解決すべく,この重合体にお
いて種々検討を行ったところ,本発明に到達したのであ
る。
Thus, by using a polymer containing an aliphatic N-substituted maleimide monomer unit as the core component, a fiber with improved heat resistance was obtained. However, when used in a high temperature environment for a long time, there is a problem that the fiber is colored and the light transmission performance is reduced. Then, in order to solve this problem, various studies were conducted on this polymer, and the present invention was reached.

即ち,芯成分が脂肪族系のN−置換マレイミドモノマ
ー単位を含む重合体に種々安定剤を添加したところ,驚
くべきことにp−アルコキシフェノールを含有させた場
合に限って,更に耐熱性の向上したプラスチック光ファ
イバーが得られたのである。p−アルコキシフェノール
以外の安定剤,例えばヒンダードフェノール類,アミン
類,イオウ化合物,リン化合物等を添加した場合は,耐
熱性が向上しないどころか,逆に添加しない系よりも黄
変して透光性能が悪化した。即ち本発明は,脂肪族系の
N−置換マレイミドモノマー単位を含む重合体にp−ア
ルコキシフェノールが含まれていることが重要である。
しかしながら,p−アルコキシフェノールと同時に他の安
定剤を熱安定性が悪化しない極少量だけ使用することは
可能である。
That is, when various stabilizers were added to a polymer having a core component containing an aliphatic N-substituted maleimide monomer unit, the heat resistance was further improved surprisingly only when p-alkoxyphenol was contained. The resulting plastic optical fiber was obtained. When a stabilizer other than p-alkoxyphenol, for example, a hindered phenol, an amine, a sulfur compound, a phosphorus compound, etc. is added, not only does the heat resistance not improve, but on the contrary, it becomes yellower and translucent than the system without the addition. Performance deteriorated. That is, in the present invention, it is important that a polymer containing an aliphatic N-substituted maleimide monomer unit contains p-alkoxyphenol.
However, it is possible to use other stabilizers at the same time as the p-alkoxyphenol in very small amounts without deteriorating the thermal stability.

該p−アルコキシフェノールの種類は,透光性能を悪
化させないものであれば,特に限定されないが,該化合
物自身の安定性,生産性等を考慮すれば,置換基が炭素
数1から8までの炭化水素が良く,例えば,メチル,エ
チル,プロピル,ブチル,ヘキシル,オクチル等の置換
基が挙げられる。
The type of the p-alkoxyphenol is not particularly limited as long as it does not deteriorate the light transmission performance. However, in consideration of the stability, productivity, and the like of the compound itself, the substituent has 1 to 8 carbon atoms. Hydrocarbons are good, and examples thereof include substituents such as methyl, ethyl, propyl, butyl, hexyl, and octyl.

これらの化合物の芯重合体への配合方法は特に限定さ
れるものではなく,モノマー溶液に添加し,重合反応−
脱モノマー−紡糸工程を経由して芯重合体内に含有させ
ることもできるし,また脱モノマー工程や紡糸工程で配
合することもできる。
The method of compounding these compounds into the core polymer is not particularly limited.
It can be contained in the core polymer via a demonomer-spinning step, or can be blended in the demonomer step or the spinning step.

当該化合物の配合量は,30−5,000ppmAであり,更に好
ましくは50−3,000ppmAである。30ppm未満ではその耐熱
性向上作用が発現できないし,また5,000ppmを超えると
逆に耐熱性が低下し,透光性能も悪化するためである。
The compounding amount of the compound is 30 to 5,000 ppmA, more preferably 50 to 3,000 ppmA. If it is less than 30 ppm, the effect of improving the heat resistance cannot be exhibited, and if it exceeds 5,000 ppm, the heat resistance decreases and the light transmission performance also deteriorates.

一般にプラスチック光ファイバーに使用する芯重合体
の重合方法は,塊状重合法で,且つ重合率が40−70%の
連続重合法が提案されている。本発明においてもこの方
法が採用できるが,溶液重合法も可能である。この溶液
重合に使用できる溶媒の具体例としては,トルエン,キ
シレン等の炭化水素化合物,酢酸ブチル等の脂肪酸エス
テル化合物,ジオキサン等のエーテル化合物等が挙げら
れる。
Generally, as a polymerization method of a core polymer used for a plastic optical fiber, a bulk polymerization method and a continuous polymerization method having a polymerization rate of 40 to 70% have been proposed. Although this method can be employed in the present invention, a solution polymerization method is also possible. Specific examples of the solvent that can be used for the solution polymerization include hydrocarbon compounds such as toluene and xylene, fatty acid ester compounds such as butyl acetate, and ether compounds such as dioxane.

また,連続重合法,バッチ重合法何れの方法も採用で
きるが,高度なクリーン化のためばかりでなく,共重合
組成や分子量の均質な重合体を得るためにも連続重合法
がより好ましい。
Either a continuous polymerization method or a batch polymerization method can be employed, but the continuous polymerization method is more preferable not only for achieving a high degree of cleanness but also for obtaining a polymer having a uniform copolymer composition and molecular weight.

重合温度は,60−160℃の範囲が好ましく,また撹拌し
て均一な重合体を得るための重合混合物の粘度は,10−5
00ポイズの範囲が好ましい。
The polymerization temperature is preferably in the range of 60 to 160 ° C, and the viscosity of the polymerization mixture for obtaining a uniform polymer by stirring is 10 to 5 ° C.
A range of 00 poise is preferred.

この時の重合開始剤の種類については,重合中に副反
応や着色等の悪影響を及ぼさないものであれば,特に限
定されなく,重合温度・重合率・重合時間に応じてその
種類と量を選べば良い。例えば,アゾ−t−ブタン,ア
ゾ−t−オクタン等のアゾ化合物,ベンゾイルパーオキ
シド,ジ−t−ブチルパーオキシド,ジ−t−ブチルパ
ーベンゾエート等の有機過酸化物が挙げられる。
The type of the polymerization initiator at this time is not particularly limited as long as it does not adversely affect the side reaction or coloring during the polymerization, and the type and amount of the polymerization initiator are determined according to the polymerization temperature, the polymerization rate, and the polymerization time. You can choose. Examples thereof include azo compounds such as azo-t-butane and azo-t-octane, and organic peroxides such as benzoyl peroxide, di-t-butyl peroxide and di-t-butyl perbenzoate.

また,分子量調節剤の種類も特に指定はしないが,重
合中に副反応や着色等の悪影響を及ぼすものやモノマー
に対する連鎖移動定数が1.0より極めて小さいものは好
ましくない。この点から,n−プロピル,n−ブチル,n−ヘ
キシル,n−ドデシル,イソブチル,イソペンチル,t−ブ
チル,t−ヘキシル等のメルカプタン類等を適応量使用す
るのが好ましいが,重合開始剤の量を適切に設計するこ
とによって分子量調節剤を特に用いなくても,分子量を
調節できる。
Although the type of the molecular weight regulator is not particularly specified, those having adverse effects such as side reactions and coloration during polymerization and those having a chain transfer constant extremely smaller than 1.0 are not preferred. From this point, it is preferable to use mercaptans such as n-propyl, n-butyl, n-hexyl, n-dodecyl, isobutyl, isopentyl, t-butyl, and t-hexyl in an appropriate amount. By appropriately designing the amount, the molecular weight can be adjusted without using a molecular weight regulator.

こうして重合反応によって得られたポリマー溶液は脱
モノマー工程に供給し,未反応モノマー等の揮発物を除
去するが,その揮発物の量に比例してガラス転移温度が
低下するため,重合体中の揮発物の含有量はできる現り
少なくするのが好ましく,具体的には0.5重量%以下に
するのが良い。
The polymer solution thus obtained by the polymerization reaction is supplied to a demonomerization step to remove volatiles such as unreacted monomers. However, since the glass transition temperature decreases in proportion to the amount of the volatiles, the polymer solution in the polymer is removed. It is preferable to reduce the content of volatile matter as much as possible, and specifically, it is better to make it 0.5% by weight or less.

揮発物の除去された芯重合体は,該芯重合体よりも低
屈折率の鞘重合体とともに複合紡糸口金より同時に溶融
押出することにより,同心円構造を有するプラスチック
光ファイバーを製造できる。
The core polymer from which volatile substances have been removed is simultaneously melt-extruded from a composite spinneret together with a sheath polymer having a lower refractive index than the core polymer, whereby a plastic optical fiber having a concentric structure can be produced.

この際使用できる鞘成分としては,本発明で示される
芯重合体よりも少なくとも2%低い屈曲率を有し,且つ
透明性の優れたものであれば特に限定されるものではな
いが,メタクリル酸フルオロアルキル,α−フルオロア
クリル酸フルオロアルキル等の重合体あるいは共重合
体,及びポリフルオロオレフィン類等が好ましく使用で
きる。
The sheath component that can be used at this time is not particularly limited as long as it has at least a 2% lower flexion factor than the core polymer shown in the present invention and is excellent in transparency. Polymers or copolymers such as fluoroalkyl and α-fluoroalkyl acrylate, and polyfluoroolefins can be preferably used.

更に耐環境性を向上させる目的で光ファイバーに被覆
材を被せて使用することも可能である。好ましい被覆材
としては,ポリエチレン,ポリプロピレン,ポリ塩化ビ
ニル等のポリオレフィン類,あるいは架橋タイプのポリ
オレフィン類,ナイロン12等のポリアミド類,更にはポ
リブチレンテレフタレートとポリテトラメチレングリコ
ールの共重合体であるポリエステルエラストマー類等が
挙げられる。
Further, it is possible to use the optical fiber by covering the optical fiber with a coating material for the purpose of improving environmental resistance. Preferred coating materials include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, or crosslinked polyolefins, polyamides such as nylon 12, and polyester elastomers which are copolymers of polybutylene terephthalate and polytetramethylene glycol. And the like.

以下,実施例によって本発明を更に具体的に説明す
る。
Hereinafter, the present invention will be described more specifically with reference to examples.

なお,実施例中の透光性能の評価は次のようにして行
った。
The evaluation of the light transmission performance in the examples was performed as follows.

タングステンランプの光を回折格子で分波し,レンズ
で集光した後,両端を研磨した10−30mの光ファイバー
の一端から入射し,他の一端より出射した光をフォトダ
イオードで光電力として検出した。次に入射端を固定し
たまま入射端より約2mのところで切断し,同様に測定を
繰り返す,いわゆるカットバック法を用いて測定し,次
式に従って光ファイバーの透光損失を算出した。
The light from the tungsten lamp is split by a diffraction grating, collected by a lens, then incident from one end of a 10-30m optical fiber whose both ends are polished, and the light emitted from the other end is detected as optical power by a photodiode. . Next, the optical fiber was cut at a distance of about 2 m from the incident end while the incident end was fixed, and the measurement was repeated using the so-called cutback method. The transmission loss of the optical fiber was calculated according to the following equation.

損失値(dB/km)=(Pr−Ps)/(Ls−Lr)・1000 L:ファイバー長(m) P:光電力値(dBm) s:サンプルファイバー r:リファレンスファイバー また,光ファイバーの耐熱耐久性は次の方法により評
価した。
Loss value (dB / km) = (Pr-Ps) / (Ls-Lr) 1000 L: Fiber length (m) P: Optical power value (dBm) s: Sample fiber r: Reference fiber The property was evaluated by the following method.

測定に供せられた光ファイバーを所定の時間,熱風乾
燥器で加熱した後,初期と加熱後の透光損失を上記方法
に従って測定し比較した。
After the optical fiber subjected to the measurement was heated by a hot air drier for a predetermined time, the transmission loss at the initial stage and after the heating was measured and compared according to the above method.

[実施例] 実施例1 N−イソプロピルマレイミド 200.0 重量部 メタクリル酸メチル 466.7 重量部 n−ブチルメルカプタン 0.82重量部 アゾ−t−ブタン 1.0 重量部 p−メトキシフェノール 0.67重量部 (1,000ppm) を有する混合物を0.05μφ(濾過径)のテトラフルオロ
エチレン製フィルターでろ過しながら重合槽に仕込ん
だ。そこで窒素加圧下130℃で16時間重合した後,徐々
に加熱して最終的に180℃に16時間保った。
[Examples] Example 1 N-isopropylmaleimide 200.0 parts by weight Methyl methacrylate 466.7 parts by weight n-butylmercaptan 0.82 parts by weight Azo-t-butane 1.0 part by weight p-Methoxyphenol 0.67 parts by weight (1,000 ppm) The mixture was charged into the polymerization tank while being filtered through a 0.05 μφ (filtration diameter) filter made of tetrafluoroethylene. Then, polymerization was carried out at 130 ° C for 16 hours under nitrogen pressure, and then gradually heated and finally kept at 180 ° C for 16 hours.

更に昇温して230℃で1時間保った後,窒素加圧下で
徐々に脱モノマー工程に供給し,揮発物を除去してポリ
マーを得た。次にこの容器を芯鞘二層構造紡糸口金を有
する複合紡糸機に設置した。
After the temperature was further increased and maintained at 230 ° C. for 1 hour, the mixture was gradually supplied to a demonomerization step under nitrogen pressure to remove volatiles and obtain a polymer. Next, this container was installed in a composite spinning machine having a core-sheath double-layer spinneret.

一方,鞘材のα−フルオロアクリル酸テトラフルオロ
プロピル/α−フルオロアクリル酸トリフルオロエチル
共重合体(85/15重量比)は,210℃で溶融させた後口金
部に供給した。
On the other hand, a sheath material of tetrafluoropropyl α-fluoroacrylate / trifluoroethyl α-fluoroacrylate (85/15 weight ratio) was melted at 210 ° C., and then supplied to a die.

こうして紡糸温度230℃,引き取り速度5m/minで得ら
れたファイバーを160℃で2.0倍の延伸して芯材部径980
μm,鞘材部厚さ10μmの同心円状の光ファイバーを得
た。ついで,ポリプロピレンで被覆してコード化を行っ
た。
The fiber obtained at a spinning temperature of 230 ° C and a take-up speed of 5 m / min was stretched 2.0 times at 160 ° C and the core material diameter was 980.
A concentric optical fiber having a thickness of 10 μm and a sheath portion thickness of 10 μm was obtained. Next, it was coded by coating with polypropylene.

脱モノマー工程を経たポリマーは,残存モノマー量が
GC測定の結果0.16重量%であり,ガラス転移温度がDSC
測定の結果137℃であった。
The polymer that has undergone the demonomerization step has a residual monomer amount of
The result of GC measurement was 0.16% by weight, and the glass transition temperature was DSC.
As a result of the measurement, it was 137 ° C.

コード化した光ファイバーの25℃における透光損失値
は,660nmで220dB/kmであり,125℃で2000時間熱処理した
後の透光損失値は224dB/kmとほとんど変化はなかった。
また,巻き付け可能な最小直径が1mmまでと可撓性は良
好であり,ポリメタクリル酸メチルに匹敵する透光性能
・機械的特性を維持した上で耐熱性の優れたプラスチッ
ク光ファイバーが得られた。
The transmission loss value of the coded optical fiber at 25 ℃ was 220 dB / km at 660 nm, and the transmission loss value after heat treatment at 125 ℃ for 2000 h was almost unchanged at 224 dB / km.
In addition, the minimum diameter that can be wound was up to 1 mm, and the flexibility was good, and a plastic optical fiber with excellent heat resistance was obtained while maintaining the light transmission performance and mechanical properties comparable to polymethyl methacrylate.

比較例1 p−アルコキシフェノールを添加しない以外は実施例
1と同様にして光ファイバーを得た。
Comparative Example 1 An optical fiber was obtained in the same manner as in Example 1 except that p-alkoxyphenol was not added.

実施例2.3,比較例2.3 第1表の様にp−アルコキシフェノールの種類と添加
量を変更した以外は実施例1と同様にして光ファイバー
を得た。
Example 2.3, Comparative Example 2.3 An optical fiber was obtained in the same manner as in Example 1, except that the type and amount of p-alkoxyphenol were changed as shown in Table 1.

以下,物性評価は第1表に示す。 The physical property evaluation is shown in Table 1 below.

比較例4.5 添加剤として,p−アルコキシフェノールの代りにそれ
ぞれ、下記化学式で表される安定剤である“IRGANOX101
0",“IRGANOX1222"を用いた以外は実施例1と同様にし
て光ファイバーを得た。なお,“IRGANOX"は,チバガイ
ギー社の登録商標である。
Comparative Example 4.5 As an additive, instead of p-alkoxyphenol, a stabilizer represented by the following chemical formula “IRGANOX101” was used, respectively.
An optical fiber was obtained in the same manner as in Example 1, except that "IRGANOX1222" was used. "IRGANOX" is a registered trademark of Ciba Geigy.

実施例4 モノマー組成及び添加剤をそれぞれ第1表に示した様
に変更し,トルエンに全混合溶液中70重量%になるよう
に仕込んで溶液重合した以外は実施例1と同様にして光
ファイバーを得た。
Example 4 An optical fiber was prepared in the same manner as in Example 1 except that the monomer composition and the additives were changed as shown in Table 1 and solution polymerization was carried out by charging toluene to 70% by weight of the total mixed solution. Obtained.

実施例5 N−イソプロピルマレイミド 24.5 重量% メタクリル酸メチル 45.5 重量% トルエン 30.0 重量% アゾ−t−オクタン 0.095重量% p−メトキシフェノール 0.07 重量% (1,000ppm) となる様に,0.1μφ(濾過径)のテトラフルオロエチレ
ン製フィルターでろ過しながら5kg/hrの速度で重合槽に
供給した。重合温度は135℃であり,重合槽での平均滞
留時間は4時間として,反応したポリマー溶液は連続的
に計量ポンプで5kg/hrの速度で排出した。この溶液はベ
ント付き押出機に供給し,190−250℃,250−2torrの条件
で未反応モノマー及び溶媒を除去し,芯成分として複合
紡糸機に導入した。
Example 5 N-isopropylmaleimide 24.5 wt% Methyl methacrylate 45.5 wt% Toluene 30.0 wt% Azo-t-octane 0.095 wt% p-methoxyphenol 0.07 wt% (1,000 ppm) 0.1 μφ (filtration diameter) And fed to the polymerization tank at a rate of 5 kg / hr while filtering through a tetrafluoroethylene filter. The polymerization temperature was 135 ° C., the average residence time in the polymerization tank was 4 hours, and the reacted polymer solution was continuously discharged at a rate of 5 kg / hr by a metering pump. This solution was fed to a vented extruder to remove unreacted monomers and solvent at 190-250 ° C and 250-2 torr, and then introduced as a core component into a composite spinning machine.

これ以後は,実施例1と同様にして光ファイバーを得
た。
Thereafter, an optical fiber was obtained in the same manner as in Example 1.

重合槽出のポリマーの反応率は,GC測定の結果88重量
%であり,コポリマーの組成は元素分析の結果N−イソ
プロピルマレイミドが33重量%であった。
The reaction rate of the polymer discharged from the polymerization tank was 88% by weight as a result of GC measurement, and the composition of the copolymer was 33% by weight of N-isopropylmaleimide as a result of elemental analysis.

[発明の効果] 本発明のプラスチック光ファイバーは,従来のポリメ
タクリル酸メチルを芯成分としたものに比べ,匹敵する
透光性能や機械的特性を保持しながらも,耐熱耐久性に
おいては格段に優れたものであった。
[Effects of the Invention] The plastic optical fiber of the present invention is far superior in heat resistance and durability, while maintaining comparable light transmission performance and mechanical properties, as compared with a conventional fiber having polymethyl methacrylate as a core component. It was.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】芯鞘構造を有するプラスチック光ファイバ
ーにおいて,芯成分が脂肪族系のN−置換マレイミドモ
ノマー単位を含む重合体からなり,該芯成分中にp−ア
ルコキシフェノールを30−5,000ppm含有することを特徴
とする耐熱性プラスチック光ファイバー。
1. A plastic optical fiber having a core-sheath structure, wherein the core component comprises a polymer containing an aliphatic N-substituted maleimide monomer unit, and the core component contains 30-5,000 ppm of p-alkoxyphenol. A heat-resistant plastic optical fiber, characterized in that:
JP62248298A 1987-10-01 1987-10-01 Heat resistant plastic optical fiber Expired - Fee Related JP2615670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248298A JP2615670B2 (en) 1987-10-01 1987-10-01 Heat resistant plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248298A JP2615670B2 (en) 1987-10-01 1987-10-01 Heat resistant plastic optical fiber

Publications (2)

Publication Number Publication Date
JPS6490406A JPS6490406A (en) 1989-04-06
JP2615670B2 true JP2615670B2 (en) 1997-06-04

Family

ID=17175999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248298A Expired - Fee Related JP2615670B2 (en) 1987-10-01 1987-10-01 Heat resistant plastic optical fiber

Country Status (1)

Country Link
JP (1) JP2615670B2 (en)

Also Published As

Publication number Publication date
JPS6490406A (en) 1989-04-06

Similar Documents

Publication Publication Date Title
KR940008671B1 (en) Plastic optical fiber
TWI270554B (en) Optical fiber, optical fiber cable and plug-attached optical fiber cable
KR910005547B1 (en) Heat resisting plastic optical fiber and method for its manufacture
JPH0610683B2 (en) Plastic fiber optic fiber
JP2615670B2 (en) Heat resistant plastic optical fiber
JPS59200201A (en) Optical transmission fiber
US5244733A (en) Optical fibers and core-forming compositions
EP0849315B1 (en) Acrylic flexible light pipe of improved photo-thermal stability
JPH0711604B2 (en) Optical fiber sheath material polymer
JP2507355B2 (en) Plastic fiber optic fiber
US5153288A (en) Cladding material for optical fiber and method for its manufacture
KR900006002B1 (en) Light transmitting fiber
JPS63163306A (en) Plastic optical fiber
JP3102185B2 (en) Manufacturing method of optical fiber clad material
JPS63115106A (en) Plastic optical fiber
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JP3102181B2 (en) Manufacturing method of optical fiber clad material
JP2555576B2 (en) Plastic optical fiber with excellent thermal decomposition resistance
JP2710361B2 (en) Plastic optical fiber
JPH03107105A (en) Optical fiber clad material
JP4545730B2 (en) Optical fiber, optical fiber cable and optical fiber cable with plug
JPS62147404A (en) Plastic optical fiber and its production
JPS62291603A (en) Production of plastic optical fiber
JPS6380205A (en) Optical transmission type fiber
JPS61281204A (en) Super heat resistant plastic optical fiber and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees