JP2555576B2 - Plastic optical fiber with excellent thermal decomposition resistance - Google Patents

Plastic optical fiber with excellent thermal decomposition resistance

Info

Publication number
JP2555576B2
JP2555576B2 JP62000825A JP82587A JP2555576B2 JP 2555576 B2 JP2555576 B2 JP 2555576B2 JP 62000825 A JP62000825 A JP 62000825A JP 82587 A JP82587 A JP 82587A JP 2555576 B2 JP2555576 B2 JP 2555576B2
Authority
JP
Japan
Prior art keywords
polymer
optical fiber
plastic optical
thermal decomposition
core component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62000825A
Other languages
Japanese (ja)
Other versions
JPS63168605A (en
Inventor
正四郎 種市
壽 田澤
平六 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62000825A priority Critical patent/JP2555576B2/en
Publication of JPS63168605A publication Critical patent/JPS63168605A/en
Application granted granted Critical
Publication of JP2555576B2 publication Critical patent/JP2555576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Multicomponent Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱分解性に優れたプラスチック光ファイ
バに関する。更に詳しくはプラスチック光フィバの成型
加工温度付近において耐熱分解性に優れ、熱劣化が抑制
されることにより、透光性能の改善されたプラスチック
光ファイバに関する。
TECHNICAL FIELD The present invention relates to a plastic optical fiber having excellent thermal decomposition resistance. More specifically, the present invention relates to a plastic optical fiber that has excellent thermal decomposition resistance near the molding processing temperature of a plastic optical fiber and suppresses thermal degradation, thereby improving the light transmission performance.

(従来の技術) プラスチック光ファイバは、石英などの無機系光ファ
イバに比較して可撓性に富むため、大口径にできると共
に軽量であるために加工性や施工性に優れている。近年
プラスチック光ファイバは該長所に加え、透光性能も改
善されてきたためコンピュータの端末配線や移動体内な
どの短距離通信分野において需要が急速に増大して来
た。
(Prior Art) Since a plastic optical fiber is more flexible than an inorganic optical fiber such as quartz, it can have a large diameter and is lightweight, and thus is excellent in workability and workability. In recent years, plastic optical fibers have been improved in light transmission performance in addition to the above advantages, and therefore, demand has rapidly increased in the field of short-distance communication such as terminal wiring of computers and mobile units.

しかしながら、従来のプラスチック光ファイバの透光
性能は例えば650mmにおける損失では約200dB/kmと理論
値の100dB/kmに対して大きく未だ十分ではない。例えば
特開昭58−68003で提案されているように単量体中に混
合している空気中のダストを徹底的に除去した後、重合
体を製造する方法で得られたプラスチック光ファイバ
は、確かに異物散乱の抑制が図られ、透光損失もある程
度まで低下させることができるものの未だ十分ではな
い。つまりプラスチック光ファイバの成型加工時に受け
る熱によって熱分解物が生成するため、紫外吸収損失が
増大し、透光性能を悪化させる。
However, the light transmission performance of the conventional plastic optical fiber is still not sufficient, for example, at a loss of 650 mm, which is about 200 dB / km, which is large compared to the theoretical value of 100 dB / km. For example, a plastic optical fiber obtained by a method of producing a polymer after thoroughly removing dust in the air mixed in a monomer as proposed in JP-A-58-68003, Although it is possible to suppress the scattering of foreign matter and reduce the light transmission loss to some extent, this is not yet sufficient. In other words, a thermal decomposition product is generated by the heat received during the molding process of the plastic optical fiber, so that the ultraviolet absorption loss increases and the light transmission performance deteriorates.

又特開昭58−193502で提案されているように単量体に
含有される酸素及び過酸化物を除去する方法で得られた
プラスチック光ファイバは、酸化分解による紫外吸収損
失の抑制はできるものの、耐熱分解性の向上がはかられ
たものでないため、該プラスチック光ファイバの成型加
工時の熱分解による紫外吸収損失の増大は抑制できな
い。
Further, the plastic optical fiber obtained by the method of removing oxygen and peroxide contained in the monomer as proposed in JP-A-58-193502 can suppress the ultraviolet absorption loss due to oxidative decomposition. Since the thermal decomposition resistance is not improved, it is impossible to suppress an increase in ultraviolet absorption loss due to thermal decomposition during molding of the plastic optical fiber.

更に、熱分解抑制のための方法として分子量の低下や
重合体溶融粘度の低減剤添加などによる成型加工温度の
低下も提案されているが、その際はプラスチック光ファ
イバの機械強度等の低下が問題となる。
Furthermore, as a method for suppressing thermal decomposition, it has been proposed to lower the molding temperature by lowering the molecular weight or adding a polymer melt viscosity reducing agent, but in that case, the decrease in mechanical strength of the plastic optical fiber is a problem. Becomes

(発明が解決しようとする問題点) 本発明の目的はかかる従来法の欠点である成型加工時
の熱分解を、プラスチック光ファイバの機械強度等を低
下させることなく抑制し、熱分解物の変性による紫外吸
収損失を低下させた低損失プラスチック光ファイバを提
供するにある。
(Problems to be Solved by the Invention) The object of the present invention is to suppress thermal decomposition during molding, which is a drawback of the conventional method, without deteriorating the mechanical strength of the plastic optical fiber, and to modify the thermal decomposition product. It is to provide a low loss plastic optical fiber with reduced ultraviolet absorption loss.

(問題点を解決するための手段) 本発明は次の構成を有する。(Means for Solving Problems) The present invention has the following configurations.

芯成分がメタクリル酸メチル単位を少なくとも80重量
%以上含有する重合体であり、鞘成分が該芯成分重合体
よりも屈折率が2%以上小さい重合体からなる芯鞘複合
型プラスチック光ファイバにおいて、前記芯成分重合体
が下記(I)式で表わされる構造単位を含有することを
特徴とする耐熱分解性に優れたプラスチック光ファイ
バ。
A core-sheath composite plastic optical fiber, wherein the core component is a polymer containing at least 80% by weight of methyl methacrylate units, and the sheath component is a polymer having a refractive index smaller than that of the core component polymer by 2% or more, A plastic optical fiber excellent in thermal decomposition resistance, wherein the core component polymer contains a structural unit represented by the following formula (I).

((I)式中、Rは炭素数1から18までのアルキレン基
を表わす) 以下本発明の構成を詳しく説明する。
(In the formula (I), R represents an alkylene group having 1 to 18 carbon atoms) Hereinafter, the constitution of the present invention will be described in detail.

本発明における芯成分重合体はメタクリル酸メチル単
位を80重量%以上含有し、かつ、前記(I)式の構造単
位を含有するものであれば特に限定されるものではな
く、ポリメタクリル酸メチル、メタクリル酸メチル系共
重合体あるいは、ポリメタクリル酸メチルを主体とする
重合体混合物のいずれであっても良い。その際共重合体
としての副単量体としては、メタクリル酸メチルと共重
合し得るものであれば特に限定されることがないが、透
明性、機械特性、耐熱性の点からスチレン、アクリル酸
メチル、アクリル酸エチル、メタクリル酸シクロヘキシ
ル、メタクリル酸フェニル、メタクリル酸ボルニル、メ
タクリル酸アダマンチルなどのビニル化合物が好適であ
る。またポリメタクリル酸メチルと混合する重合体とし
ては透明性の点からポリスチレン、ポリカーボネート等
の重合体が好適であるが特に限定されるものではない。
The core component polymer in the present invention is not particularly limited as long as it contains 80% by weight or more of methyl methacrylate unit and contains the structural unit of the formula (I), and polymethyl methacrylate, It may be either a methyl methacrylate-based copolymer or a polymer mixture mainly composed of polymethyl methacrylate. At that time, the sub-monomer as the copolymer is not particularly limited as long as it can be copolymerized with methyl methacrylate, but from the viewpoint of transparency, mechanical properties and heat resistance, styrene and acrylic acid. Vinyl compounds such as methyl, ethyl acrylate, cyclohexyl methacrylate, phenyl methacrylate, bornyl methacrylate and adamantyl methacrylate are preferred. Further, as the polymer to be mixed with polymethylmethacrylate, a polymer such as polystyrene or polycarbonate is suitable from the viewpoint of transparency, but is not particularly limited.

次いで本発明における鞘成分重合体としては芯成分重
合体よりも屈折率が2%以上小さいものであれば特に限
定されるものではないが、テトラフルオロエチレン単
位、フッ素化ビニリデン単位等のフッ素化オレフィン化
合物を含む重合体、更にはメタクリル酸トリフルオロエ
チル単位、メタクリル酸ペンタフルオロプロピル単位等
のメタクリル酸フッ素化アルキルエステル化合物を含む
重合体が好適である。
Next, the sheath component polymer in the present invention is not particularly limited as long as it has a refractive index smaller than that of the core component polymer by 2% or more, but is a fluorinated olefin such as a tetrafluoroethylene unit or a fluorinated vinylidene unit. A polymer containing a compound, and further a polymer containing a methacrylic acid fluorinated alkyl ester compound such as a trifluoroethyl methacrylate unit and a pentafluoropropyl methacrylate unit are preferable.

続いて本発明において、芯成分重合体に含有される下
記(I)式に表わされる構造単位と該重合体の耐熱分解
性との関係について説明する。
Next, in the present invention, the relationship between the structural unit represented by the following formula (I) contained in the core component polymer and the thermal decomposition resistance of the polymer will be described.

((I)式中、Rは炭素数1から18までのアルキレン基
を表わす) この(I)式の構造単位は、連鎖移動剤としてHS−R
−SH(Rは炭素数1〜18のアルキレン基)で表される2
官能アルキレンメルカプタン化合物を用いて、メタクリ
ル酸メチルを重合させることによって生成される。
(In the formula (I), R represents an alkylene group having 1 to 18 carbon atoms) The structural unit of the formula (I) is HS-R as a chain transfer agent.
-SH (R is an alkylene group having 1 to 18 carbon atoms) 2
It is produced by polymerizing methyl methacrylate with a functional alkylene mercaptan compound.

メタクリル酸メチル単位を主成分とする重合体におい
ては、熱分解は重合体末端よりジッパー状に進行するこ
とはよく知られている。又該重合体の重合停止機構より
末端にビニル基を含有し該ビニル基末端が熱分解されや
すいこともよく知られている。そのため重合体末端のビ
ニル基封止剤としてメルカプタン化合物などの連鎖移動
剤が使用される。
It is well known that in a polymer having a methyl methacrylate unit as a main component, thermal decomposition proceeds in a zipper form from the polymer end. It is also well known that the polymer contains a vinyl group at its end due to the polymerization termination mechanism of the polymer and the end of the vinyl group is easily decomposed by heat. Therefore, a chain transfer agent such as a mercaptan compound is used as a vinyl group-capping agent at the polymer terminal.

しかしながら、本発明者らの検討によると、重合体末
端ビニル基への連鎖移動が完全に進行した際の該重合体
の熱分解性は使用する連鎖移動剤により大きく異なるこ
とが明らかとなった。
However, according to the studies by the present inventors, it was revealed that the thermal decomposability of the polymer when the chain transfer to the vinyl group at the terminal of the polymer was completely proceeded was largely different depending on the chain transfer agent used.

つまり第1表に示す加熱重量保持率の比較から明らか
のように、連鎖移動剤として1官能チオグリコール酸エ
ステル化合物、1官能アルキルメルカプタン化合物及
び、2官能アルキレンメルカプタン化合物のうちの1種
を選択して比較した場合、2官能アルキレンメルカプタ
ンを使用した場合の重合体が驚くほど加熱重量保持率が
高く、耐熱分解性に優れている。
That is, as is clear from the comparison of the heating weight retention rate shown in Table 1, one of a monofunctional thioglycolic acid ester compound, a monofunctional alkyl mercaptan compound and a bifunctional alkylene mercaptan compound was selected as the chain transfer agent. In comparison, the polymer obtained by using the bifunctional alkylene mercaptan has a surprisingly high heating weight retention rate and excellent thermal decomposition resistance.

この要因について更に詳しく検討したところ、1官能
メルカプタン化合物は、重合体末端への水素の連鎖移動
が行なった後、1官能メルカプタン化合物ラジカルが新
たに単量体に付加するため、重合体末端にはS−C結合
が生成するのに対し、2官能メルカプタンを使用した際
にはS−C結合は重合体鎖のほぼ中央に存在し重合体末
端は全て水素付加によるビニル基の封止された官能基で
あることが明らかとなった。
As a result of further study on this factor, the monofunctional mercaptan compound showed that the monofunctional mercaptan compound radical was newly added to the monomer after the chain transfer of hydrogen to the polymer terminal. Whereas the S-C bond is formed, when a bifunctional mercaptan is used, the S-C bond is present in the approximate center of the polymer chain, and the polymer ends are all functionalized with a vinyl group blocked by hydrogenation. It became clear that it was a group.

ここでメタン誘導体の結合解離エネルギーにおいて、
CH3−Hの際は102Kcal/mol、又CH3−CH3では84.2Kcal/m
olであるのに対して、CH3S−CH3では73.2Kcal/molと解
離エネルギーが小さいことからS−C結合重合体末端に
生成した方が耐熱分解性が低下すると考察することがで
きる。
Here, in the bond dissociation energy of the methane derivative,
CH 3 -H time of 102Kcal / mol, also CH 3 in -CH 3 84.2Kcal / m
On the other hand, since CH 3 S—CH 3 has a small dissociation energy of 73.2 Kcal / mol, it can be considered that the thermal decomposition resistance decreases when it is generated at the terminal of the S—C bond polymer.

かかる点より本発明における目的を達成するためには
芯成分重合体中に下記(I)式に表わされる構造単位を
有することが必要である。
From this point of view, in order to achieve the object of the present invention, it is necessary that the core component polymer has a structural unit represented by the following formula (I).

((I)式中、Rは炭素数1から18までのアルキレン基
を表わす) ここで上記(I)式構造単位を形成する連鎖移動剤と
してはジメルカプトメタン、ジメルカプトエタン、ジメ
ルカプトヘキサンなどを例示することができるが、炭素
数1から18までのアルキレン基を有する2官能メルカプ
タンであれば、特に限定されることはない。
(In the formula (I), R represents an alkylene group having 1 to 18 carbon atoms) Here, as the chain transfer agent forming the structural unit of the formula (I), dimercaptomethane, dimercaptoethane, dimercaptohexane, etc. However, it is not particularly limited as long as it is a bifunctional mercaptan having an alkylene group having 1 to 18 carbon atoms.

以下実施例をもって本発明の効果を更に詳しく述べ
る。
The effects of the present invention will be described in more detail with reference to the following examples.

(実施例) 実施例1 メタクリル酸メチルを酸素含有量が0.1ppm以下である
窒素にてバブル処理した後、雰囲気圧が80Torrの真空下
で蒸留精製した。引き続き該メタクリル酸メチルにラジ
カル開始剤として予め蒸留精製された2.2′アゾビスオ
クタン1.7×10-5mol/フィードメタクリル酸メチル単量
体1molと連鎖移動剤として予め蒸留精製されたジメルカ
プトエタン1.9×10-3mol/フィードメタクリル酸メチル
単量体1molを混合させて重合温度130℃の完全混合反応
域に連続供給した。反応域での滞留時間を3.5時間とし
て、重合を実施した後、反応液を260℃/1Torrの条件下
にありピストンフロー型流動にて計算された滞留時間が
10分である脱モノマ型押出機に連続供給した。更に引き
続き押出機頭より製糸頭までのピストンフロー型流動に
て計算された滞留時間が30分である配管巾を260℃加熱
条件下で輸送し、製糸頭より260℃の紡糸温度にてテト
ラフルオロプロピルメタクリレート/メタクリル酸メチ
ル共重合体よりなる鞘成分重合体と複合紡糸し、プラス
チック光ファイバとした。得られたプラスチック光ファ
イバの芯成分であるポリメタクリル酸メチルを分析した
ところ、脱モノマ型押出機頭で採取した重合体の分子量
(Mw)は88000、残存モノマ率0.10%、二量体含有量30p
pmであり、製糸頭にて採取した重合体の残存モノマ率も
0.10%二量体含有量も30ppmと熱劣化は全く認められな
かった。このプラスチック光ファイバの透光損失は400n
m、450nm、570nm、650nmの各波長において150dB/km、10
0dB/km、65dB/km、135dB/kmと極めて透光性能の優れた
ものであった。
(Example) Example 1 Methyl methacrylate was bubble-treated with nitrogen having an oxygen content of 0.1 ppm or less, and then purified by distillation under a vacuum with an atmospheric pressure of 80 Torr. Subsequent 2.2'azobisoctane 1.7 x 10 -5 mol / distilled and purified as a radical initiator to the methyl methacrylate and 1 mol of feed methyl methacrylate monomer and dimercaptoethane 1.9 x previously distilled and purified as a chain transfer agent. 10 −3 mol / feed of methyl methacrylate monomer (1 mol) was mixed and continuously supplied to the complete mixing reaction zone at a polymerization temperature of 130 ° C. After the polymerization was carried out with the residence time in the reaction zone being 3.5 hours, the reaction liquid was under the condition of 260 ° C / 1 Torr and the residence time calculated by the piston flow type flow
It was continuously fed to a de-monomer type extruder for 10 minutes. Furthermore, a pipe width with a residence time of 30 minutes calculated by the piston flow type flow from the extruder head to the yarn making head is transported under heating conditions of 260 ° C, and tetrafluoro is used at a spinning temperature of 260 ° C from the yarn making head. A plastic optical fiber was obtained by composite spinning with a sheath component polymer composed of a propyl methacrylate / methyl methacrylate copolymer. Analysis of poly (methyl methacrylate), which is the core component of the obtained plastic optical fiber, showed that the molecular weight (Mw) of the polymer collected by the de-monomer type extruder head was 88,000, the residual monomer ratio was 0.10%, and the dimer content was 30p
pm, and the residual monomer ratio of the polymer collected at the yarn making head is also
The 0.10% dimer content was also 30 ppm and no thermal deterioration was observed. The transmission loss of this plastic optical fiber is 400n
150 dB / km, 10 at m, 450 nm, 570 nm and 650 nm wavelengths
The light transmission performance was extremely excellent at 0 dB / km, 65 dB / km, and 135 dB / km.

比較例1 連鎖移動剤をノルマルブチルメルカプタンとした以外
は実施例1と全く同様の方法により、プラスチック光フ
ァイバを製造した。芯成分重合体の脱モノマ型押出機頭
における残存モノマ率は0.10%、二量体含有量70ppmに
対し、製糸頭における残存モノマ率0.15%二量体含有量
140ppmと0.05%程度の熱分解が認められた。プラスチッ
ク光ファイバの透光損失は400nm、450nm、570nm、650nm
の各波長においてそれぞれ270dB/km、190dB/km、90dB/k
m、155dB/kmと特に近紫外部における透光性能の劣った
ものしか得られなかった。
Comparative Example 1 A plastic optical fiber was produced in the same manner as in Example 1 except that the chain transfer agent was normal butyl mercaptan. The residual monomer ratio of the core component polymer in the de-monomer type extruder head is 0.10%, and the residual monomer ratio in the yarn making head is 0.15%, while the dimer content is 70 ppm.
Thermal decomposition of 140ppm and about 0.05% was observed. Transmission loss of plastic optical fiber is 400nm, 450nm, 570nm, 650nm
270 dB / km, 190 dB / km, 90 dB / k at each wavelength of
Only m and 155 dB / km were obtained, especially those with poor light transmission performance in the near ultraviolet region.

比較例2 連鎖移動剤としてチオグリコール酸2エチルヘキシル
を用いた以外は実施例1と全く同様の方法によりプラス
チック光ファイバを製造した。芯成分重合体の脱モノマ
型押出機頭における残存モノマ率0.12%、二量体含有量
180ppmであるのに対して、製糸頭における残存モノマ率
0.25%、二量体含有量390ppmとかなり熱劣化の進行した
ものであった。プラスチック光ファイバの透光損失は40
0nm、450nm、570nm、650nmの各波長においてそれぞれ42
0dB/km、330dB/km、115dB/km、190dB/kmと更に透光性能
の悪化したものしか得られなかった。
Comparative Example 2 A plastic optical fiber was produced in the same manner as in Example 1 except that 2-ethylhexyl thioglycolate was used as the chain transfer agent. Residual monomer ratio of depolymerization type extruder head of core component polymer 0.12%, dimer content
180ppm, whereas the residual monomer ratio at the spinning head
It was 0.25% and the dimer content was 390 ppm, indicating that thermal deterioration had progressed considerably. The transmission loss of plastic optical fiber is 40
42 at each wavelength of 0 nm, 450 nm, 570 nm and 650 nm
Only 0 dB / km, 330 dB / km, 115 dB / km and 190 dB / km with further deteriorated light transmission performance were obtained.

(発明の効果) 本発明のプラスチック光ファイバの効果をまとめると
次の通りである。
(Effects of the Invention) The effects of the plastic optical fiber of the present invention are summarized as follows.

芯成分重合体の耐熱分解性に極めて優れている。The core component polymer is extremely excellent in thermal decomposition resistance.

プラスチック光ファイバ成型加工時の熱分解が非常に
小さいため、熱分解物による透光損失が極めて小さく、
プラスチック光ファイバの透光性能に優れている。
Since the thermal decomposition during plastic optical fiber molding is extremely small, the light transmission loss due to the thermal decomposition product is extremely small,
Excellent light transmission performance of plastic optical fiber.

特に近紫外外部における透光損失が小さい。Especially, the light transmission loss outside the near ultraviolet is small.

芯成分重合体としてポリメタクリル酸メチルを製造す
る場合、連鎖移動定数が1に近いため、芯成分重合体の
分子量分布も極めて狭くできる。
When polymethylmethacrylate is produced as the core component polymer, the chain transfer constant is close to 1, so that the molecular weight distribution of the core component polymer can be extremely narrowed.

連鎖移動定数が大きいため、芯成分重合体の分子量調
節の際は少量の添加で済む。
Since the chain transfer constant is large, a small amount can be added when adjusting the molecular weight of the core component polymer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】芯成分がメタクリル酸メチル単位を少なく
とも80重量%以上含有する重合体であり、鞘成分が該芯
成分重合体よりも屈折率が2%以上小さい重合体からな
る芯鞘複合型プラスチック光ファイバにおいて、前記芯
成分重合体が下記(I)式で表される構造単位を含有す
ることを特徴とする耐熱分解性に優れたプラスチック光
ファイバ。 ((I)式中、Rは炭素数1から18までのアルキレン基
を表わす)
1. A core-sheath composite type in which the core component is a polymer containing at least 80% by weight of methyl methacrylate units, and the sheath component is a polymer having a refractive index of 2% or more smaller than that of the core component polymer. In the plastic optical fiber, the core component polymer contains a structural unit represented by the following formula (I), which is excellent in thermal decomposition resistance. (In the formula (I), R represents an alkylene group having 1 to 18 carbon atoms)
JP62000825A 1987-01-06 1987-01-06 Plastic optical fiber with excellent thermal decomposition resistance Expired - Lifetime JP2555576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000825A JP2555576B2 (en) 1987-01-06 1987-01-06 Plastic optical fiber with excellent thermal decomposition resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000825A JP2555576B2 (en) 1987-01-06 1987-01-06 Plastic optical fiber with excellent thermal decomposition resistance

Publications (2)

Publication Number Publication Date
JPS63168605A JPS63168605A (en) 1988-07-12
JP2555576B2 true JP2555576B2 (en) 1996-11-20

Family

ID=11484426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000825A Expired - Lifetime JP2555576B2 (en) 1987-01-06 1987-01-06 Plastic optical fiber with excellent thermal decomposition resistance

Country Status (1)

Country Link
JP (1) JP2555576B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161500A (en) * 1977-10-14 1979-07-17 E. I. Du Pont De Nemours And Company Process for low attenuation methacrylate optical fiber

Also Published As

Publication number Publication date
JPS63168605A (en) 1988-07-12

Similar Documents

Publication Publication Date Title
US5148511A (en) Low refractive index plastics for optical fiber cladding
TWI270554B (en) Optical fiber, optical fiber cable and plug-attached optical fiber cable
EP0950672B1 (en) Method for producing a fluorine-containing polymer
KR940008671B1 (en) Plastic optical fiber
Kostov et al. Novel fluoroacrylated copolymers: synthesis, characterization and properties
JPS60260905A (en) Plastic optical fiber
JP2555576B2 (en) Plastic optical fiber with excellent thermal decomposition resistance
JP4091689B2 (en) Method for producing methyl methacrylate polymer and method for producing plastic optical fiber
KR0150189B1 (en) Transparent thermoplastic moulding material consisting of esters of 2,3-difluoracrylic acid
JPS61223806A (en) Plastic copolymer optical fiber
JP2008291138A (en) Production method of methyl methacrylic copolymer, and manufacturing method of plastic optical fiber
JP2507355B2 (en) Plastic fiber optic fiber
JP2005509911A (en) Method for producing graded index plastic optical fiber, and graded index optical fiber obtained by the method
JPH0359501A (en) Production of plastic optical fiber
JP2009227787A (en) Method for producing methyl methacrylate-based copolymer, and method for producing plastic optical fiber
JP4520364B2 (en) Amorphous copolymers, optical components and plastic optical fibers
JPS6395402A (en) Core and cladding type plastic optical fiber
JP3102181B2 (en) Manufacturing method of optical fiber clad material
JP2615670B2 (en) Heat resistant plastic optical fiber
JPH0532722B2 (en)
JP2003155311A (en) Crosslinkable functional polymer usable in producing light guide material
US20050084230A1 (en) Polymers based on CTFE/VCA/HFP or TFE/VCA/HFP
JPS60222804A (en) Light transmitting fiber
JPH0665328A (en) Fluorinated acrylic rubber composition
JPH0643464B2 (en) (Meth) acrylate and method for producing (co) polymer using the same