JP2611182B2 - Degassing device - Google Patents

Degassing device

Info

Publication number
JP2611182B2
JP2611182B2 JP6125471A JP12547194A JP2611182B2 JP 2611182 B2 JP2611182 B2 JP 2611182B2 JP 6125471 A JP6125471 A JP 6125471A JP 12547194 A JP12547194 A JP 12547194A JP 2611182 B2 JP2611182 B2 JP 2611182B2
Authority
JP
Japan
Prior art keywords
gas
permeable membrane
gas permeable
fluid
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6125471A
Other languages
Japanese (ja)
Other versions
JPH07328313A (en
Inventor
一司 三木
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6125471A priority Critical patent/JP2611182B2/en
Publication of JPH07328313A publication Critical patent/JPH07328313A/en
Application granted granted Critical
Publication of JP2611182B2 publication Critical patent/JP2611182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水その他、流体中の溶
存気体量を制御するための脱入気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deaeration device for controlling the amount of dissolved gas in a fluid such as water.

【0002】[0002]

【従来の技術】水その他の溶液流体中から望ましくない
溶存気体をできるだけ除去するとか、逆にそれら流体中
に所望の気体を溶解させる等、いずれにしても流体中の
溶存気体量を制御する技術の必要性は、今現在はもとよ
り、将来的に見ても、各種半導体産業を始め、薬品産
業、食品産業、分析産業、上下水道事業等々、種々の分
野で益々もって高まってくると思われる。
2. Description of the Related Art A technique for controlling the amount of dissolved gas in a fluid such as removing unwanted dissolved gas from water or other solution fluid as much as possible or dissolving a desired gas in the fluid. It is believed that the necessity of this technology will continue to increase in various fields including the semiconductor industry, the pharmaceutical industry, the food industry, the analysis industry, and the water supply and sewerage business, as well as now and in the future.

【0003】例えば半導体産業では、純水中に溶存して
いる酸素量が問題になっている。シリコン表面を弗酸溶
液に漬けることで水素終端化するような場合、当該水素
終端を実現する化学反応よりも酸化反応の方が優勢だか
らである。そこで、純水中の溶存酸素量を低減させる必
要があるが、これに適う従来技術としては、バブリング
法と真空脱気法がある。
For example, in the semiconductor industry, the amount of oxygen dissolved in pure water has become a problem. This is because, when the silicon surface is hydrogen-terminated by immersing it in a hydrofluoric acid solution, the oxidation reaction is more predominant than the chemical reaction for realizing the hydrogen termination. Therefore, it is necessary to reduce the amount of dissolved oxygen in pure water. Conventional techniques suitable for this include a bubbling method and a vacuum degassing method.

【0004】溶存気体量は外部分圧に比例した平衡を保
つため、酸素の外部分圧を下げればその溶存量も減る。
バブリング法ではこれを実現するため、高純度な不活性
ガス(代表的にはアルゴンガス)を細かな泡として流体
中に多量に通過させる。この手法は、半導体産業のみな
らず、一般的に言って電気化学の実験現場で良く採用さ
れる。実験で目的とする反応に比し、溶存酸素や、ある
場合には溶存窒素の方が活性反応種となることが多いか
らである。また、こうした電気化学分野では、純水以外
の溶媒を用いた各種化学反応制御時にも、望ましくない
溶存気体を除去するために、あるいは逆に所望の気体を
溶解させるために、こうしたバブリング法が採用される
こともある。
[0004] In order to maintain the equilibrium of the dissolved gas amount in proportion to the external partial pressure, if the external partial pressure of oxygen is reduced, the dissolved amount is also reduced.
In the bubbling method, in order to realize this, a large amount of high-purity inert gas (typically, argon gas) is passed through the fluid as fine bubbles. This technique is often employed not only in the semiconductor industry, but also generally in electrochemical lab sites. This is because dissolved oxygen and, in some cases, dissolved nitrogen are more active reactive species than the reaction desired in the experiment. In addition, in the electrochemical field, such a bubbling method is employed to remove undesired dissolved gases or conversely dissolve a desired gas even when controlling various chemical reactions using a solvent other than pure water. It may be done.

【0005】これに対し、真空脱気法では、文字通り流
体外部空間を真空(低圧)環境にすることで酸素等、溶
存気体の外部分圧を下げる。実際の装置では、その効率
を上げるため、真空槽中に処理対象の流体を噴霧する。
On the other hand, in the vacuum degassing method, the external partial pressure of dissolved gas such as oxygen is reduced by literally setting the fluid outer space to a vacuum (low pressure) environment. In an actual apparatus, a fluid to be treated is sprayed into a vacuum chamber in order to increase the efficiency.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記した従来
の溶存気体量制御方法には、それぞれ問題がある。バブ
リング法は当該バブリングを行なうための流体貯留タン
クを必須とし、流路中において流体流を安定に保ちなが
らバブリングすることはできない。一般にパイプとして
構成される流体流路内に気泡を発生させると流体の流れ
を妨げるからである。また、バブリングに用いた気体の
回収も困難である。仮に、バブリング装置をかなり小型
に作製することができれば、こうした欠点もかなり緩和
されるが、これまでに提案されている技術に従う限り、
バブリング法のみにて不要な溶存気体を殆ど追い出し得
るようにし、かつその処理時間短縮のために高効率化す
るには、それなりに大型な装置(タンク)を必要とし、
したがってまた、高価な高純度不活性ガスも多量に用い
ねばならない。
However, each of the above-mentioned conventional methods for controlling the amount of dissolved gas has problems. The bubbling method requires a fluid storage tank for performing the bubbling, and cannot perform bubbling while maintaining a stable fluid flow in the flow path. This is because the generation of bubbles in the fluid flow path generally configured as a pipe impedes the flow of the fluid. Also, it is difficult to recover the gas used for bubbling. If the bubbling device could be made quite small, these disadvantages would be alleviated considerably, but as long as the technology proposed so far was followed,
Unnecessary dissolved gas can be almost driven out only by the bubbling method, and a large-sized apparatus (tank) is required to increase the efficiency to shorten the processing time.
Therefore, a large amount of expensive high-purity inert gas must also be used.

【0007】真空脱気法の場合にはさらに、バブリング
装置とは比ぶるもない程に装置が巨大化する。この手法
に従う場合、真空槽中から純水が逆流するのを防ぐた
め、少なくとも1気圧に相当する水中高さである10mを
越えた高所から注水せねばならない。したがって、真空
脱気塔と呼ばれる巨大設備の建設が不可避であり、不経
済であるばかりでなく、融通性に極めて乏しい。
[0007] In the case of the vacuum degassing method, the size of the apparatus is as large as that of the bubbling apparatus. When this method is followed, in order to prevent the backflow of pure water from the vacuum chamber, water must be injected from a height higher than 10 m, which is a water height equivalent to at least one atmosphere. Therefore, the construction of a huge facility called a vacuum degassing tower is inevitable, not only uneconomical, but also extremely poor in flexibility.

【0008】ところが、流体中の溶存気体量制御に対す
るニーズの方は高まる一方である。例えば、 (1) 食品等の腐敗速度を落とすため、水中の酸素量を下
げたい, (2) 上下水道パイプ等、各種配管中の錆の発生を防ぐた
め、パイプ内水流中の溶存酸素量を下げたい, (3) 各種溶液を用いた化学反応制御の高精度化のため、
当該溶液中から目的とする反応の阻害要因となる溶存気
体を除去したい, (4) クロマトグラフィ分析では分析対象溶液中に溶け込
んだ各種気体がノイズとしてのスペクトルピークを出現
させるので、信号対雑音比を上げ、分析精度を上げるた
めに、当該溶液中の溶存気体量を低減したい, (5) 同位体元素を用いた放射線検出では、対象溶液中に
溶け込んだラドン等の放射性気体が問題になるので、こ
れを除去したい, (6) タービン等にあって高圧の掛かる環境下で使用され
ている流体にあっては、溶存気体が分離して気液混合状
態となり易く、重大な事故に繋がる危険を招くことがあ
るので、溶存気体をできるだけ除去したい,等々、実に
様々、かつ切実な要求がある。
However, the need for controlling the amount of dissolved gas in a fluid is increasing. For example, (1) To reduce the rate of spoilage of foods, etc., to reduce the amount of oxygen in water, (2) To prevent rust in various pipes such as water and sewage pipes, reduce the amount of dissolved oxygen in the water flow in the pipes. (3) To improve the accuracy of chemical reaction control using various solutions,
I want to remove dissolved gas that is a factor that hinders the target reaction from the solution. (4) In chromatographic analysis, various gases dissolved in the solution to be analyzed produce spectral peaks as noise. Want to reduce the amount of dissolved gas in the solution in order to increase the analysis accuracy. (5) In the case of radiation detection using isotopes, radioactive gas such as radon dissolved in the target solution becomes a problem. (6) In the case of a fluid used in a high pressure environment such as a turbine, the dissolved gas is likely to separate and become a gas-liquid mixed state, leading to a serious accident. In some cases, there is a real and varied need to remove dissolved gases as much as possible.

【0009】このような種々の要求に応えるためには、
まずもって従来の脱気装置ないし入気装置のように、装
置構造的に使途ないし使用個所に制約があるとか、維持
管理費をも含めてコスト的に高くつくものであってはな
らず、コンパクトで使用個所に余り制約のない、融通性
に優れたものでなければならない。その上で、性能的に
も満足で、純水に代表される各種流体中から不要な気体
を効率的かつ高信頼度で抜くことができ、あるいは逆に
所望の気体を効率的に溶解させ得るものでなければなら
ない。本発明はまさしく、このような観点から成された
ものである。
In order to meet such various demands,
First of all, unlike conventional degassing devices or air intake devices, there must be no restrictions on the use or location of the device in terms of the structure of the device, or the cost must be high including maintenance and management costs. It must be highly flexible, with no restrictions on where it is used. On top of that, it is also satisfactory in performance, and it is possible to efficiently and reliably remove unnecessary gas from various fluids represented by pure water, or to dissolve the desired gas efficiently Must be something. The present invention has been made from such a point of view.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、従来のように単一の処理段にてのみ、
流体中からの不要気体の脱気ないしは流体中への所望気
体の入気をなすのではなく、流体流路中に不要気体の脱
気部と不要気体以外の気体の入気部とをカスケードに設
け、かつ、それら脱気部、入気部については気体透過膜
を利用した装置構造にすることを提案する。ただし、必
要にして十分なように、処理段数は最小限に抑えるべく
し、脱気部と入気部とはそれぞれ一つずつとして、入気
部の後にさらに追加の脱気部を設けるようなことはしな
い。
In order to achieve the above object, according to the present invention, only a single processing stage as in the prior art is used.
Rather than degassing unnecessary gas from the fluid or entering the desired gas into the fluid, cascade the degassing part of the unnecessary gas and the gas inlet part other than the unnecessary gas in the fluid flow path. It is proposed to provide a device structure using a gas permeable membrane for the deaeration section and the intake section. However, as necessary and sufficient, the number of processing stages should be minimized, and the deaeration section and the intake section are each one, and an additional deaeration section is provided after the intake section. I will not do it.

【0011】従って換言すると、本発明では、流体が流
れる流体流路の途中に、流体がその内面に沿って流れる
周壁の一部もしくは全部が気体透過膜になっている部分
を二個所に設けて、一方の気体透過膜の外部空間は負圧
にして脱気部とし、他方の気体透過膜の外部空間は所定
気体の満たされた正圧にして入気部として、これら一つ
の脱気部と一つの入気部とによってのみ構成された脱入
気装置を提案する。
In other words, in other words, in the present invention, two or more portions in which a part or the whole of the peripheral wall through which the fluid flows along the inner surface is a gas permeable membrane are provided in the middle of the fluid flow path through which the fluid flows. The outer space of one of the gas permeable membranes is a negative pressure to serve as a deaeration section, and the outer space of the other gas permeable membrane is a positive pressure filled with a predetermined gas and serves as an inlet section. A ventilating device constituted only by one inlet is proposed.

【0012】この基本構成を満たした上で、より望まし
い下位の構成を有する装置として、本発明ではまた、 (a) 脱気部における上記一方の気体透過膜の外部空間は
当該気体透過膜を収める密閉容器の内部空間であり、排
気装置によりこの内部空間が排気されることで当該一方
の気体透過膜の上記外部空間が負圧にされる一方で、入
気部における上記他方の気体透過膜の外部空間も当該気
体透過膜を収める第二の密閉容器の内部空間であり、こ
の第二の密閉容器に接続した気体圧送装置により供給さ
れる気体が当該第二の密閉容器の内部空間に満たされる
ことで当該他方の気体透過膜の外部空間が上記正圧にさ
れるように構成されていること; を特徴とする脱入気装置や、 (b) 脱気部、入気部にてそれぞれ用いる上記の気体透過
膜は、流体が流入してくる入口開口と流体が流出して行
く出口開口を有し、流体が当該入口開口から出口開口に
向かいその内面に沿って流れる周壁を有する中空筒状部
材としたこと; を特徴とする脱入気装置をも提案する。
In addition to the above basic configuration, the present invention further provides a device having a more desirable lower configuration. In the present invention, there is also provided: (a) an outer space of the one gas permeable membrane in the degassing section accommodates the gas permeable membrane; The internal space of the closed vessel, and the external space of the one gas permeable membrane is set to a negative pressure by exhausting the internal space by the exhaust device, while the other gas permeable membrane of the air inlet is formed. The external space is also the internal space of the second closed container that contains the gas permeable membrane, and the gas supplied by the gas pressure pump connected to the second closed container is filled in the internal space of the second closed container. And the outer space of the other gas permeable membrane is made to have the above positive pressure; and (b) used in the degassing part and the gas inlet part, respectively. The above gas permeable membrane is A hollow cylindrical member having an inlet opening to enter therein and an outlet opening through which fluid flows out, and having a peripheral wall through which the fluid flows from the inlet opening toward the outlet opening and along the inner surface thereof; A venting device is also proposed.

【0013】[0013]

【実施例】図1には本発明に従って構成された一実施例
である脱入気装置100 の要部概略構成が示されている。
すでに述べたような要旨構成に従う本発明を実現するた
めに、流体Fが流れる流体流路の途中に、周壁の一部も
しくは全部が気体透過膜12になっている部分を二個所に
設け、一方の気体透過膜12の外部空間22は負圧にして脱
気部91とし、他方の気体透過膜12の外部空間22は所定気
体52の満たされた正圧にして入気部92とすれば良いが、
図示実施例では、より具体的に、次のような装置構成を
有している。
FIG. 1 shows a schematic structure of a main part of an air intake / removal device 100 according to an embodiment of the present invention.
In order to realize the present invention according to the gist configuration as already described, two or more parts in which a part or all of the peripheral wall is a gas permeable membrane 12 are provided in the middle of the fluid flow path in which the fluid F flows. The outer space 22 of the gas permeable membrane 12 may be a negative pressure to be a deaerator 91, and the outer space 22 of the other gas permeable membrane 12 may be a positive pressure filled with a predetermined gas 52 and an inlet 92. But,
The illustrated embodiment has the following device configuration more specifically.

【0014】まず、脱気部91も入気部92も、流体Fが流
入してくる入口開口11から流体Fが流出して行く出口開
口12に向かい、その内面に沿って当該流体Fが流れる周
壁を有する中空筒状部材10を有しており、特にこの実施
例の場合には、この中空筒状部材10そのものが気体透過
膜12により構成されている。換言すると、この実施例で
は、中空筒状部材10の周壁の全てが筒状(後述のよう
に、実際にはかなりな長さとなる場合が多いので、チュ
ーブ状ないしホース状と言っても良い)の気体透過膜12
によって構成されている。ここで、本発明で言う気体透
過膜12とは、処理対象の液体は通過させないが脱入気の
対象となる気体は透過させる程度の微細径の孔を無数に
持ったものを言い、このような部材は、後にその一例を
挙げるように、すでに市場にて容易に入手可能である。
First, both the degassing section 91 and the air inlet section 92 are directed from the inlet opening 11 into which the fluid F flows into the outlet opening 12 through which the fluid F flows out, and the fluid F flows along the inner surface thereof. A hollow cylindrical member 10 having a peripheral wall is provided. In the case of this embodiment, in particular, the hollow cylindrical member 10 itself is constituted by a gas permeable membrane 12. In other words, in this embodiment, all of the peripheral wall of the hollow cylindrical member 10 is cylindrical (it may be called a tube or a hose because it is often quite long as described later). Gas permeable membrane 12
It is constituted by. Here, the gas permeable membrane 12 referred to in the present invention refers to a gas permeable membrane having a myriad of fine-diameter holes that do not allow a liquid to be processed to pass therethrough but allow a gas to be deaerated to pass therethrough. Such components are already readily available on the market, as will be exemplified later.

【0015】各中空筒状部材10は、この実施例ではそれ
ぞれ密閉容器20内に収められ、したがって各中空筒状部
材10ないし気体透過膜12の外部空間22は、実質的に当該
中空筒状部材10を収める密閉容器20の内部空間となって
いる。脱気部91を構成する方の密閉容器20には、一般的
な排気ポンプ41で構成できる排気装置40が接続してお
り、これが稼働すると当該密閉容器20の内部空間である
気体透過膜12の外部空間22は相対的に負圧になる。これ
に対し、入気部92の方の密閉容器20には、例えばコンプ
レッサ53により構成できる気体圧送装置50が接続してお
り、これが稼働すると、流体Fに対して入気させたい気
体を貯蔵している気体源51からの当該入気用気体52が密
閉容器20の内部空間(気体透過膜12の外部空間22)内に
加圧供給され、当該内部空間22は相対的に正圧になる。
ただし、気体圧送装置50と気体源51は必ずしも別途な機
能部材でなくとも良く、例えばいわゆるガスボンベ54で
あれば、これが気体圧送装置50と気体源51とを兼ねるこ
とになる。
In this embodiment, each hollow cylindrical member 10 is housed in a closed container 20, so that each hollow cylindrical member 10 or the outer space 22 of the gas permeable membrane 12 substantially corresponds to the hollow cylindrical member. It is an internal space of a closed container 20 for storing the 10. An exhaust device 40, which can be constituted by a general exhaust pump 41, is connected to the closed container 20 that constitutes the degassing section 91, and when it operates, the gas permeable membrane 12 that is the internal space of the closed container 20 is operated. The outer space 22 becomes relatively negative pressure. On the other hand, a gas pumping device 50, which can be constituted by, for example, a compressor 53, is connected to the closed container 20 on the side of the inlet section 92, and when this operates, the gas to be fed into the fluid F is stored. The incoming gas 52 from the gas source 51 is supplied under pressure into the internal space of the sealed container 20 (the external space 22 of the gas permeable membrane 12), and the internal space 22 becomes relatively positive.
However, the gas pumping device 50 and the gas source 51 do not necessarily have to be separate functional members. For example, in the case of a so-called gas cylinder 54, this serves as both the gas pumping device 50 and the gas source 51.

【0016】脱気部91の気体透過膜12も入気部92の気体
透過膜12も、それぞれ流体Fの流体経路中に直列に、か
つ互いにはカスケードに(継続的に)なるように、脱気
部91側の気体透過膜12の入口開口11は密閉容器20の入口
側コネクタ21に接続されて流体Fが流れてくる入口パイ
プ31の出口端に接続され、入気部92側の気体透過膜12の
出口開口13は密閉容器20の出口側コネクタ21に接続され
て処理した流体Fを流し出す出口パイプ33の入口端に接
続される一方、一対の気体透過膜12,12間は、同様に各
密閉容器20,20に設けたコネクタ21,21に接続される接
続パイプ32により連結されている。
Both the gas permeable membrane 12 of the degassing section 91 and the gas permeable membrane 12 of the inlet section 92 are degassed in series in the fluid path of the fluid F and cascade (continuously) with each other. The inlet opening 11 of the gas permeable membrane 12 on the side of the gas inlet 91 is connected to the outlet end of the inlet pipe 31 through which the fluid F flows, and is connected to the inlet side connector 21 of the sealed container 20. The outlet opening 13 of the membrane 12 is connected to the inlet end of an outlet pipe 33 that is connected to the outlet side connector 21 of the closed container 20 and through which the processed fluid F flows, while the space between the pair of gas permeable membranes 12 is the same. Are connected to each other by connecting pipes 32 connected to connectors 21, 21 provided in the closed containers 20, 20, respectively.

【0017】こうした本脱入気装置100 は、次のように
用いることができる。今例えば、入口パイプ31を介して
本装置100 に供給される流体Fから、溶存している特定
の気体を除去する過程を考えて見る。供給された流体F
が、まず脱気部91中の筒状気体透過膜12に入ると、当該
気体透過膜12の外部空間22が排気装置40により排気され
て負圧になっている結果、流体F中の溶存気体は相対的
により分圧の低い気体透過膜12の側に引かれて当該膜12
に溶解し、さらにこの気体透過膜12に溶解した気体はよ
り分圧の低い外部空間22の側に引かれ、最終的には当該
負圧となっている外部空間22に排出される。
The present deaeration device 100 can be used as follows. Now, for example, consider the process of removing a specific dissolved gas from the fluid F supplied to the apparatus 100 through the inlet pipe 31. Fluid F supplied
First, when the gas enters the cylindrical gas permeable membrane 12 in the degassing section 91, the external space 22 of the gas permeable membrane 12 is exhausted by the exhaust device 40 to a negative pressure. Is drawn to the side of the gas permeable membrane 12 having a relatively lower partial pressure,
The gas dissolved in the gas permeable membrane 12 is further drawn to the side of the outer space 22 having a lower partial pressure, and finally discharged to the outer space 22 having the negative pressure.

【0018】このようにして、脱気部91の筒状気体透過
膜12内を流れる流体Fは、当該筒状気体透過膜12の周壁
内面に沿って流れている間に溶存気体が連続的に除去さ
れ、出口開口13から次段の入気部92に向けて送出される
までには、すでに相当に溶存気体濃度の低い状態にされ
る。溶存気体濃度の低減の程度は、上記メカニズムから
明らかなように、負圧の程度、流体Fの流速、中空筒状
部材10ないし筒状気体透過膜12の長さ等、種々のパラメ
ータによって変わるが、後述の実験例に認められるよう
に、そのような条件設定は設計的に簡単に行なえ、特に
困難な設定手法を必要とすることなく十分な効果が得ら
れる。
As described above, the fluid F flowing through the cylindrical gas permeable membrane 12 of the degassing section 91 is continuously dissolved while the dissolved gas flows along the inner peripheral surface of the cylindrical gas permeable membrane 12. By the time the gas is removed and sent from the outlet opening 13 to the next inlet section 92, the dissolved gas concentration is already considerably low. As is clear from the above mechanism, the degree of reduction of the dissolved gas concentration varies depending on various parameters such as the degree of negative pressure, the flow rate of the fluid F, the length of the hollow cylindrical member 10 or the cylindrical gas permeable membrane 12, and the like. As will be seen from the experimental examples described later, such a condition setting can be easily performed in terms of design, and a sufficient effect can be obtained without requiring a particularly difficult setting method.

【0019】このようにして、本脱入気装置100 中の脱
気部91により、まずは一次処理を受けた流体Fは、さら
に入気部92に入り、ここで二次処理を受ける。入気部92
の密閉容器20内の空間22には、気体源51から得られる入
気用気体52として、流体Fから除去しようとする以外の
気体が気体圧送装置50により加圧供給されている。その
ため、流体F内から除去しようとする溶存気体の分圧で
見ると、筒状気体透過膜12の周壁(この実施例では既述
のように、当該周壁自体が気体透過膜製であるが)を挟
んで対向する外部空間22内の分圧は低く、その結果、こ
の入気部92における気体透過膜12内に流れ込んだ流体F
の溶存気体は、やはり脱気部91におけると同じ過程を経
て、気体透過膜12の外部空間22に出て行くようになる。
したがって、この入気部92における入気用気体52の入気
処理は、当該入気用気体52と異なる種類であって流体F
から脱気させようとする溶存気体にして見れば、やはり
脱気処理となる。
As described above, the fluid F which has been subjected to the primary treatment by the deaeration section 91 in the present deaeration apparatus 100 first enters the intake section 92, where it undergoes the secondary treatment. Inlet unit 92
A gas other than the gas F to be removed from the fluid F is supplied to the space 22 in the closed container 20 by pressurization as a gas 52 for intake obtained from a gas source 51. Therefore, when viewed in terms of the partial pressure of the dissolved gas to be removed from the fluid F, the peripheral wall of the cylindrical gas permeable membrane 12 (although in this embodiment, the peripheral wall itself is made of a gas permeable membrane as described above) The partial pressure in the external space 22 opposed to the air inlet is low, and as a result, the fluid F flowing into the gas permeable membrane 12 in the air inlet 92 is
The dissolved gas comes out to the outer space 22 of the gas permeable membrane 12 through the same process as in the degassing section 91.
Therefore, the inlet process of the inlet gas 52 in the inlet section 92 is of a type different from the inlet gas 52 and the fluid F
From the viewpoint of the dissolved gas to be degassed, the degassing process is also performed.

【0020】これをもう少し詳しく言うと、本発明の脱
入気装置100 では、まず第一段目の脱気部91において最
終的に除去しようとする溶存気体のみならず、全ての種
類の溶存気体に関して流体F中からの脱気を図り、次に
カスケード接続された第二段目の入気部92にて、流体F
中に溶存させても差し支えない気体52により、溶存させ
たくない気体を置換的に除去していることになる。
More specifically, in the deaeration apparatus 100 of the present invention, not only the dissolved gas to be finally removed in the first-stage deaeration section 91 but also all kinds of dissolved gases Is degassed from inside the fluid F, and then the fluid F
By the gas 52 which may be dissolved therein, the gas which is not desired to be dissolved is replacedly removed.

【0021】そのため、本脱入気装置は、上記のように
最終的に溶存させたくない気体の二段階に亙る効果的脱
気のために用い得る外、所望の気体をのみ溶存させる入
気装置としても使うことができる。すなわち、まずは一
次処理として、脱気部91により種類の如何にかかわらず
流体F中から溶存気体を抜いておき、如何なる種類の気
体も十分低濃度な状態にしておいてから、入気部92によ
り、気体源51に貯蔵してある所望の気体52を気体圧送装
置50の稼働の下、密閉容器20の内部空間内に加圧供給す
れば、当該気体52はその気体にとって分圧の低い方に移
行しようとして筒状気体透過膜12の周壁に溶解し、その
後、さらに分圧の低い流体F中に向けて移行するため、
結局、意図した入気用気体52を流体F中に効果的に溶け
込ませることができる。特に望ましいことに、本発明の
装置100 によると、上記の一次処理により、流体F中に
溶存している気体濃度はかなり僅かになっているので、
入気部92にて所望の気体を溶け込ませるときに、当該流
体Fが気体の溶け易い状態になっている。そのため、入
気処理時間は大いに短縮でき、あるいはまた、入気部92
の装置構成を大型化しないで済む。
Therefore, this degassing device can be used for two-stage effective degassing of a gas that is not desired to be finally dissolved, as described above, and is a gas inlet device that only dissolves a desired gas. Can also be used as That is, firstly, as a primary treatment, the dissolved gas is extracted from the fluid F regardless of the type by the deaeration unit 91, and any type of gas is kept in a sufficiently low concentration state. If the desired gas 52 stored in the gas source 51 is pressurized and supplied into the internal space of the closed vessel 20 under operation of the gas pumping device 50, the gas 52 has a lower partial pressure for the gas. In order to move, it dissolves in the peripheral wall of the cylindrical gas permeable membrane 12, and then moves toward the fluid F having a lower partial pressure.
As a result, the intended intake gas 52 can be effectively dissolved in the fluid F. Particularly desirably, according to the apparatus 100 of the present invention, the concentration of the gas dissolved in the fluid F is considerably reduced by the primary treatment described above.
When a desired gas is dissolved in the inlet section 92, the fluid F is in a state in which the gas is easily dissolved. Therefore, the air intake processing time can be greatly reduced, or
It is not necessary to increase the size of the device configuration.

【0022】なお、上述の意味からすると、脱気部91と
入気部92の互いの配置関係は、図1に示されている通
り、流体流路の上流側に脱気部91を設け、下流側に入気
部92を配するのが望ましいことが分かる。ただしこれは
限定的なことではなく、装置配置の都合上や、例えば脱
気部91の方をより小型化したい場合には、入気部92の方
を上流側に設けることも可能である。また、入気部92に
おける流体F中からの溶存気体の除去ないし流体F中へ
の所望気体52の入気は、溶存気体にしてみれば当該密閉
容器20内が負圧に、入気用気体52にしてみれば正圧にな
るような圧力関係であれば生ずるので、この関係が満た
される限り、入気用気体52にて満たされた密閉容器20内
の内部空間22(気体透過膜12の外部空間22)の絶対圧力
値は密閉容器外と変わりなくても(例えば内外共に1気
圧であっても)良い場合もある。さらに、密閉容器20内
に供給する入気用気体52の純度を常に落とさないため
に、入気部92における密閉容器20には図示していないが
排気口も設け、気体圧送装置50ないしガスボンベ54から
供給される入気用気体52が常に密閉容器内部を通過して
排気口から出て行く構成にすることもできる。
In view of the above, the positional relationship between the deaerator 91 and the inlet 92 is such that the deaerator 91 is provided upstream of the fluid flow path as shown in FIG. It can be seen that it is desirable to arrange the air inlet 92 on the downstream side. However, this is not a limitation, and the air inlet 92 may be provided on the upstream side due to the arrangement of the apparatus or when, for example, it is desired to make the deaerator 91 smaller. Also, the removal of dissolved gas from the fluid F or the entry of the desired gas 52 into the fluid F in the inlet section 92 can be achieved by dissolving the gas into the closed vessel 20 at a negative pressure, As long as this relationship is satisfied, the internal space 22 (in the gas permeable membrane 12) in the closed container 20 filled with the inlet gas 52 is generated as long as this relationship is satisfied. In some cases, the absolute pressure value of the outer space 22) may be the same as that of the outside of the closed container (for example, the inside and outside may be 1 atm). Further, in order to not always lower the purity of the gas 52 for air supply supplied into the closed container 20, an exhaust port (not shown) is provided in the closed container 20 in the inlet section 92, and the gas pressure feeding device 50 or the gas cylinder 54 is provided. It is also possible to adopt a configuration in which the intake gas 52 supplied from the container always passes through the inside of the closed container and exits from the exhaust port.

【0023】ここで、図1に示される実施例装置100 を
用い、酸素溶存量の少ない純水を得るために行なった具
体的な実験例を挙げる。装置構成例は図2に示す通り
で、公知既存の純水製造器61により製造された比抵抗1
8.3MΩ,有機濃度5ppb以下の出力水WOをポンプ62によ
り、流速1リットル/分で本脱入気装置100 に流した。用いた
純粋製造器61は、ナトリウム等のアルカリ金属は0.07pp
b 以下に、また他の金属も0.1ppb以下にまで、除去可能
なものである。本装置100 の脱気部91及び入気部92にお
ける中空筒状部材10として用いた気体透過膜12は、埼玉
県川口市所在の株式会社イーアールシーから型番名「E
RC301601」として市販のもので、内径は約 1c
m,長さは約10mである。したがって、この気体透過膜1
2は、中空筒状であることに間違いはないが、五感表現
的には長尺チューブ状ないしホース状のものとなってお
り、また、これを一直線に伸ばして密閉容器20内に収め
たのではなく、全長約 1mの塩化ビニール製パイプ状密
閉容器20内にくねくねと曲げながら収めた。もちろん、
原理的には密閉容器の材質に制約はない。
Here, a specific example of an experiment conducted to obtain pure water with a small amount of dissolved oxygen using the apparatus 100 of the embodiment shown in FIG. 1 will be described. An example of the device configuration is as shown in FIG.
Output water W O having a concentration of 8.3 MΩ and an organic concentration of 5 ppb or less was flowed into the deaeration apparatus 100 by the pump 62 at a flow rate of 1 liter / minute. The pure manufacturing equipment 61 used was 0.07 pp for alkali metals such as sodium.
b and other metals can be removed down to 0.1 ppb or less. The gas permeable membrane 12 used as the hollow cylindrical member 10 in the deaeration section 91 and the air inlet section 92 of the present apparatus 100 was manufactured by ERC Co., Ltd.
RC301601, commercially available, with an inner diameter of about 1c
m, length is about 10m. Therefore, this gas permeable membrane 1
There is no doubt that 2 has a hollow cylindrical shape, but it is a long tube or hose in terms of the five senses, and this was stretched straight and housed in a closed container 20. Instead, it was bent and wound into a closed pipe 20 made of vinyl chloride, about 1 m in length. of course,
In principle, there is no restriction on the material of the closed container.

【0024】この状態で、周囲環境温度20℃の下、まず
は脱気部91にて、排気ポンプ41として用いたエンブレム
ポンプにより密閉容器20内を数十Torrに排気しながら、
純水製造器出力水WOに飽和量である8.1ppmの酸素を溶存
させて上記流速条件で流した所、脱気部91の出力部分で
溶存酸素量はすでに1.2ppmにまで減少した。次に、入気
部92において、気体圧送装置50と気体源51とを兼ねる高
純度アルゴンガスボンベ54から図1中には示していない
レギュレータを介し、ゲージ圧1気圧で入気部密閉容器
20内に高純度アルゴンガスを圧気し、充填した。その結
果、本脱入気装置100 から出力される処理済純水Wpにお
ける溶存酸素濃度は、溶存酸素計で測定した所、50ppb以
下にまで低減していた。
In this state, at an ambient environment temperature of 20 ° C., the inside of the airtight container 20 is first evacuated to several tens of Torr by the emblem pump used as the exhaust pump 41 in the degassing section 91.
When a saturated amount of 8.1 ppm of oxygen was dissolved in the output water W O of the pure water generator and flowed under the above flow rate conditions, the dissolved oxygen amount was already reduced to 1.2 ppm at the output portion of the deaeration unit 91. Next, in the inlet section 92, a high-purity argon gas cylinder 54, which also serves as the gas pumping device 50 and the gas source 51, is supplied at a gauge pressure of 1 atm via a regulator not shown in FIG.
High-purity argon gas was pressurized and filled in 20. As a result, the dissolved oxygen concentration in the treated pure water Wp output from the deaeration device 100 was reduced to 50 ppb or less as measured by a dissolved oxygen meter.

【0025】さらに、こうした溶存酸素濃度低減効果を
検証するため、(111)表面に酸化膜を有するシリコン基板
を弗酸溶液によりエッチングし、酸化膜を除去した後の
水素終端を試みた。この反応では純水Wp中における有機
物の量も関係するため、本脱入気装置100 を用いたが故
に純水Wpの質が落ちていないことも予め確認し、もちろ
ん、気体透過膜12は十分に洗浄した。弗酸はEL級のも
のを用いた。
Further, in order to verify the effect of reducing the dissolved oxygen concentration, a silicon substrate having an oxide film on the (111) surface was etched with a hydrofluoric acid solution, and hydrogen termination after removing the oxide film was attempted. In this reaction, since the amount of organic matter in the pure water Wp is also involved, it was also confirmed in advance that the quality of the pure water Wp did not deteriorate due to the use of the deaeration device 100. Was washed. The hydrofluoric acid used was of EL grade.

【0026】従来は、こうした処理の前後に用いる純水
中に含まれている溶存酸素によってシリコン表面がすぐ
に酸化されてしまい、水素終端が実現できないか、少な
くとも稀にしか実現できなかった。ところが、本脱入気
装置100 により処理した純水Wpを用いて水素終端のため
の一連の化学処理を施した所、劣勢な反応過程である水
素終端が、優勢な酸化反応に拒まれることなく実現でき
ることが確認された。すなわち、水素終端処理を施した
シリコン基板を超真空槽中に入れ、100℃程度で半日間予
備加熱を行ない、その後、高速電子線回折図形を観測し
た。この回折図形を忠実に描画したものが図3(A) であ
るが、水素終端が確実になされていることに対応してい
わゆる「1×1構造」が表れており、さらに、基板を 4
50℃にまで加熱すると、同じく回折図形を忠実に描画し
た図3(B) に示される通り、いわゆる「2×1構造」が
観測された。つまり、図3(A) 中における隣接回折点間
の間隔aが、図3(B) 中ではその半分のa/2になり、
水素の離脱があったことを示している。その後、当該シ
リコン基板を 800℃にまで加熱してみたが、これによ
り、シリコン基板上に炭化物等も形成されないことも確
認した。
Conventionally, the silicon surface is immediately oxidized by dissolved oxygen contained in pure water used before and after such treatment, and hydrogen termination cannot be realized, or at least rarely. However, when a series of chemical treatments for hydrogen termination was performed using the pure water Wp treated by the deaeration device 100, hydrogen termination, which is the inferior reaction process, was not rejected by the predominant oxidation reaction. It was confirmed that it could be realized. That is, the hydrogen-terminated silicon substrate was placed in an ultra-vacuum chamber, preheated at about 100 ° C. for half a day, and then a high-speed electron diffraction pattern was observed. FIG. 3 (A) shows a faithful drawing of this diffraction pattern, and a so-called “1 × 1 structure” appears in response to the fact that the hydrogen termination has been reliably performed.
When heated to 50 ° C., a so-called “2 × 1 structure” was observed, as shown in FIG. In other words, the distance a between adjacent diffraction points in FIG. 3A is half of a / 2 in FIG.
This indicates that hydrogen was released. Thereafter, the silicon substrate was heated to 800 ° C., and it was confirmed that no carbides or the like were formed on the silicon substrate.

【0027】このような実験例から理解されるように、
本発明の脱入気装置100 を用いたことの実践的な効果は
甚だ大きい。処理段数を複数段にするとは言っても、脱
気に一段、入気に一段のみの、最低限の二段構成で十分
満足な程度にまで、効率的かつ効果的に流体中から不要
な溶存気体を除去できるため、装置もかなり小型にな
る。そのため流体Fの既存の配管系に対し、僅かな改造
で本脱入気装置100 を組込むことができ、従来の真空脱
気法に認められたような、巨大かつ移動不能な高経費設
備を要するものとは比べものにならない高い融通性が得
られる。なお、脱気部91と入気部92とを流体Fの流体流
路の上流側から下流側に向かってカスケードに配するに
しても、その離間距離は任意であり、それらの間に本装
置100 の効果を損なわない他の部材が介在しても構わな
い。もちろん、既述の通り、処理対象の流体Fは上記実
験例におけるような純水ないし水に限らず、任意種類の
流体(溶液ないし溶媒)に展開できるし、上記実験例に
認められるようなアルゴンガスの混入で溶存酸素を追い
出すメカニズムからすれば、逆にアルゴンガスに限ら
ず、流体中に溶解させたい任意気体52を効率的、効果的
に入気する装置として本発明装置100 を用いることがで
きる。
As can be understood from such experimental examples,
The practical effect of using the deaeration device 100 of the present invention is extremely large. Although the number of processing stages is multi-stage, unnecessary and efficient dissolution from the fluid can be achieved to a sufficient degree with a minimum two-stage configuration with only one stage for degassing and one stage for air intake. Since the gas can be removed, the device is considerably smaller. Therefore, the present deaeration device 100 can be incorporated into the existing piping system of the fluid F with a slight modification, and large and immovable high-cost equipment as recognized in the conventional vacuum deaeration method is required. High versatility is obtained, which is incomparable to the one. Even if the deaeration unit 91 and the intake unit 92 are arranged in a cascade from the upstream side to the downstream side of the fluid flow path of the fluid F, the separation distance is arbitrary, and the device Other members that do not impair the effect of 100 may be interposed. Of course, as described above, the fluid F to be treated is not limited to pure water or water as in the above experimental example, but can be developed into any kind of fluid (solution or solvent). From the viewpoint of the mechanism of displacing dissolved oxygen by mixing gas, conversely, the present invention apparatus 100 can be used as an apparatus for efficiently and effectively entering any gas 52 desired to be dissolved in a fluid, not limited to argon gas. it can.

【0028】特に、これまで説明してきた図1の実施例
に認められるように、脱気部91も入気部92も、共に気体
透過膜12を用いた構造になっている場合には、流体Fの
流路途中に本装置100 を介在させた場合、流体Fの流れ
を損なわずに連続的に所定気体の脱気ないし入気処理が
行なえるという利点もある。脱気部91にて流体流に対す
る何等の阻害要因もないことはもとより、入気部92にお
いても何等阻害要因はない。上記構成の入気部92におけ
る入気原理では、流体F中に飽和量以上の気体が溶解す
ることはなく、気泡が発生して流体流が損なわれるよう
なことがないからである。したがって、従来のバブリン
グ装置のみによる脱気ないし入気法に比しても、本実施
例装置100 は大いに優れているし、さらに、従来のバブ
リング法ではその効率を高めようとする程、タンクが大
型化し、これに連れて多量に漏れ出る入気用気体の回収
を図る必要があるが、本実施例装置100 ではその必要が
なく、したがって例えば、水素とかオゾン等、大気環境
に漏れ出すことが望ましくない気体を取扱う場合にも、
本実施例の脱入気装置100 は好適に使用でき、安全面、
環境面でも優れた結果を得ることができる。
In particular, as can be seen in the embodiment of FIG. 1 described above, when both the degassing section 91 and the gas inlet section 92 have a structure using the gas permeable membrane 12, the fluid When the present apparatus 100 is interposed in the middle of the flow path of F, there is also an advantage that a predetermined gas can be continuously degassed or inhaled without impairing the flow of the fluid F. There is no obstruction factor to the fluid flow in the deaeration section 91, and there is no obstruction factor in the intake section 92. This is because, in the air inlet principle of the air inlet unit 92 having the above-described configuration, the gas having a saturation amount or more does not dissolve in the fluid F, and bubbles are not generated and the fluid flow is not impaired. Therefore, the device 100 of the present embodiment is significantly superior to the deaeration or air inlet method using only the conventional bubbling device, and further, the tank becomes so large that the efficiency of the conventional bubbling method is increased. Although it is necessary to increase the size and to collect a large amount of intake gas that leaks with this, the device 100 of the present embodiment does not need to collect the gas, and therefore, for example, it may leak into the atmospheric environment such as hydrogen or ozone. When dealing with unwanted gases,
The deaeration device 100 of the present embodiment can be suitably used,
Excellent results can also be obtained in environmental aspects.

【0029】以上、本発明の望ましい実施例につき詳記
したが、本発明の要旨構成に即する改変は任意である。
例えば、上述の実施例では、いずれも中空筒状部材10そ
のものを筒状(チューブ状ないしホース状)の気体透過
膜12により構成したが、そうではなく、入口開口11と出
口開口13との間を結び、その内面に沿って流体Fが流れ
る周壁部分が剛性を持つ気体不透過な材質から構成され
た中空筒状部材10を用い、当該周壁の少なくとも一部に
開けられた窓を塞ぐように、シート状の気体透過膜12が
設けられる等していても良い。ただ、気体の脱入気効率
を高めるために気体透過膜12にはかなり長尺のものが要
求される場合には、先に述べた製品例のように、それ自
体柔軟性を持ち、任意に曲げたりくねらせたりできるも
のを用いた方が、装置筺体寸法を小型化できるので望ま
しい。もちろん、筒状という表現も、断面円形に限らな
い。矩形断面その他の中空空間を有するものでも良い。
要は、内部に流体Fが流れ得れば良い(平滑に流れるこ
とが望ましいが)。
Although the preferred embodiments of the present invention have been described in detail above, modifications in accordance with the gist of the present invention are optional.
For example, in each of the above-described embodiments, the hollow tubular member 10 itself is constituted by the tubular (tube-like or hose-like) gas permeable membrane 12, but instead, the hollow tubular member 10 is provided between the inlet opening 11 and the outlet opening 13. A hollow cylindrical member 10 made of a rigid gas-impermeable material is used for a peripheral wall portion along which the fluid F flows along the inner surface thereof, so as to cover a window opened in at least a part of the peripheral wall. Alternatively, a sheet-like gas permeable membrane 12 may be provided. However, if the gas permeable membrane 12 is required to be quite long in order to increase the gas deaeration efficiency, it has flexibility in itself, as in the above-mentioned product example, It is desirable to use one that can be bent or twisted because the size of the device housing can be reduced. Of course, the expression cylindrical is not limited to a circular cross section. It may have a rectangular cross section or another hollow space.
In short, it is sufficient that the fluid F can flow inside (although it is desirable that the fluid F flows smoothly).

【0030】また、脱気部91や入気部92は、それぞれ一
つづつであれば本発明要旨構成は満たされる。すなわ
ち、一つの脱気部91と一つの入気部92とで一つのユニッ
トを構成している装置が本発明装置である。したがって
例えば、脱気部91、入気部92、脱気部91の順でこれら三
つの部分により一ユニットが構成されているような装置
は、当然、本発明の範囲外となる。
If the deaerator 91 and the inlet 92 are provided one by one, the essential constitution of the present invention is satisfied. That is, the device of the present invention is a device in which one deaerator 91 and one air inlet 92 constitute one unit. Therefore, for example, an apparatus in which one unit is constituted by these three parts in the order of the deaeration unit 91, the intake unit 92, and the deaeration unit 91 is naturally out of the scope of the present invention.

【0031】[0031]

【発明の効果】本発明によれば、流体中から所定気体を
除去するとか、逆に所望気体を入気させる装置として、
簡単、小型、廉価で設置の融通性に富み、かつ十分な脱
入気効果の得られる装置が提供される。従来は巨大な真
空脱気設備とか、大型になり易く設置融通性に乏しいバ
ブリング装置しかなかった状況に鑑みると、本発明によ
る脱入気の二段階カスケード処理を行なう脱入気装置
は、各種の産業分野にとって大いなる福音となる。
According to the present invention, as a device for removing a predetermined gas from a fluid, or conversely, a desired gas is introduced,
A device is provided which is simple, compact, inexpensive, versatile in installation, and has a sufficient air-in / out effect. In view of the situation in the past where there was only a huge vacuum degassing facility or a bubbling device that was large and easy to install and had little flexibility, a degassing device that performs a two-stage cascade treatment of degassing according to the present invention is various types. It will be a great gospel for the industrial field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従って構成された脱入気装置の一実施
例の要部概略構成図である。
FIG. 1 is a schematic configuration diagram of a main part of an embodiment of a deaeration apparatus configured according to the present invention.

【図2】本発明の脱入気装置を用いて純水中の酸素溶存
量を低減するための装置を構成する場合の装置構成例の
説明図である。
FIG. 2 is an explanatory diagram of an example of a device configuration in a case where a device for reducing the amount of dissolved oxygen in pure water is configured using the degassing device of the present invention.

【図3】図2に示される装置構成例によって処理された
純水を用い、シリコン表面に水素終端処理したことの効
果を見るために採った高速電子回折図形を忠実に描画し
た説明図である。
3 is an explanatory diagram faithfully depicting a high-speed electron diffraction pattern taken to see the effect of hydrogen termination treatment on a silicon surface using pure water treated by the apparatus configuration example shown in FIG. 2; .

【符号の説明】[Explanation of symbols]

10 中空筒状部材, 11 入口開口, 12 気体透過膜, 13 出口開口, 20 密閉容器, 22 気体透過膜外部空間ないし密閉容器内部空間, 31 入口パイプ, 32 接続パイプ, 33 出口パイプ, 40 排気装置, 50 気体圧送装置, 51 気体源, 52 入気用気体, 53 コンプレッサ, 54 ガスボンベ, 91 脱気部, 92 入気部, 100 本発明脱入気装置. 10 hollow cylindrical member, 11 inlet opening, 12 gas permeable membrane, 13 outlet opening, 20 closed vessel, 22 gas permeable membrane outer space or closed vessel inner space, 31 inlet pipe, 32 connection pipe, 33 outlet pipe, 40 exhaust device , 50 gas pumping device, 51 gas source, 52 inlet gas, 53 compressor, 54 gas cylinder, 91 deaeration section, 92 intake section, 100 deaeration apparatus of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一つの脱気部と一つの入気部とによって
のみ構成され; 流体が流れる流体流路の途中に、周壁の一部もしくは全
部が気体透過膜になっている部分を二個所に設け、一方
の気体透過膜の外部空間は負圧にして上記脱気部とし、
他方の気体透過膜の外部空間は所定気体の満たされた正
圧にして上記入気部としたこと; を特徴とする脱入気装置。
The present invention is characterized in that it is constituted by only one deaeration part and one air intake part; two parts in the middle of a fluid flow path through which a fluid flows are formed by partially or entirely forming a gas permeable membrane. The outer space of one of the gas permeable membranes is made a negative pressure to serve as the deaeration section,
The outside space of the other gas permeable membrane is made a positive pressure filled with a predetermined gas to serve as the above-mentioned inlet section;
【請求項2】 請求項1記載の装置であって; 上記脱気部における上記一方の気体透過膜の上記外部空
間は該気体透過膜を収める密閉容器の内部空間であり、
排気装置により該密閉容器の該内部空間が排気されるこ
とで該一方の気体透過膜の上記外部空間が上記負圧にさ
れる一方で; 上記入気部における上記他方の気体透過膜の上記外部空
間も該気体透過膜を収める第二の密閉容器の内部空間で
あり、該第二の密閉容器に接続した気体圧送装置により
供給される気体が該第二の密閉容器の該内部空間に満た
されることにより、該他方の気体透過膜の上記外部空間
が上記正圧にされること; を特徴とする装置。
2. The apparatus according to claim 1, wherein the external space of the one gas permeable membrane in the degassing section is an internal space of a closed container that houses the gas permeable membrane.
While the internal space of the closed container is exhausted by the exhaust device, the external space of the one gas permeable membrane is made to have the negative pressure; and the outside of the other gas permeable membrane in the air inlet. The space is also the internal space of the second closed container that contains the gas permeable membrane, and the gas supplied by the gas pumping device connected to the second closed container is filled in the internal space of the second closed container. Whereby the external space of the other gas permeable membrane is brought to the positive pressure.
【請求項3】 請求項1または2記載の装置であって; 上記気体透過膜は、上記流体が流入してくる入口開口と
該流体が流出して行く出口開口、及び該流体が上記入口
開口から上記出口開口に向かいその内面に沿って流れる
周壁を有する中空筒状部材の該周壁の一部を構成してい
ること; を特徴とする装置。
3. The apparatus according to claim 1, wherein the gas permeable membrane has an inlet opening through which the fluid flows, an outlet opening through which the fluid flows out, and the inlet opening through which the fluid flows. A part of the peripheral wall of a hollow cylindrical member having a peripheral wall flowing along the inner surface from the outlet opening toward the outlet opening.
【請求項4】 請求項1または2記載の装置であって; 上記気体透過膜は、上記流体が流入してくる入口開口と
該流体が流出して行く出口開口、及び該流体が上記入口
開口から上記出口開口に向かいその内面に沿って流れる
周壁を有する中空筒状部材であること; を特徴とする装置。
4. The apparatus according to claim 1, wherein the gas permeable membrane has an inlet opening through which the fluid flows in, an outlet opening through which the fluid flows out, and the inlet opening through which the fluid flows. A hollow cylindrical member having a peripheral wall that flows along the inner surface from the outlet opening toward the outlet opening.
JP6125471A 1994-06-07 1994-06-07 Degassing device Expired - Lifetime JP2611182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6125471A JP2611182B2 (en) 1994-06-07 1994-06-07 Degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6125471A JP2611182B2 (en) 1994-06-07 1994-06-07 Degassing device

Publications (2)

Publication Number Publication Date
JPH07328313A JPH07328313A (en) 1995-12-19
JP2611182B2 true JP2611182B2 (en) 1997-05-21

Family

ID=14910914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6125471A Expired - Lifetime JP2611182B2 (en) 1994-06-07 1994-06-07 Degassing device

Country Status (1)

Country Link
JP (1) JP2611182B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740549B2 (en) * 2010-05-26 2015-06-24 株式会社コアテクノロジー Production method of nanobubble water containing saturated gas and production device of nanobubble water containing saturated gas
JP5617081B2 (en) * 2009-12-10 2014-11-05 株式会社コアテクノロジー Method for producing saturated gas-containing nanobubble water and apparatus for producing saturated gas-containing nanobubble water
JP6391524B2 (en) 2015-03-31 2018-09-19 株式会社Screenホールディングス Deoxygenation apparatus and substrate processing apparatus
CN113908591B (en) * 2020-07-07 2023-03-17 中国科学院西北生态环境资源研究院 Device and method for extracting dissolved gas in water sample of high-vacuum double-valve glass bottle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034906A (en) * 1989-05-30 1991-01-10 Natl Space Dev Agency Japan<Nasda> Device for removing gases from liquid
JPH03154601A (en) * 1989-11-10 1991-07-02 Ebara Infilco Co Ltd Removal of dissolving oxygen in water
JP3235621B2 (en) * 1991-07-02 2001-12-04 忠弘 大見 Pure water supply system and cleaning method

Also Published As

Publication number Publication date
JPH07328313A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
TWI275424B (en) Enhanced purge effect in gas conduit
JP3662111B2 (en) Cleaning liquid manufacturing method and apparatus therefor
JPH08981A (en) Connecting part capable of purging for gas supply cabinet
JP2611182B2 (en) Degassing device
WO1994023816A1 (en) Dissolved oxygen reducing apparatus
JPH10106908A (en) Generating device for chemical free dry air
KR950025841A (en) Plasma Ashing Method with Oxygen Gas Pretreatment
JP2611183B2 (en) Fluid circulation deaerator
US9796603B2 (en) Pressure-less ozonated di-water (DIO3) recirculation reclaim system
KR0147037B1 (en) Gas delivery panels
JPH0584474A (en) Method and device for removement of dissolved oxygen
US20040231695A1 (en) Cleaning gas for semiconductor production equipment and cleaning method using the gas
JP2004237162A (en) Gas treatment device and method for producing semiconductor device
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JP2922440B2 (en) How to open pneumatic equipment to atmosphere
WO2007083480A1 (en) Plasma processing apparatus and semiconductor element manufactured by such apparatus
WO2006100428A1 (en) Method and apparatus for evacuating a chamber prior to its filling with a noble gas
CN218095448U (en) Air inlet system
CN1693227A (en) Process and equipment for treating waste water
CN220289548U (en) Silane on-line sampling system
JPH04322716A (en) Gas dehymidifing method
US20220072473A1 (en) Gas recovering apparatus, semiconductor manufacturing system, and gas recovering method
JPH04349902A (en) Deoxygenating method and apparatus using high purity gas
JP3015840B2 (en) Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide
JP2004033945A (en) Exhaust gas treatment apparatus and exhaust gas treating method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term