JP2610615B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2610615B2
JP2610615B2 JP62033771A JP3377187A JP2610615B2 JP 2610615 B2 JP2610615 B2 JP 2610615B2 JP 62033771 A JP62033771 A JP 62033771A JP 3377187 A JP3377187 A JP 3377187A JP 2610615 B2 JP2610615 B2 JP 2610615B2
Authority
JP
Japan
Prior art keywords
carbon fiber
secondary battery
graphite
positive electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62033771A
Other languages
Japanese (ja)
Other versions
JPS63202850A (en
Inventor
晃 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62033771A priority Critical patent/JP2610615B2/en
Publication of JPS63202850A publication Critical patent/JPS63202850A/en
Application granted granted Critical
Publication of JP2610615B2 publication Critical patent/JP2610615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、エネルギ密度が大きくしかも内部抵抗の
小さい、炭素繊維複合体を正極活物質としたリチウム2
次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a lithium 2 having a high energy density and a low internal resistance, which uses a carbon fiber composite as a positive electrode active material.
It relates to the next battery.

[従来の技術] 近年、軽量でありかつ高エネルギ密度を有するリチウ
ム電池の2次電池化が検討されている。
[Related Art] In recent years, a lithium battery having a light weight and a high energy density has been studied as a secondary battery.

リチウム2次電池の正極活物質として炭素繊維を用い
ること自体は既に知られている(たとえば、島田ら,電
池討論会講演要旨集,1A15,(1985年)参照)。
The use of carbon fibers as the positive electrode active material of lithium secondary batteries is already known (see, for example, Shimada et al., Proceedings of Battery Symposium, 1A15, (1985)).

また、特開昭61−10882号公報には炭素繊維を正極に
用い、電解質としてLiBrもしくはLiIを用いたリチウム
2次電池の例が記載されている。
JP-A-61-10882 describes an example of a lithium secondary battery using carbon fiber as a positive electrode and using LiBr or LiI as an electrolyte.

[発明が解決しようとする問題点] しかしながら、前者の場合、炭素繊維を正極活物質と
して用いてはいるものの、表面に生ずる電気二重層を利
用しているにすぎず、電池特性として満足できるほどの
ものではない。また後者の場合、グラファイト化率の比
較的高い(層状構造の発達した)炭素繊維を用いること
により、グラファイトへのインタカレーションを利用
し、高性能のリチウム2次電池を得ようとしたものであ
るが、用いた炭素繊維のグラファイト化率は十分でなか
った。
[Problems to be Solved by the Invention] However, in the former case, although carbon fibers are used as the positive electrode active material, only the electric double layer generated on the surface is used, and the battery characteristics are sufficiently satisfied. Not a thing. In the latter case, carbon fibers having a relatively high graphitization ratio (layer structure is developed) are used to obtain a high performance lithium secondary battery using intercalation into graphite. However, the graphitization ratio of the carbon fibers used was not sufficient.

正極活物質にグラファイト化率の低い炭素繊維を用い
ると、電極反応に関与する面積が小さくなり、電池のエ
ネルギ密度が小さくなり、問題であった。また、正極活
物質にグラファイト化率の低い炭素繊維を用いると、電
気伝導性も低くなるために、電池の内部抵抗が高くな
り、問題であった。
If carbon fibers having a low graphitization ratio are used as the positive electrode active material, the area involved in the electrode reaction becomes small, and the energy density of the battery becomes small, which is a problem. In addition, when carbon fibers having a low graphitization ratio are used as the positive electrode active material, the electric conductivity is lowered, and the internal resistance of the battery is increased, which is a problem.

この発明は上記の問題点を解決するためになされたも
ので、エネルギ密度が大きく、かつ内部抵抗の低いリチ
ウム2次電池を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a lithium secondary battery having a high energy density and a low internal resistance.

[問題点を解決するための手段] この発明は、炭素繊維を正極活物質とし、リチウム金
属を負極活物質とし、電解質を含む有機用媒を電解液と
したリチウム2次電池にかかるものである。そして、前
記問題点を解決するために前記炭素繊維上に気相から直
接グラファイトを被覆させることにより得られる炭素繊
維複合体を正極活物質に用いている。
[Means for Solving the Problems] The present invention relates to a lithium secondary battery using carbon fiber as a positive electrode active material, lithium metal as a negative electrode active material, and an organic medium containing an electrolyte as an electrolyte. . In order to solve the above problems, a carbon fiber composite obtained by coating graphite directly on the carbon fiber from a gas phase is used as a positive electrode active material.

本発明において、炭素繊維上に直接グラファイトを被
覆させるために用いられる炭化水素は、その化学的構造
または分子量に関係なくいずれでも使用し得る。具体的
には、メタン,エタン,プロパン,シクロヘキサン等の
飽和脂肪族炭化水素、エチレン,プロピレン,アセチレ
ン等の不飽和脂肪族炭化水素、ベンゼン,トルエン,フ
ェニルアセチレン,ナフタレン等の芳香族炭化水素の
他、アセトニトリル,アクリロニトリル,シアノアセチ
レン,ピリジン,チオフェン,フラン等のヘテロ原子含
有炭化水素も利用することが可能である。
In the present invention, any hydrocarbon used for coating graphite directly on carbon fibers can be used regardless of its chemical structure or molecular weight. Specific examples include saturated aliphatic hydrocarbons such as methane, ethane, propane, and cyclohexane; unsaturated aliphatic hydrocarbons such as ethylene, propylene, and acetylene; and aromatic hydrocarbons such as benzene, toluene, phenylacetylene, and naphthalene. It is also possible to use heteroatom-containing hydrocarbons such as acetonitrile, acrylonitrile, cyanoacetylene, pyridine, thiophene and furan.

また、炭素繊維上に気相から直接グラファイトを被覆
させるための方法の好ましい例は、たとえば、CVD法、
プラズマCVD法、光CVD法等の化学気相蒸着法である。
Preferred examples of the method for coating graphite directly from the gas phase on carbon fibers include, for example, a CVD method,
This is a chemical vapor deposition method such as a plasma CVD method and a photo CVD method.

また、本発明に用いられる炭素繊維の好ましい例は、
たとえば、PAN(ポリアクリルニトリル)系炭素繊維、
ピッチ系炭素繊維、セルロース系炭素繊維、ビニロン系
炭素繊維、リグニン/ポバール系炭素繊維、気相成長系
炭素繊維である。
Further, preferred examples of the carbon fiber used in the present invention,
For example, PAN (polyacrylonitrile) carbon fiber,
Pitch-based carbon fiber, cellulose-based carbon fiber, vinylon-based carbon fiber, lignin / povar-based carbon fiber, and vapor-grown carbon fiber.

電解質としては従来のリチウム電池の電解質として用
いられているLiClO4、LiBF4、LiAsF6、LiPF6、LiBr、Li
I等を利用し得るが特に限定はしない。
As the electrolyte, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiBr, Li
I or the like can be used, but there is no particular limitation.

電解質を含ませるための有機溶媒には、通常用いられ
る非プロトン性溶媒、たとえば、炭酸プロピレン(以下
PCと略す。)、テトラヒドロフラン(以下THFと略
す。)、ジメチルスルホキシド、スルホラン等を利用し
得るが特に限定はしない。
The organic solvent for containing the electrolyte includes a commonly used aprotic solvent, for example, propylene carbonate (hereinafter referred to as propylene carbonate).
Abbreviated as PC. ), Tetrahydrofuran (hereinafter abbreviated as THF), dimethylsulfoxide, sulfolane and the like can be used, but there is no particular limitation.

[作用] 正極に用いる炭素繊維複合体は、層構造がよく発達し
ているので、正極に電解質がインタカレーションを起こ
しやすくなる。また、グラファイト化率が高いので電極
反応に関与する面積が大きくなり、電池のエネルギ密度
が大きくなる。さらにグラファイト化率が高いので、電
気伝導性が高くなるために、電池の内部抵抗が小さくな
る。
[Operation] Since the carbon fiber composite used for the positive electrode has a well-developed layer structure, the electrolyte is likely to cause intercalation in the positive electrode. Further, since the graphitization rate is high, the area involved in the electrode reaction increases, and the energy density of the battery increases. Further, since the graphitization ratio is high, the electric conductivity is high, and the internal resistance of the battery is low.

[実施例] 以下実施例により説明するが、本発明はこれに限定さ
れるものではない。
[Examples] Examples will be described below, but the present invention is not limited thereto.

第1図はこの発明に用いられる炭素繊維複合体の一実
施例を示した斜視図である。
FIG. 1 is a perspective view showing one embodiment of the carbon fiber composite used in the present invention.

炭素繊維複合体3は単一もしくは複数のフィラメント
から成る炭素繊維基材1とグラファイト2からなってい
る。そして、炭素繊維基材1上に直接にグラファイト2
が被覆されている。グラファイト2層の厚さは、以下に
述べる製造条件を適宜変えることにより、任意に変え得
るものである。
The carbon fiber composite 3 comprises a carbon fiber substrate 1 composed of a single or a plurality of filaments and graphite 2. Then, the graphite 2 is directly placed on the carbon fiber substrate 1.
Is coated. The thickness of the two graphite layers can be arbitrarily changed by appropriately changing the manufacturing conditions described below.

次に、この炭素繊維複合体3の製造方法について説明
する。
Next, a method for producing the carbon fiber composite 3 will be described.

実施例1 外部電極RFプラズマCVD装置内に、径4〜7μmのPAN
系炭素繊維を置く。次いで、PAN系炭素繊維1を1000℃
に加熱する。その後、反応領域内にグラファイト2層の
原料となるベンゼンを圧力1Torrで投入し、炭素繊維基
材1上に3時間蒸着を行なう。これにより、径10〜13μ
mの炭素繊維複合体3を得た。
Example 1 A PAN having a diameter of 4 to 7 μm was placed in an external electrode RF plasma CVD apparatus.
Put the base carbon fiber. Next, the PAN-based carbon fiber 1 was heated to 1000 ° C.
Heat to Thereafter, benzene, which is a raw material of two layers of graphite, is charged into the reaction region at a pressure of 1 Torr, and vapor deposition is performed on the carbon fiber substrate 1 for 3 hours. Thereby, the diameter is 10 ~ 13μ
m of the carbon fiber composite 3 was obtained.

この炭素繊維複合体0.3gをポリテトラフルオロエチレ
ン枠に螺旋状に巻付け正極とした。一方リチウム板0.3g
を負極とし、これらをPC50cc、THF50cc、LiBr8.7g(1
モル)の電解液に入れて電池を構成した。
0.3 g of the carbon fiber composite was spirally wound around a polytetrafluoroethylene frame to form a positive electrode. 0.3g lithium plate
Are used as the negative electrode, and these are made of 50 cc of PC, 50 cc of THF,
Mol) of the electrolyte solution to form a battery.

この電池を10mA/cm2の電流密度で30分間充電を行なっ
た。その後、放電を行ない電圧が1.5Vに達するところで
停止させた。
This battery was charged at a current density of 10 mA / cm 2 for 30 minutes. After that, discharging was performed and stopped when the voltage reached 1.5V.

以上の条件で充放電を行なったところ、グラファイト
1gあたり5.0whのエネルギ密度が得られた。
After charging and discharging under the above conditions, graphite
An energy density of 5.0 wh per gram was obtained.

実施例2 実施例1と同様の条件で構成した炭素繊維複合体3を
3000℃で高温処理することにより得られた径8〜10μm
の高温処理済炭素繊維複合体を正極とし、実施例1と同
様の条件で電池を構成し、充放電を行なったところ、グ
ラファイト1gあたり10.5whのエネルギ密度が得られた。
Example 2 A carbon fiber composite 3 configured under the same conditions as in Example 1 was used.
Diameter 8-10μm obtained by high temperature treatment at 3000 ℃
Using the high-temperature-treated carbon fiber composite as a positive electrode, a battery was constructed under the same conditions as in Example 1, and charge and discharge were performed. As a result, an energy density of 10.5 wh per gram of graphite was obtained.

炭素繊維複合体3を3000℃の高温処理をすることによ
り、グラファイト化率が高くなり、高エネルギ密度が得
られたものと考えられる。
It is considered that by performing the high-temperature treatment of the carbon fiber composite 3 at 3000 ° C., the graphitization ratio was increased and a high energy density was obtained.

比較例1 正極活物質としてPAN系炭素繊維(実施例1で基材と
して用いたものと同じもの)のみを用い、実施例1と同
様の条件で電池を構成し、充放電を行なったところ、グ
ラファイト1gあたり3.9whのエネルギ密度が得られた。
実施例1で得られた値に比べて著しく低い。
Comparative Example 1 A battery was constructed under the same conditions as in Example 1 using only PAN-based carbon fibers (the same as those used as the base material in Example 1) as the positive electrode active material, and charged and discharged. An energy density of 3.9 wh per gram of graphite was obtained.
It is significantly lower than the value obtained in Example 1.

比較例2 正極活物質として、PAN系炭素繊維(実施例1で基材
として用いたものと同じもの)を3000℃で高温処理した
ものを用い、実施例1と同様の条件で電池を構成し、充
放電を行なったところグラファイト1gあたり4.8whのエ
ネルギ密度が得られた。実施例2で得られた値に比べて
著しく低い。
Comparative Example 2 As the positive electrode active material, a PAN-based carbon fiber (same as that used as the base material in Example 1) that had been subjected to high-temperature treatment at 3000 ° C. was used, and a battery was constructed under the same conditions as in Example 1. When the battery was charged and discharged, an energy density of 4.8 wh per gram of graphite was obtained. It is significantly lower than the value obtained in Example 2.

なお上記実施例では、蒸着を行なわせる化学気相蒸着
法の好ましい例としてプラズマ化学気相蒸着法を示し
た。プラズマを使用することにより層構造を発達したグ
ラファイトが得られるが、本発明はこれに限られるもの
でなく他の化学気相蒸着法を用いてもよく、いずれの方
法で作製しても、リチウム2次電池の機能を十分に発揮
する。
In the above embodiment, a plasma enhanced chemical vapor deposition method is described as a preferable example of the chemical vapor deposition method for performing the vapor deposition. By using plasma, graphite having a layer structure developed can be obtained, but the present invention is not limited to this, and other chemical vapor deposition methods may be used. It fully demonstrates the function of the secondary battery.

また、上記実施例ではグラファイト2層の原料となる
炭化水素がベンゼンである場合を例にして説明した。ベ
ンゼンは液体で取り扱いやすく、しかもグラファイト化
しやすい炭素を得ることが可能である。しかし、本発明
はこれに限定されるものでなく、前述の他の炭化水素で
あっても、その条件をうまく限定しさえすれば、希望す
るグラファイトを形成し得る。
In the above embodiment, the case where the hydrocarbon as the raw material of the two graphite layers is benzene has been described as an example. Benzene is liquid and easy to handle, and it is possible to obtain carbon that is easily graphitized. However, the present invention is not limited to this, and it is possible to form a desired graphite even with the other hydrocarbons described above, provided that the conditions are properly limited.

さらに、上記実施例では電解質にLiBrを用いる場合を
示したが、本発明はこれに限られるものでなく、前述の
他の電解質を用いても実施例と同様の効果を実現する。
Further, in the above-described embodiment, the case where LiBr is used as the electrolyte is shown, but the present invention is not limited to this, and the same effects as those of the embodiment can be realized by using the other electrolyte described above.

また、上記実施例では電解質を含ませるための有機用
媒に、PC,THFの混合有機溶媒を用いた場合を例にして示
したが、本発明はこれに限られるものでなく、前述の他
の非プロトン性溶媒であるいはこれらの混合溶媒であっ
ても実施例と同様の効果を実現する。
Further, in the above embodiment, the case where a mixed organic solvent of PC and THF is used as the organic medium for containing the electrolyte is shown as an example, but the present invention is not limited to this, and other The same effect as that of the embodiment can be realized by using the aprotic solvent of the above or a mixed solvent thereof.

[発明の効果] 以上のように、本発明に係るリチウム2次電池は、正
極活物質として炭素繊維上にグラファイトを被覆させた
炭素繊維複合体を使っており、そのグラファイト化率は
高い。それゆえ、電極反応に関与する面積が大きくなる
ために電池のエネルギ密度が大きくなり、かつ電気伝導
性が高くなるために電池の内部抵抗が小さくなる。結果
として、高エネルギ密度を有しかつ内部抵抗の小さいリ
チウム2次電池が得られる。
[Effect of the Invention] As described above, the lithium secondary battery according to the present invention uses a carbon fiber composite in which graphite is coated on carbon fiber as a positive electrode active material, and has a high graphitization rate. Therefore, the area involved in the electrode reaction is increased, so that the energy density of the battery is increased, and the electrical conductivity is increased, so that the internal resistance of the battery is reduced. As a result, a lithium secondary battery having a high energy density and a small internal resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の一実施例に使用する、炭素繊維複
合体の構造を示した図である。 図において、1は炭素繊維基材、2はグラファイト、3
は炭素繊維複合体である。
FIG. 1 is a view showing the structure of a carbon fiber composite used in one embodiment of the present invention. In the figure, 1 is a carbon fiber substrate, 2 is graphite, 3
Is a carbon fiber composite.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維上に気相から直接グラファイトを
被覆させることにより得られる炭素繊維複合体を正極活
物質とし、リチウム金属を負極活物質とし、電解質を含
む有機溶媒を電解液としたリチウム2次電池。
1. A lithium battery comprising a carbon fiber composite obtained by coating graphite directly on a carbon fiber from a gas phase as a positive electrode active material, lithium metal as a negative electrode active material, and an organic solvent containing an electrolyte as an electrolyte. Secondary battery.
【請求項2】前記グラファイト被膜をプラズマ化学気相
蒸着法により行なった特許請求の範囲第1項記載のリチ
ウム2次電池。
2. The lithium secondary battery according to claim 1, wherein said graphite coating is formed by a plasma enhanced chemical vapor deposition method.
【請求項3】前記グラファイト被覆をベンゼンを原料に
して行なった特許請求の範囲第1項または第2項記載の
リチウム2次電池。
3. The lithium secondary battery according to claim 1, wherein said graphite coating is performed using benzene as a raw material.
【請求項4】正極は、前記炭素繊維複合体が巻き付けら
れて構成されている、特許請求の範囲第1項、第2項ま
たは第3項に記載のリチウム2次電池。
4. The lithium secondary battery according to claim 1, wherein the positive electrode is configured by winding the carbon fiber composite.
JP62033771A 1987-02-17 1987-02-17 Lithium secondary battery Expired - Fee Related JP2610615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033771A JP2610615B2 (en) 1987-02-17 1987-02-17 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033771A JP2610615B2 (en) 1987-02-17 1987-02-17 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS63202850A JPS63202850A (en) 1988-08-22
JP2610615B2 true JP2610615B2 (en) 1997-05-14

Family

ID=12395712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033771A Expired - Fee Related JP2610615B2 (en) 1987-02-17 1987-02-17 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2610615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695985B2 (en) * 1990-11-30 1998-01-14 新神戸電機株式会社 Battery
RU2282919C1 (en) * 2005-09-30 2006-08-27 Александр Константинович Филиппов Carbon-containing material for lithium-ion accumulator and lithium-ion accumulator
CN107887571B (en) * 2017-09-26 2020-07-17 中航锂电(洛阳)有限公司 Lithium ion battery composite negative pole piece, preparation method thereof and lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it

Also Published As

Publication number Publication date
JPS63202850A (en) 1988-08-22

Similar Documents

Publication Publication Date Title
JP4790402B2 (en) Cathode active material, method for producing the same, and cathode and lithium battery using the same
JP4228593B2 (en) Nonaqueous electrolyte secondary battery
US4863818A (en) Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
US6087044A (en) Carbon electrode for secondary cells, a method for making the same, and a nonaqueous electrolyte secondary cell comprising the carbon electrode
US10396348B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, method of producing negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US5443928A (en) Carbon electrode for a nonaqueous secondary electrochemical cell
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JPS6290863A (en) Secondary cell
JPH0213423B2 (en)
US5522127A (en) Method of manufacturing a non-aqueous electrolyte secondary cell
JPH05121066A (en) Negative electrode for nonaqueous battery
JP2007048717A (en) Battery
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP3204291B2 (en) Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP2592152B2 (en) Method for producing carbon electrode for non-aqueous lithium secondary battery
JPH0770328B2 (en) Secondary battery
JP2610615B2 (en) Lithium secondary battery
JP2001196052A (en) Negative electrode and nonaqueous electrolyte battery
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH09293496A (en) Laminated battery
JP2703759B2 (en) Graphite fiber / lithium rechargeable battery
JPH04237948A (en) Nonaqueous battery electrode and battery
JP2005340157A (en) Non-aqueous secondary battery
JP4734707B2 (en) Non-aqueous electrolyte battery
KR20010007546A (en) Non-aqueous Electrolytic Cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees