JP2606393B2 - How to connect compound superconducting wires - Google Patents

How to connect compound superconducting wires

Info

Publication number
JP2606393B2
JP2606393B2 JP2002779A JP277990A JP2606393B2 JP 2606393 B2 JP2606393 B2 JP 2606393B2 JP 2002779 A JP2002779 A JP 2002779A JP 277990 A JP277990 A JP 277990A JP 2606393 B2 JP2606393 B2 JP 2606393B2
Authority
JP
Japan
Prior art keywords
connection
powder
superconducting wire
superconducting
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002779A
Other languages
Japanese (ja)
Other versions
JPH03208279A (en
Inventor
博 古東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002779A priority Critical patent/JP2606393B2/en
Publication of JPH03208279A publication Critical patent/JPH03208279A/en
Application granted granted Critical
Publication of JP2606393B2 publication Critical patent/JP2606393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、化合物系超電導線とくにブロンズ法により
製造するNb3Sn系化合物超電導線における安定した超電
導接続を確立できると共に、接続部の機械的強度をも確
保可能な改良された接続方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention can establish a stable superconducting connection in a compound-based superconducting wire, particularly an Nb 3 Sn-based compound superconducting wire manufactured by a bronze method, and can mechanically connect the connecting portion. The present invention relates to an improved connection method capable of securing strength.

[従来の技術] 化合物系超電導線には種々な成分系のものが発表され
ているが、実際に実用化されているものはNb3Sn系ある
いはそれにTiをドープして高磁界性能の向上を図ったも
のがほぼ主流を占めている。
[Prior art] Various types of compound superconducting wires have been announced, but those that have been practically used are doped with Nb 3 Sn or Ti to improve high magnetic field performance. Most of what we have planned is dominant.

このような超電導線がもし合金系であれば、超電導線
の露出された端部を単に溶接しさえすればよく、その接
続はまことに容易である。
If such a superconducting wire is based on an alloy, the exposed end of the superconducting wire need only be simply welded, and the connection is very easy.

しかし、接続対象が、化合物系となると甚だ厄介であ
る。すなわち、化合物系超電導線の超電導部分は、化合
物を生成する金属元素を接触させ拡散加熱することによ
り、その拡散層に所望の金属間化合物を生成させるもの
であり、接触部においてもその化合物が超電導線側と連
続していなければならない。もしその連続が途切れてし
まえば、その途切れた部分は超電導体ではなくなってし
まい、超電導線としての用をなさなくなるからである。
However, when the connection target is a compound system, it is extremely troublesome. In other words, the superconducting portion of the compound-based superconducting wire is one in which a desired intermetallic compound is generated in the diffusion layer by contacting a metal element that generates the compound and performing diffusion heating, and the compound is also superconductive in the contact portion. Must be continuous with the line side. If the continuation is interrupted, the interrupted portion will no longer be a superconductor and will not be used as a superconducting wire.

Nb3Sn系超電導線の製造方法には、表面拡散法、ブロ
ンズ法、インサイチュー法あるいは粉末法など様々な提
案がある。
There are various proposals for a method of manufacturing an Nb 3 Sn-based superconducting wire, such as a surface diffusion method, a bronze method, an in-situ method, and a powder method.

しかし、工業的規模の量産に適用されているのは、目
下のところそのうちのブロンズ法である。
However, it is currently the bronze method that has been applied to mass production on an industrial scale.

このブロンズ法は、第4図に示すように極細のNbフィ
ラメント1,1の多数本をCu−Snブロンズ2のマトリック
ス内に埋込み、その外周にNbバリア3を設け、このよう
にして形成されたサブマルチ線4,4の複数をCu安定化材
5の中に埋込み、Nb3Sn系超電導線6を得るものであ
る。
In this bronze method, as shown in FIG. 4, a large number of ultrafine Nb filaments 1 and 1 are embedded in a matrix of Cu-Sn bronze 2 and an Nb barrier 3 is provided on the outer periphery thereof. A plurality of sub-multi wires 4, 4 are embedded in a Cu stabilizing material 5 to obtain an Nb 3 Sn-based superconducting wire 6.

ここにおいて、Cu安定化材5はその文字の示す通り安
定化材としての役目を果すものであり、Nbバリア3を設
けるのは、Cu−Snブロンズ側より拡散してきた元素によ
りCu安定化材の導電率が低下し安定化材としての役目が
不十分とならないように、このNbバリア3によって安定
化Cu側への拡散を阻止するためである。
Here, the Cu stabilizing material 5 serves as a stabilizing material as the character indicates, and the Nb barrier 3 is provided by an element diffused from the Cu-Sn bronze side. This is to prevent the diffusion to the stabilized Cu side by the Nb barrier 3 so that the conductivity does not decrease and the role as the stabilizing material does not become insufficient.

第4図のように構成し、これを所定のNb3Sn化合物の
生成する温度にまで加熱してやれば、Nbフィラメント1
とCu−Snブロンズとの間で拡散が生じNbフィラメントの
界面にNb3Sn化合物層が生成され、この層が超電導特性
を示す。なお、ここにCu−Snブロンズを使用するのは、
CuがNbとSnの反応を促進させる効果を有することも配慮
する意味がある。
When this is heated to a temperature at which a predetermined Nb 3 Sn compound is formed, the Nb filament 1 is formed as shown in FIG.
Diffusion occurs between Cu and Cu-Sn bronze to form an Nb 3 Sn compound layer at the interface of the Nb filament, and this layer exhibits superconducting properties. The use of Cu-Sn bronze here is
It is also worth considering that Cu has the effect of promoting the reaction between Nb and Sn.

このようなNb3Sn系超電導線の接続法の従来例として
は、第3図に示すような提案がある。すなわち、接続し
ようとする超電導線6,6′(もっとも、この段階では未
だ拡散加熱はされておらず正しくはNb3Sn化合物の生成
前の中間製品であるが、以下この段階をも含め超電導線
と呼ぶものとする)の端部の安定化Cu5,5′およびNbバ
リア3,3′ならびにサブマルチ線のCu−Snブロンズマト
リックスを硝酸等で溶解し、所定長のNbフィラメント1,
1および1′,1′を露出させる。この露出させたNbフィ
ラメント1,1および1′,1′を図のように撚合せ状態と
して接合させ、その上に安定化Cu5,5′の先端部分から
当該撚合せ接合部分にブロンズパイプ10を被覆し、この
ブロンズパイプ10とNbフィラメントの撚合せ接合部を共
に圧縮し、その後前述したNb3Sn生成のための拡散加熱
を行ない、ブロンズパイプとNbフィラメントとの間にNb
3Sn層の超電導化合物を生成させるものである。
As a conventional example of such an Nb 3 Sn superconducting wire connection method, there is a proposal as shown in FIG. In other words, the superconducting wires 6 and 6 'to be connected (although at this stage diffusion heating has not yet been performed and it is an intermediate product before the generation of the Nb 3 Sn compound, The Cu-Sn stabilizing Cu5,5 'and Nb barriers 3,3' and the sub-multi wire Cu-Sn bronze matrix are dissolved with nitric acid etc.
Expose 1 and 1 ', 1'. The exposed Nb filaments 1, 1 and 1 ', 1' are joined in a twisted state as shown in the figure, and a bronze pipe 10 is further stuck from the tip of stabilized Cu5, 5 'to the twisted joint. After coating, the bronze pipe 10 and the twisted joint of the Nb filament were compressed together, and then the above-mentioned diffusion heating for producing Nb 3 Sn was performed, and Nb was placed between the bronze pipe and the Nb filament.
3 This is to generate a superconducting compound of the Sn layer.

また、別な提案例として、上述同様にしてNbフィラメ
ントを露出させた後それらを互いに接合させ、これをN
b、Sn粉末の混合物を含んだNbスリーブ中へ挿入し、圧
縮変形させ一体化させた後、接合部を外部から加熱して
熱処理を行ない、NbフィラメントおよびNbスリーブ内
側、Nb粉末同志にNb3Sn層の超電導金属間化合物を形成
して接続する方法も提案されている。
Further, as another proposal example, after exposing Nb filaments in the same manner as described above, they are joined together,
b, After inserting into a Nb sleeve containing a mixture of Sn powder, compressively deforming and integrating, the joint is heated from the outside and heat treated, and Nb filament and Nb sleeve inside, Nb 3 A method of forming a superconducting intermetallic compound of the Sn layer and connecting them has also been proposed.

[発明が解決しようとする課題] 上記した二つの既提案例のうち、前者すなわち第3図
に示したブロンズパイプ10の被覆、圧縮だけでは、撚合
せたNbフィラメント1,1′の外周とブロンズパイプ10の
接触部にのみNb3Sn形成による超電導接続が実現される
だけであり、特性的にみて不十分なものしか得られな
い。
[Problem to be Solved by the Invention] Of the two proposed examples described above, the outer case of the twisted Nb filaments 1 and 1 'and the bronze are obtained only by coating and compressing the bronze pipe 10 shown in FIG. Only the superconducting connection by the formation of Nb 3 Sn is realized only at the contact portion of the pipe 10, and only an insufficient connection is obtained in terms of characteristics.

一方、後者すなわちNb、Sn粉末の混合物を含んだNbス
リーブ中でNbフィラメントを接触させ、圧縮変形させて
加熱する方法は、Nbフィラメント同志、Nbフィラメント
とNbスリーブの内側、Nb粉末同志におけるNb3Sn形成に
よる超電導接続が可能となるが、実際には、Nb3Sn生成
のための熱処理による加熱の際に、融点の低いSn粉末の
溶融が先に生じてしまい、Nbスリーブ内にそのための間
隙ができる。このため、Nb粉末の密着性が低下しNb3Sn
の連続的な形成が阻害され、必ずしも満足の行くような
超電導接続は達成されない。しかも、本方法によって
は、NbとSnの化学量論値の割合である37wt%Snの採用は
できない。
On the other hand, the latter, that is, the method of contacting Nb filaments in an Nb sleeve containing a mixture of Nb and Sn powder, compressing and deforming, and heating is performed by Nb filaments, Nb filament and the inside of the Nb sleeve, Nb 3 in Nb powders. Although superconducting connection by Sn formation becomes possible, in actuality, when heating by heat treatment for Nb 3 Sn generation, melting of Sn powder with a low melting point occurs first, and the gap for that in the Nb sleeve Can be. For this reason, the adhesion of Nb powder is reduced and Nb 3 Sn
Are not formed, and a satisfactory superconducting connection is not always achieved. Moreover, depending on the method, it is not possible to employ 37 wt% Sn, which is the ratio of the stoichiometric values of Nb and Sn.

本発明の目的は、上記したような従来技術の問題点を
解決し、化合物系超電導線とくにブロンズ法により製造
するNb3Sn系化合物超電導線における安定した超電導接
続を確立できる上、接続部の機械的強度をも確保可能な
新規な化合物系超電導線の接続方法を提供しようとする
ものである。
An object of the present invention is to solve the problems of the prior art as described above, on which can establish a stable superconducting connection in Nb 3 Sn compound superconducting wire prepared by a compound superconducting wire in particular bronze process, the connection of the machine It is an object of the present invention to provide a novel method for connecting a compound superconducting wire which can secure a sufficient strength.

[課題を解決するための手段] 本発明は、Nb3Sn系マルチフィラメント型の超電導線
相互を接続するに当り、先ず接続すべき超電導線の対応
する端部の安定化Cu、NbバリアおよびCu−Snブロンズを
酸等により溶解除去してNbフィラメントを所定長残存露
出させ、ついで露出したNbフィラメント相互を撚合せて
接合させ、当該撚合せたNbフィラメントをNb、Sn、Cuそ
れぞれの粉末の混合物中に挿入すると共にその外周にNb
スリーブを着合させ、そのようにして形成した接続部を
Sn粉末の溶融温度よりも高い温度に加熱してSn粉末が溶
融した状態下で接続部を外部より圧縮一体化し、その後
接続部並びに超電導線全体をNb3Snの生成温度において
加熱し、超電導線内のNbフィラメントの界面および接続
部にNb3Snの連続した化合物を生成させるものであり、
また、上記接続する場合に、接続すべき超電導線の対応
する端部をやや平行状態となるような傾斜面に切断し、
安定化Cu、NbバリアおよびCu−Snブロンズを酸等により
溶解除去してNbフィラメントを前記それぞれの傾斜面よ
り余り大きく突出しない程度の長さに露出突出させ、Nb
フィラメントを突出させた傾斜面の間にNb、Sn、Cuそれ
ぞれの粉末の混合物を充填すると共にその外周にNbスリ
ーブを着合させ、そのようにして形成した接続部をSn粉
末の溶融温度よりも高い温度に加熱してSn粉末が溶融し
た状態下で接続部を外部より圧縮一体化し、その後接続
部並びに超電導線全体をNb3Snの生成温度において加熱
し、超電導線内のNbフィラメントの界面および接続部に
Nb3Snの連続した化合物を生成させるものである。
[Means for Solving the Problems] In the present invention, when connecting Nb 3 Sn-based multifilament type superconducting wires to each other, first, the stabilized Cu, Nb barrier and Cu at the corresponding end of the superconducting wire to be connected are connected. -Sn bronze is dissolved and removed with an acid or the like to expose the Nb filaments for a predetermined length, then the exposed Nb filaments are twisted and joined to each other, and the twisted Nb filament is a mixture of powders of Nb, Sn, and Cu. And Nb around it
The sleeve is fitted and the connection thus formed is
Sn powder integrated compression from outside the connection portion in a state melted by heating to a temperature higher than the melting temperature of the Sn powder, the whole then connecting portion and the superconducting wire was heated at generation temperature of the Nb 3 Sn, superconducting wire To generate a continuous compound of Nb 3 Sn at the interface and connection of the Nb filament in the
Further, in the case of the above connection, the corresponding end of the superconducting wire to be connected is cut into an inclined surface so as to be slightly parallel,
The stabilized Cu, Nb barrier and Cu-Sn bronze are dissolved and removed with an acid or the like to expose and protrude the Nb filament to a length that does not protrude much more than the respective inclined surfaces,
A mixture of powders of Nb, Sn, and Cu is filled between the inclined surfaces from which the filaments protrude, and an Nb sleeve is attached to the outer periphery of the mixture, and the connection portion formed in this manner is lower than the melting temperature of the Sn powder. Heating to a high temperature, the connection portion is compression-integrated from the outside while the Sn powder is molten, and then the connection portion and the entire superconducting wire are heated at the Nb 3 Sn generation temperature, and the interface of the Nb filament in the superconducting wire and At the connection
It produces a continuous compound of Nb 3 Sn.

[作用] Nbフィラメントを露出させ、Nb、Sn、Cuの混合粉末と
共に圧縮一体化するに当り、低温で溶融状態となるSnを
先に溶融する状態にまで加熱しておき、圧縮一体化する
際にはSnが溶融状態下にあるようにして圧縮一体化すれ
ば、他の固定状態の粉末の間隙に万遍なく溶融Snが入り
込み、圧縮一体化した後にはもはや間隙は存在しない。
この状態でNb3Snの拡散生成を行なわせれば、接続部全
体には充実状態でNb3Snが生成され、従来例におけるよ
うにSnの溶融に伴う引けすなわち空隙は発生しないか
ら、極めて安定的に連続状態のNb3Snを接続部に生成さ
せることができ、超電導接続としての特性を格段に向上
させることができる。
[Action] When exposing the Nb filament and compressing and integrating it with the mixed powder of Nb, Sn, and Cu, when the Sn that is in a molten state at a low temperature is heated to a state where it is first melted, and then compressed and integrated. In this case, if the Sn is in a molten state and the particles are compression-integrated, the molten Sn enters the gaps of the powders in the other fixed states uniformly, and there is no longer any gap after the compression and integration.
If ask performed diffusion generation of Nb 3 Sn in this state, the entire connection unit Nb 3 Sn is generated by the solid state, shrinkage i.e. voids caused by the melting of Sn as in the prior example do not occur, very stable Therefore, Nb 3 Sn in a continuous state can be generated at the connection portion, and the characteristics as a superconducting connection can be remarkably improved.

[実施例] 以下に、本発明について実施例を参照し説明する。[Example] Hereinafter, the present invention will be described with reference to examples.

第1図は本発明に係る第1の実施例を示す説明図であ
り、既に説明した符号と同一符号は実質的に同一構成を
示すものである。
FIG. 1 is an explanatory view showing a first embodiment according to the present invention, wherein the same reference numerals as those already described indicate substantially the same configuration.

接続すべき超電導線6,6′の安定化Cu5,5′を硝酸によ
って溶解除去する。その後にNbバリア3,3′が現れる
が、これは硝酸によっては溶解しないから、フッ酸と硝
酸を適当量混合したフッ硝酸により一過性の溶解を行な
いNbバリア3,3′を除去し、その後に現れたCu−Snブロ
ンズマトリックスを再び硝酸で溶解除去すれば、その後
にNbフィラメント1,1および1′,1′のみが残存する。
The stabilized Cu5,5 'of the superconducting wires 6,6' to be connected is dissolved and removed by nitric acid. After that, the Nb barriers 3, 3 'appear, but they do not dissolve by nitric acid. Therefore, the Nb barriers 3, 3' are removed by performing transient dissolution with hydrofluoric acid mixed with an appropriate amount of hydrofluoric acid and nitric acid, When the Cu-Sn bronze matrix that appears thereafter is dissolved and removed again with nitric acid, only the Nb filaments 1,1 and 1 ', 1' remain thereafter.

この残存したNbフィラメント1,1および1′,1′を適
当に撚合せ接合させると共に、その外周をNbスリーブで
覆い、内部にNb粉末7,Sn粉末8、Cu粉末9の混合粉末を
充填する。この混合割合は重量パーセントで Nb:Sn:Cu=60:37:3 であり、NbとSnの混合割合はNb3Snの化学量論値であ
る。Cuの3wt%は先に説明したようにNb3Sn生成熱処理時
の反応促進のためである。
The remaining Nb filaments 1, 1 and 1 ', 1' are appropriately twisted and joined, the outer periphery thereof is covered with an Nb sleeve, and the inside is filled with a mixed powder of Nb powder 7, Sn powder 8, and Cu powder 9. . The mixing ratio is Nb: Sn: Cu = 60: 37: 3 by weight, and the mixing ratio of Nb and Sn is the stoichiometric value of Nb 3 Sn. 3 wt% of Cu is for promoting the reaction at the time of heat treatment for forming Nb 3 Sn as described above.

この状態でSnの溶融温度(232℃)以上に加熱し、Sn
のみを溶融状態とし、他は固体状態のまま、Nbスリーブ
11を外部より圧縮し、接続部全体を一体化する。
In this state, it is heated above the melting temperature of Sn (232 ° C),
Nb sleeve with only the molten state and the others in the solid state
11 is compressed from the outside, and the whole connection is integrated.

このようにすれば低温で溶融するSnが他の粉末間ある
いはNbフィラメントないしNbスリーブ間に万遍なく入り
込み、空隙部は一切無くなる。
In this way, the Sn that melts at a low temperature uniformly enters between other powders or Nb filaments or Nb sleeves, and voids are completely eliminated.

このように圧縮一体化しておいて、つぎにはNb3Snの
生成温度に加熱し所要時間その温度の保持してやれば、
超電導線6,6′のNbフィラメントの界面近傍および接続
部のNbとSnの接触し合っている界面近傍にはNb3Snの層
が拡散によって生成される。このNb3Sn層は超電導線6,
6′と接続部との間で連続層を形成し、超電導線6,6′は
超電導接続される。しかも、接続部には先の従来例にみ
られたような空隙も生ずることがなく、極めて安定した
超電導接続部を被接続超電導線6,6′間に形成させるこ
とができる。
In this way, if it is compressed and integrated, then it is heated to the temperature at which Nb 3 Sn is formed and maintained at that temperature for a required time,
A layer of Nb 3 Sn is generated by diffusion near the interface between the Nb filaments of the superconducting wires 6, 6 ′ and near the interface where Nb and Sn are in contact with each other at the connection part. This Nb 3 Sn layer is a superconducting wire 6,
A continuous layer is formed between 6 'and the connection, and the superconducting wires 6, 6' are superconductingly connected. In addition, no void is formed in the connecting portion as in the prior art, and an extremely stable superconducting connecting portion can be formed between the connected superconducting wires 6, 6 '.

第2図は、本発明に係る第2の実施例を示すものであ
り、特に超電導線6,6′の接続強度を十分に確保可能に
接続する別な接続方法を示す説明図である。
FIG. 2 shows a second embodiment according to the present invention and is an explanatory view showing another connection method for connecting the superconducting wires 6, 6 'so that the connection strength can be sufficiently secured.

本実施例においては、図にみるように接続すべき超電
導線6,6′の端部を相対応して平行な傾斜面に形成する
ところに特徴がある。
The present embodiment is characterized in that the ends of the superconducting wires 6, 6 'to be connected are formed on correspondingly parallel inclined surfaces as shown in the figure.

サブマルチ線4(4′は図に現れていない)のエッチ
ングによるNbフィラメント1(1′は図に現れていな
い)の露出工程は、上記第1図において説明した工程と
変りはない。
The step of exposing the Nb filament 1 (1 'is not shown in the figure) by etching the sub-multi line 4 (4' is not shown in the figure) is the same as the step described in FIG.

本実施例において相違するところは、Nbフィラメント
1,1の突出し長さを余り大きくせず、従って、傾斜切断
した被接続超電導線6,6′の傾斜面間隔も余り大きく取
らずに、その間にNb粉末7、Sn粉末8、Cu粉末9の混合
粉末を充填してNbスリーブ11を着合した点にある。
The difference in this embodiment is that the Nb filament
The protrusion length of the superconducting wires 1,1 is not made too large, and therefore, the interval between the inclined superconducting wires 6,6 'that are obliquely cut is not too large, and the Nb powder 7, Sn powder 8, Cu powder 9 The point is that the Nb sleeve 11 is bonded by filling the mixed powder of the above.

以下は、Snの融点以上の加熱下での圧縮、そしてNb3S
n生成のための拡散加熱処理などいずれも第1図の場合
と変りはない。
Below is the compression under heating above the melting point of Sn, and Nb 3 S
In any case, such as the diffusion heat treatment for producing n, there is no difference from the case of FIG.

しかし、本実施例においては、超電導線6,6′間が十
分に接近し、傾斜面を介して接続部と接続されているか
ら、長手方向の横断面において機械的性質の弱い混合粉
末の融合部を最少限とすることができ、所謂拡散圧接状
態とすることができ、接続部の機械的強度を格段に向上
できる特徴がある。しかも、超電導接続が混合粉末によ
って連続生成されたNb3Sn層によって達成される点にお
いては第1図の場合と変りはないのである。
However, in the present embodiment, since the superconducting wires 6, 6 'are sufficiently close to each other and connected to the connecting portion via the inclined surface, the fusion of the mixed powder having weak mechanical properties in the longitudinal cross section is performed. The connection portion can be minimized, so-called a diffusion pressure contact state can be obtained, and the mechanical strength of the connection portion can be significantly improved. Moreover, there is no difference from the case of FIG. 1 in that the superconducting connection is achieved by the Nb 3 Sn layer continuously produced by the mixed powder.

本発明を実施するに当っての具体的数値は下記の通り
であり、それによって本発明の所期目的を十分に発揮で
きることが確認された。
The specific numerical values in carrying out the present invention are as follows, and it was confirmed that the intended purpose of the present invention can be sufficiently exhibited.

第1図におけるSnの溶融状態下での実作業は、450℃
で30分間の加熱とし、圧縮荷重は45kg/mm2とした。加熱
温度は300℃〜500℃程度が適当であり、加熱温度が500
℃を越えると超電導特性が劣化する。また、圧縮荷重は
30〜60kg/mm2程度の範囲では特性の変化はないが、圧縮
荷重が120kg/mm2を越えると線材の変形が起り好ましく
ない。
The actual work in the molten state of Sn in FIG.
For 30 minutes, and the compression load was 45 kg / mm 2 . Appropriate heating temperature is about 300 ℃ ~ 500 ℃.
If the temperature exceeds ℃, the superconducting properties deteriorate. The compression load is
Although no change in characteristics in 30~60kg / mm 2 in the range of about, compressive load undesirably occur deformation exceeds 120 kg / mm 2 wires.

その後、この接続された超電導線全体を外部から600
℃〜700℃の温度で100〜200時間程度加熱して熱処理を
行ない、撚合せたNbフィラメント1,1′、Nbスリーブ11
内部及びNb7、Sn8粉末間に連続的にNb3Sn層を形成させ
ることができ、これらと超電導線6,6′のNb3Snとは連続
状態となることも確認された。
After that, the whole connected superconducting wire was
Heated at a temperature of ℃ ~ 700 ℃ for about 100-200 hours, heat-treated, twisted Nb filament 1,1 ', Nb sleeve 11
It was also confirmed that an Nb 3 Sn layer could be continuously formed inside and between the Nb 7 and Sn 8 powders, and that these and the Nb 3 Sn of the superconducting wires 6, 6 ′ were in a continuous state.

第2図の接続すべき端面を傾斜切断する例において
は、Nbフィラメントを2〜10mmの長さで露出するのが適
当である。その後前述の第1図の実施例で示す加熱温度
450℃30分間、圧縮荷重45kg/mm2の条件で圧縮すること
により、斜面に露出しているCu−SnブロンズおよびCu安
定化材がそれぞれ拡散圧接による接続状態となり、機械
的強度は一段と向上する。
In the example of FIG. 2 in which the end face to be connected is cut obliquely, it is appropriate to expose the Nb filament to a length of 2 to 10 mm. Thereafter, the heating temperature shown in the embodiment of FIG.
450 ° C. 30 minutes, by compression under conditions of compressive load 45kg / mm 2, Cu-Sn bronze and Cu stabilizer is exposed to the slopes is in a connected state due to the diffusion pressure respectively, the mechanical strength is further improved .

なお、接続部にNbスリーブを使用したことによりその
部分のCu安定化材が欠落することになるが、それを補う
にはさらにCu被覆を行なえばよいものである。また、Nb
スリーブ内に入れるNb、Sn、Cuの粉末は、Nb粉末の廻り
に銅をコーティングし、さらにその廻りにSnをコーティ
ングする所謂複合粉末を用いることにより一層均一な混
合状態で接続を行なうことが可能となる。
Note that the use of the Nb sleeve for the connection portion causes the Cu stabilizing material at that portion to be missing, but this can be compensated for by further coating the Cu. Also, Nb
Nb, Sn, Cu powder put in the sleeve can be connected in a more uniform mixed state by using a so-called composite powder that coats copper around the Nb powder and further coats Sn around the Nb powder Becomes

[発明の効果] 以上の通り、本発明に係る接続方法によれば、ブロン
ズ法により製造するNb3Sn系化合物超電導線における安
定した超電導接続を確立できる上、接続部の機械的強度
をも確保可能ならしめるものであり、斯業界における本
発明の有する工業上の価値は極めて大きい。
[Effects of the Invention] As described above, according to the connection method according to the present invention, a stable superconducting connection can be established in the Nb 3 Sn-based compound superconducting wire manufactured by the bronze method, and the mechanical strength of the connecting portion is also ensured. This is possible, and the industrial value of the present invention in the industry is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る方法を実施している様子を示す説
明図、第2図は本発明に係る別な実施例を示す説明図、
第3図は従来例の説明図、第4図はブロンズ法による超
電導線の具体的構成を示す説明図である。 1,1′:Nbフィラメント、2,2′:ブロンズ、3,3′:Nbバ
リア、4,4′:サブマルチ線、5,5′:Cu安定化材、6,
6′:超電導線、7:Nb粉末、8:Sn粉末、9:Cu粉末、11:Nb
スリーブ。
FIG. 1 is an explanatory view showing a state of implementing a method according to the present invention, FIG. 2 is an explanatory view showing another embodiment of the present invention,
FIG. 3 is an explanatory view of a conventional example, and FIG. 4 is an explanatory view showing a specific configuration of a superconducting wire by a bronze method. 1,1 ': Nb filament, 2,2': bronze, 3,3 ': Nb barrier, 4,4': submulti wire, 5,5 ': Cu stabilizer, 6,
6 ': superconducting wire, 7: Nb powder, 8: Sn powder, 9: Cu powder, 11: Nb
sleeve.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Nb3Sn系マルチフィラメント型の超電導線
相互を接続する方法であって、先ず接続すべき超電導線
の対応する端部の安定化Cu、NbバリアおよびCu−Snブロ
ンズを酸等により溶解除去してNbフィラメントを所定長
残存露出させ、ついで露出したNbフィラメント相互を撚
合せて接合させ、当該撚合せたNbフィラメントをNb、S
n、Cuそれぞれの粉末の混合物中に挿入すると共にその
外周にNbスリーブを着合させ、そのようにして形成した
接続部をSn粉末の溶融温度よりも高い温度に加熱してSn
粉末が溶融した状態下で接続部を外部より圧縮一体化
し、その後接続部並びに超電導線全体をNb3Snの生成温
度において加熱し、超電導線内のNbフィラメントの界面
および接続部にNb3Snの連続した化合物を生成させる化
合物系超電導線の接続方法。
1. A method for connecting Nb 3 Sn multifilament type superconducting wires to each other, comprising first stabilizing Cu, Nb barrier and Cu-Sn bronze at the corresponding end of the superconducting wire to be connected with an acid or the like. By dissolving and removing the Nb filament to expose a predetermined length of the remaining Nb filament, and then twisting and joining the exposed Nb filaments to each other.
n and Cu were inserted into the mixture of the respective powders, and an Nb sleeve was attached to the outer periphery thereof, and the connection thus formed was heated to a temperature higher than the melting temperature of the Sn powder to form the Sn.
In the state where the powder is melted, the connection part is compression-integrated from the outside, and then the connection part and the entire superconducting wire are heated at the Nb 3 Sn generation temperature, and the Nb 3 Sn A method for connecting a compound-based superconducting wire that generates a continuous compound.
【請求項2】Nb3Sn系マルチフィラメント型の超電導線
相互を接続する方法であって、先ず接続すべき超電導線
の対応する端部をやや平行状態となるような傾斜面に切
断し、安定化Cu、NbバリアおよびCu−Snブロンズを酸等
により溶解除去してNbフィラメントを前記それぞれの傾
斜面より余り大きく突出しない程度の長さに露出突出さ
せ、Nbフィラメントを突出させた傾斜面の間にNb、Sn、
Cuそれぞれの粉末の混合物を充填すると共にその外周に
Nbスリーブを着合させ、そのようにして形成した接続部
をSn粉末の溶融温度よりも高い温度に加熱してSn粉末が
溶融した状態下で接続部を外部より圧縮一体化し、その
後接続部並びに超電導線全体をNb3Snの生成温度におい
て加熱し、超電導線内のNbフィラメントの界面および接
続部にNb3Snの連続した化合物を生成させる化合物系超
電導線の接続方法。
2. A method for connecting Nb 3 Sn-based multifilament type superconducting wires to each other, wherein the corresponding ends of the superconducting wires to be connected are cut into inclined planes so as to be in a slightly parallel state, and are stabilized. Cu, Nb barrier and Cu-Sn bronze are dissolved and removed with an acid or the like to expose and project the Nb filaments to a length that does not project much more than the respective inclined surfaces, and between the inclined surfaces from which the Nb filaments are projected. Nb, Sn,
Fill the mixture of each powder of Cu
The Nb sleeve is attached, and the connection thus formed is heated to a temperature higher than the melting temperature of the Sn powder, and the connection is compression-integrated from the outside under a state in which the Sn powder is melted, and then the connection and A method of connecting a compound superconducting wire in which the entire superconducting wire is heated at the Nb 3 Sn generation temperature to form a continuous compound of Nb 3 Sn at the interface and the connection portion of the Nb filament in the superconducting wire.
JP2002779A 1990-01-10 1990-01-10 How to connect compound superconducting wires Expired - Lifetime JP2606393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002779A JP2606393B2 (en) 1990-01-10 1990-01-10 How to connect compound superconducting wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002779A JP2606393B2 (en) 1990-01-10 1990-01-10 How to connect compound superconducting wires

Publications (2)

Publication Number Publication Date
JPH03208279A JPH03208279A (en) 1991-09-11
JP2606393B2 true JP2606393B2 (en) 1997-04-30

Family

ID=11538829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002779A Expired - Lifetime JP2606393B2 (en) 1990-01-10 1990-01-10 How to connect compound superconducting wires

Country Status (1)

Country Link
JP (1) JP2606393B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290638A (en) * 1992-07-24 1994-03-01 Massachusetts Institute Of Technology Superconducting joint with niobium-tin
JP2902239B2 (en) * 1992-12-25 1999-06-07 三菱電機株式会社 Superconducting wire connection method, superconducting wire having connection portion, and superconducting wire connecting die
US5583319A (en) * 1993-10-21 1996-12-10 Lieurance; Dennis W. Low resistance superconductor cable splice and splicing method
US6543123B1 (en) 1999-04-20 2003-04-08 Composite Materials Technology, Inc. Process for making constrained filament niobium-based superconductor composite
US20020020051A1 (en) * 1999-04-20 2002-02-21 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US6918172B2 (en) * 2000-03-21 2005-07-19 Composite Materials Technology, Inc. Process for manufacturing Nb3Sn superconductor
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
US6836955B2 (en) 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
JP5259603B2 (en) 2006-09-26 2013-08-07 コンポジット マテリアルズ テクノロジー インコーポレイテッド Method for producing improved electrolytic capacitor anode
GB2487926B (en) * 2011-02-08 2013-06-19 Siemens Plc Joints with very low resistance between superconducting wires and methods for making such joints

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848075A (en) * 1971-12-27 1974-11-12 Varian Associates Method for splicing compound superconductors
JPS59141178A (en) * 1983-02-01 1984-08-13 三菱電機株式会社 Method of connecting superconductive wire
JPS6433871A (en) * 1987-07-28 1989-02-03 Toshiba Corp Connecting method for compound superconductive cable

Also Published As

Publication number Publication date
JPH03208279A (en) 1991-09-11

Similar Documents

Publication Publication Date Title
JP2606393B2 (en) How to connect compound superconducting wires
EP0073128B1 (en) Superconducting composite wire
US4659007A (en) The method for producing an Al-stabilized superconducting wire
JPS60136109A (en) Superconductive conductor and method of producing same
JP4299367B2 (en) Method for producing long superconductor with bismuth phase at high critical temperature and superconductor produced by this method
JP2685147B2 (en) Superconducting wire and its manufacturing method
JP3107320B2 (en) Superconducting wire connection method
US4354075A (en) Electrical contact element and process for its manufacture
JPS6035796B2 (en) How to connect superconducting wires
JPH031469A (en) Connecting method for superconductive wire and compound superconductive wire
JPH0433272A (en) Connecting method for superconducting wire
JP3428771B2 (en) Nb3Sn compound superconducting wire
JPH0450719B2 (en)
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JP2517594B2 (en) Method for producing fiber-dispersed superconducting wire
JPS5830682B2 (en) Conductor No. Seizouhouhou
JPH0376101A (en) Joint of superconductive conductor
JPS6018089B2 (en) Manufacturing method for wire rods made of superconducting compounds
JPH0265082A (en) Connecting method for superconducting wire
JPS60241611A (en) Method of producing nb3sn superconductive wire
JPH0574507A (en) Superconductive wire connecting method
JPH02297873A (en) Connecting method for superconductive wire
JPS6050012B2 (en) Manufacturing method of composite superconducting wire
JPH0735563B2 (en) Method for producing compound superconducting wire
JPH03192613A (en) Oxide superconducting wire material and manufacture thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

EXPY Cancellation because of completion of term