JPH03208279A - Connection of compound superconducting wire - Google Patents

Connection of compound superconducting wire

Info

Publication number
JPH03208279A
JPH03208279A JP277990A JP277990A JPH03208279A JP H03208279 A JPH03208279 A JP H03208279A JP 277990 A JP277990 A JP 277990A JP 277990 A JP277990 A JP 277990A JP H03208279 A JPH03208279 A JP H03208279A
Authority
JP
Japan
Prior art keywords
powder
filaments
connection
superconducting
nb3sn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP277990A
Other languages
Japanese (ja)
Other versions
JP2606393B2 (en
Inventor
Hiroshi Koto
古東 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002779A priority Critical patent/JP2606393B2/en
Publication of JPH03208279A publication Critical patent/JPH03208279A/en
Application granted granted Critical
Publication of JP2606393B2 publication Critical patent/JP2606393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize superconductivity after connection, and to ensure mechanical strength of a connected part by heating Nb filaments of Nb3Sn multi- filament type superconducting wires in Nb, Sn, Cu powder at a predetermined temperature, and by connecting them together. CONSTITUTION:In the connection of Nb3Sn multi-filament type superconducting wires 6, 6', Cu-Sn bronzes 2, 2' coating Nb filaments 1, 1', Nb barriers 3, 3', Cu stabilizing materials 5, 5', are dissolved by acid and so on and are removed thereby. The exposed Nb filaments 1, 1' are twisted with each other, and are coated with a Nb sleeve 11, together with each Nb, Sn, Cu powder, which is the heated at a temperature higher than the dissolving temperature of Sn, and is pressurized. Or otherwise, a connection end part is cut obliquely, so as to maintain mechanical strength. After the connection part is compressed with no gap due to the dissolution of Sn, the entire wire is heated at a predetermined temperature, and Nb3Sn is formed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、化合物系超電導線とくにブロンズ法により製
造するNb3Sn系化合物超電導線における安定した超
電導接続を確立できると共に、接続部の機械的強度をも
確保可能な改良された接続方法に関するものである. [従来の技術J 化合物系超電導線には種々な戒分系のものが発表されて
いるが、実際に実用化されているものはNb3Sn系あ
るいはそれにTiをドープして高磁界性能の向上を図っ
たものがほぼ主流を占めている。
Detailed Description of the Invention [Industrial Field of Application] The present invention is capable of establishing stable superconducting connections in compound superconducting wires, particularly Nb3Sn compound superconducting wires manufactured by the bronze method, and improving the mechanical strength of the connection portions. It concerns an improved connection method that can also ensure [Conventional technology J Various types of compound-based superconducting wires have been announced, but those that are actually in practical use are Nb3Sn-based or doped with Ti to improve high-field performance. almost all of them are the mainstream.

このような超電専線がもし合金系であれば、超電導線の
露出された端部を単に溶接しさえすればよく、その接続
はまことに容易である.しかし、接続対象が、化合物系
となると甚だ厄介である.すなわち、化合物系超電導線
の超電導部分は、化合物を生成する金属元素を接触させ
拡散加熱することにより、その拡散層に所望の金属間化
合物を生成させるものであり、接続部においてもその化
合物が超電導線側と連続していなければならない.もし
その連続が途切れてしまえば、その途切れた部分は超電
導体ではなくなってしまい、超電導線としての用をなさ
なくなるからである. Nbs Sn系超電導線の製造方法には、表面拡散法、
ブロンズ法、インサイチュー法あるいは粉末法など様々
な提案がある. しかし、工業的規模の量産に適用されているのは、目下
のところそのうちのブロンズ法である.このブロンズ法
は、第4図に示すように極細のNbフィラメント1.1
の多数本をCu−Snブロンズ2のマトリックス内に埋
込み、その外周にNbバリア3を設け、このようにして
形成されたサブマルチ線4,4の複数をCu安定化材5
の中に埋込み、Nb3Sn系超電導線6を得るものであ
る. ここにおいて、Cu安定化材5はその文字の示す通り安
定化材としての役目を果すものであり、Nbバリア3を
設けるのは、Cu−Snブロンズ側より拡散してきた元
素によりCu安定化材の樺電率が低下し安定化材として
の役目が不十分とならないように、このNbバリア3に
よって安定化C u mJへの拡散を阻止するためであ
る.第4図のように構成し、これを所定の Nb3Sn化合物の生成する温度にまで加熱してやれば
、Nbフィラメント1とCu−Snブロンズとの間で拡
散が生じNbフィラメントの界面にNb3Sn化合物層
が生成され、この層が超電導特性を示す.なお、ここに
Cu−Snブロンズを使用するのは、CuがNbとSn
の反応を促進させる効果を有することも配慮する意味が
ある.このようなNb3Sn系超電導線の′#続法の従
来例としては、第3図に示すような提案がある.すなわ
ち、接続しようとする超電導線6.6−(もつとも、こ
の段階では未だ拡散加熱はされておらず正しくはNb3
Sn化合物の生成前の中間製品であるが、以下この段階
をも含め超電導線と呼ぶものとする)の端部の安定化C
u5,5−およびNbバリア3,3−ならびにサブマル
チ線のCu−Snブロンズマトリックスを硝酸等で溶解
し、所定長のNbフィラメント1,1および1−1−を
露出させる。この露出させたNbフィラメント1,1お
よび1−,1−を図のように撚合せ状態として接合させ
、その上に安定化Cu5,5−の先端部分から当該撚合
せ接合部分にブロンズパイプ10を被覆し、このブロン
ズパイプ10とNbフィラメントの撚合せ接合部を共に
圧縮し、その後前述したNb3Sn生成のための拡散加
熱を行ない、ブロンズパイプとNbフィラメントとの間
にNba Sn層の超電導化合物を生成させるものであ
る. また、別な提案例として、上述同様にしてNbフィラメ
ントを露出させた後それらを互いに接合させ、これをN
b,Sn粉末の混合物を含んだNbスリーブ中へ挿入し
、圧縮変形させ一体化させた後、接合部を外部から加熱
して熱処理を行ない、NbフィラメントおよびNbスリ
ーブ内側、Nb粉末同志にNb3Sn層の超電導金属間
化合物を形成し2て接続する方法も提案されている。
If such a superconducting wire is made of an alloy, the exposed end of the superconducting wire may simply be welded, making the connection extremely easy. However, it becomes extremely troublesome when the connection target is a compound system. In other words, the superconducting part of the compound-based superconducting wire is made to contact a metal element that produces a compound and heat it by diffusion, thereby producing a desired intermetallic compound in the diffusion layer, and the compound also becomes superconducting at the connection part. It must be continuous with the line side. If the continuity is interrupted, the interrupted part will no longer be a superconductor and will no longer be useful as a superconducting wire. The manufacturing method of NbsSn-based superconducting wire includes surface diffusion method,
There are various proposals such as bronze method, in-situ method or powder method. However, only the bronze method is currently being applied to mass production on an industrial scale. This bronze method uses an ultra-fine Nb filament of 1.1 mm as shown in Figure 4.
are embedded in a matrix of Cu-Sn bronze 2, an Nb barrier 3 is provided around the outer periphery, and a plurality of sub-multi lines 4, 4 thus formed are embedded in a Cu stabilizing material 5.
to obtain an Nb3Sn-based superconducting wire 6. Here, the Cu stabilizing material 5 plays a role as a stabilizing material as its name indicates, and the reason for providing the Nb barrier 3 is to prevent the Cu stabilizing material from being diffused from the Cu-Sn bronze side. This is to prevent diffusion into the stabilized C u mJ by the Nb barrier 3 so that the birch conductivity does not decrease and the role of the stabilizer becomes insufficient. If the structure shown in Fig. 4 is heated to a temperature at which a predetermined Nb3Sn compound is generated, diffusion will occur between the Nb filament 1 and the Cu-Sn bronze, and an Nb3Sn compound layer will be formed at the interface of the Nb filament. This layer exhibits superconducting properties. In addition, the reason why Cu-Sn bronze is used here is that Cu is Nb and Sn.
It is also meaningful to consider that it has the effect of promoting the reaction of As a conventional example of the '# continuation method for Nb3Sn superconducting wires, there is a proposal as shown in Figure 3. In other words, the superconducting wire 6.6- (although at this stage, diffusion heating has not yet been performed and the correct name is Nb3
Stabilization of the end of a superconducting wire (this is an intermediate product before the formation of a Sn compound, but this stage will also be referred to as a superconducting wire hereinafter)
The u5,5- and Nb barriers 3,3- and the submultiline Cu-Sn bronze matrix are dissolved with nitric acid or the like to expose predetermined lengths of Nb filaments 1,1 and 1-1-. The exposed Nb filaments 1, 1 and 1-, 1- are joined in a twisted state as shown in the figure, and then a bronze pipe 10 is inserted from the tip of the stabilized Cu 5, 5- to the twisted joint part. The twisted joint of the bronze pipe 10 and the Nb filament is compressed together, and then the above-mentioned diffusion heating is performed to generate Nb3Sn, thereby forming a superconducting compound of NbaSn layer between the bronze pipe and the Nb filament. It is something that allows you to In addition, as another proposed example, after exposing the Nb filaments in the same manner as described above, they are bonded to each other, and this
b. After inserting into a Nb sleeve containing a mixture of Sn powder and compressing and deforming it to integrate, the joint is heated from the outside for heat treatment to form a Nb3Sn layer on the Nb filament, inside the Nb sleeve, and on the Nb powder. A method of forming a superconducting intermetallic compound and connecting the two has also been proposed.

[発明が解決しようとする課題] 上記した二つの既提案例のうち、前者すなわち第3図に
示したブロンズバイブ10の被覆、圧縮だけでは、撚合
せたNbフィラメント1.1−の外周とブロンズバイグ
10の接触部にのみNb3Sr1形成による超電導接続
が実現されるだけであり、特性的にみて不十分なものし
か得られない6 一方、後者すなわちNb,Sn粉末の混合物を含んだN
bスリーブ中でNbフィラメントを接触させ、圧縮変形
させて加熟する方法は、Nbフィラメント同志、Nbフ
ィラメントとNbスリーブの内開、Nb粉末同志におけ
るNbs Sn形成による超電導接続が可能となるが、
実際には、Nb3Sn生成のための熱処理による加熱の
際に、融点の低いSn粉末の溶融が先に生じてしまい、
Nbスリーブ内にそのための間隙ができる.このため、
Nb粉末の密着性が低下しNb3Snの連続的な形成が
阻害され、必ずしも満足の行くような超電導接続は達成
されない.しかも、本方法によっては、NbとSnの化
学量論値の割合である37Wt%Snの採用はできない
. 本発明の目的は、上記したような従来技術の問題点を解
決し、化合物系超電導線とくにブロンズ法により製造す
るNb3Sn系化合物超電導線における安定した超電導
接続を確立できる上、#続部の機械的強度をも確保可能
な新規な化合物系超電導線の接続方法を提供しようとす
るものである.[課題を解決するための手段] 本発明は、Nb3Sn系マルチフィラメント型の超電揮
線相互を接続するに当り、先ず接続すべき超電導線の対
応する端部の安定化Cu,NbバリアおよびCu−Sn
ブロンズを酸等により溶解除去してNbフィラメントを
所定長残存露出させ、ついで露出したNbフィラメント
相互を撚合せて接合させ、当該撚合せたNbフィラメン
トをNb、Sn,Cuそれぞれの粉末の混合物中に挿入
すると共にその外周にNbスリーブを着合させ、そのよ
うにして形成した接続部をSn粉末の溶融温度よりも高
い温度に加熱してSn粉末が溶融した状態下で接続部を
外部より圧縮一体化し、その後接続部並びに超電導線全
体をNb3Snの生或温度において加熱し、超電導線内
のNbフィラメントの界面および接続部にNb3Snの
連続した化合物を生或させるものであり、また、上記接
続する場合に、接続すべき超電導線の対応する端部をや
や平行状態となるような傾斜面に切断し、安定化Cu,
NbバリアおよびCu−Snブロンズを酸等により溶解
除去してNbフィラメントを前記それぞれの傾斜面より
余り大きく突出しない程度の長さに露出突出させ、Nb
フィラメントを突出させた傾斜面の間にNb,Sn,C
uそれぞれの粉末の混合物を充填すると共にその外周に
Nbスリーブを着合させ、そのようにして形或した接続
部をSn粉末の溶M温度よりも高い温度に加熱してSn
粉末が溶融した状態下で接続部を外部より圧縮一体化し
、その後接続部並びに超電導線全体をNb3Snの生成
温度において加熱し、超電導線内のNbフィラメントの
界面および接続部にNb3Snの連続した化合物を生戊
させるものである. [作用コ Nbフィラメントを露出させ、Nb,Sn、Cuの混合
粉末と共に圧縮一体化するに当り、低温で溶融状態とな
るSnを先に溶融する状態にまで加熱しておき、圧縮一
体化する際にはSnが溶融状態下にあるようにして圧縮
一体化すれば、他の固定状態の粉末の間隙に万遍なく溶
融Snが入り込み、圧縮一体化した後にはもはや間隙は
存在しない.この状態でNb3Snの拡散生成を行なわ
せれば、接続部全体には充実状態でNb3Snが生成さ
れ、従来例におけるようにSnの溶融に伴う引けすなわ
ち空隙は発生しないから、極めて安定的に連続状態のN
b3Snを接続部に生成させることができ、超電導接続
としての特性を格段に向上させることができる。
[Problems to be Solved by the Invention] Of the two previously proposed examples described above, it is not possible to cover and compress the bronze vibrator 10 shown in FIG. A superconducting connection due to the formation of Nb3Sr1 is only achieved in the contact area of 10, which is insufficient in terms of characteristics.6 On the other hand, the latter, that is, Nb containing a mixture of Nb and Sn powders,
The method of bringing Nb filaments into contact and compressing and deforming them in a b-sleeve enables superconducting connections by forming Nb filaments together, opening the Nb filaments and Nb sleeve inward, and forming Nbs Sn between Nb powders.
In reality, during heating during heat treatment to generate Nb3Sn, Sn powder with a low melting point melts first.
A gap is created within the Nb sleeve for this purpose. For this reason,
The adhesion of the Nb powder decreases and the continuous formation of Nb3Sn is inhibited, so that a satisfactory superconducting connection is not necessarily achieved. Moreover, depending on this method, it is not possible to adopt 37 Wt%Sn, which is the stoichiometric ratio of Nb and Sn. It is an object of the present invention to solve the problems of the prior art as described above, to establish a stable superconducting connection in a compound superconducting wire, especially in an Nb3Sn compound superconducting wire manufactured by a bronze method, and to improve the mechanical strength of the connection part. The aim is to provide a new method for connecting compound-based superconducting wires that also ensures strength. [Means for Solving the Problems] In the present invention, when connecting Nb3Sn multifilament type superconducting wires, first, stabilizing Cu, Nb barrier and Cu at corresponding ends of the superconducting wires to be connected are -Sn
Bronze is dissolved and removed with an acid or the like to expose a predetermined length of Nb filaments, and then the exposed Nb filaments are twisted and bonded together, and the twisted Nb filaments are placed in a mixture of Nb, Sn, and Cu powders. At the same time as the insertion, a Nb sleeve is attached to the outer periphery of the Nb sleeve, and the connection portion thus formed is heated to a temperature higher than the melting temperature of the Sn powder, and the connection portion is compressed and integrated from the outside while the Sn powder is melted. After that, the connecting portion and the entire superconducting wire are heated at a temperature at which Nb3Sn is generated, and a continuous compound of Nb3Sn is generated at the interface of the Nb filament in the superconducting wire and the connecting portion, and in the case of the above connection. First, the corresponding ends of the superconducting wires to be connected are cut into slightly parallel inclined surfaces, and stabilized Cu,
The Nb barrier and the Cu-Sn bronze are dissolved and removed using acid or the like to expose and protrude the Nb filament to a length that does not protrude too much from the respective inclined surfaces, and the Nb
Nb, Sn, C between the inclined surfaces from which the filaments protrude
A mixture of each powder is filled, a Nb sleeve is attached to the outer periphery of the mixture, and the thus formed connection is heated to a temperature higher than the melting temperature of the Sn powder to form Sn.
The joints are compressed together from the outside while the powder is molten, and then the joints and the entire superconducting wire are heated at the Nb3Sn formation temperature to form a continuous compound of Nb3Sn at the interface of the Nb filaments in the superconducting wire and at the joints. It is something that gives birth. [Operation] When the Nb filament is exposed and compressed and integrated with the mixed powder of Nb, Sn, and Cu, Sn, which is in a molten state at low temperatures, is first heated to a state where it melts. If Sn is compressed and integrated while it is in a molten state, the molten Sn will evenly enter the gaps between the powders that are in a fixed state, and there will no longer be any gaps after the powder is compressed and integrated. If Nb3Sn is diffused and generated in this state, Nb3Sn will be generated in a full state in the entire joint, and shrinkage or voids due to melting of Sn will not occur as in the conventional example, so a continuous state can be achieved in an extremely stable manner. N
b3Sn can be generated in the connection portion, and the characteristics as a superconducting connection can be significantly improved.

[実施例] 以下に、本発明について実施例を参照し説明する. 第l図は本発明に係る第1の実施例を示す説明図であり
、既に説明した符号と同一符号は実質的に同一構或を示
すものである。
[Examples] The present invention will be described below with reference to Examples. FIG. 1 is an explanatory diagram showing a first embodiment of the present invention, and the same reference numerals as those already described indicate substantially the same structure.

接続すべき超電導線6,6−の安定化Cu5,5゛を硝
酸によって溶解除去する.その後にNbバリア3,3−
が現れるが、これは硝酸によっては溶解しないから、フ
ッ酸と硝酸を敵当量混合したフッ硝酸により一過性の溶
解を行ないNbバリア3,3−を除去し、その後に現れ
たCu−Snブロンズマトリックスを再び硝酸で溶解除
去すれば、その後にNbフィラメント1.1および11
−のみが残存する. この残存したNbフィラメント1,1および1−1 1
−を適当に撚合せ接合させると共に、その外周をNbス
リーブで覆い、内部にNb粉末7Sn粉末8、Cu粉末
9の混合粉末を充填する.この混合割合は重量バーセン
トで Nb:Sn:Cu=60:37:3 であり、NbとSnの混合割合はNb3Snの化学量論
値である,Cuの3wt%は先に説明したようにNb3
Sn生或熱処理時の反応促進のためである. この状態でSnの溶融温度(232℃}以上に加熱し、
Snのみを溶融状態とし、他は固体状態のまま、Nbス
リーブ11を外部より圧縮し、接続部全体を一体化する
. このようにすれば低温で溶融するSnが他の粉末間ある
いはNbフィラメントないしNbスリーブ間に万遍なく
入り込み、空隙部は一切無くなる.このように圧縮一体
化しておいて、つぎにはNb3Snの生或温度に加熱し
所要時間その温度に保持してやれば、超電導線6.6−
のNbフィラメントの界面近傍および接続部のNbとS
nの接触し合っている界面近傍にはNb3Snの層が拡
散によって生或される.このNb3Sn層は超電導線6
.6゛と接続部との間で連続層を形或し、超電導!16
.61よ超電導接続される.しかも、接続部には先の従
来例にみちれたような空隙も生ずることがなく、極めて
安定した超電導接続部を被接続超電導線6,6一間に形
成させることができる. 第2図は、本発明に係る第2の実施例を示すものであり
、特に超電導線6,6−の接続強度を十分に確保可能に
接続する別な#続方法を示す説明図である. 本実施例においては、図にみるように接続すべき超電導
線6.6−の端部を相対応して平行な傾斜面に形成する
ところに特徴がある。
The stabilized Cu5,5' of the superconducting wires 6,6- to be connected is dissolved and removed with nitric acid. After that, Nb barrier 3,3-
appears, but since it is not dissolved by nitric acid, temporary dissolution is performed with fluoronitric acid, which is a mixture of hydrofluoric acid and nitric acid in equivalent amounts, to remove the Nb barrier 3,3-, and then the Cu-Sn bronze that appears If the matrix is dissolved and removed again with nitric acid, then Nb filaments 1.1 and 11
- only remains. These remaining Nb filaments 1, 1 and 1-1 1
- are suitably twisted and joined together, and the outer periphery thereof is covered with an Nb sleeve, and the inside is filled with a mixed powder of Nb powder, Sn powder 8, and Cu powder 9. This mixing ratio is Nb:Sn:Cu=60:37:3 in terms of weight percent, and the mixing ratio of Nb and Sn is the stoichiometric value of Nb3Sn.As explained earlier, 3wt% of Cu is Nb3
This is to promote the reaction during Sn production or heat treatment. In this state, heat to the melting temperature of Sn (232°C} or higher,
The Nb sleeve 11 is compressed from the outside with only Sn in a molten state and the others in a solid state to integrate the entire connection part. In this way, Sn, which melts at low temperatures, will evenly enter between other powders or between Nb filaments or Nb sleeves, eliminating any voids. After compressing and integrating in this way, the superconducting wire 6.6-
Nb and S near the interface and connection part of the Nb filament
A layer of Nb3Sn is formed near the interface where the n atoms contact each other by diffusion. This Nb3Sn layer is the superconducting wire 6
.. A continuous layer is formed between the 6゛ and the connection part, making it superconducting! 16
.. 61 is superconductingly connected. Furthermore, no voids are generated in the connection portion as in the prior art example, and an extremely stable superconducting connection portion can be formed between the superconducting wires 6, 6 to be connected. FIG. 2 shows a second embodiment of the present invention, and is an explanatory diagram showing another method of connecting the superconducting wires 6, 6- in such a way that sufficient connection strength can be ensured. This embodiment is characterized in that the ends of the superconducting wires 6, 6- to be connected are formed into parallel inclined surfaces in correspondence with each other, as shown in the figure.

サブマルチ線4(4゛は図に現れていない)のヱッチン
グによるNbフィラメント1(1−は図に現れていない
)の露出工程は、上記第1図において説明した工程と変
りはない. 本実施例において相違するところは、Nbフィラメント
1.1の突出し長さを余り大きくせず、従って、傾斜切
断した被接続超電導線6,6−の傾斜面間隔も余り大き
く取らずに、その間にNb粉末7、Sn粉末8、Cu粉
末9の混合粉末を充填してNbスリーブ11を着合した
点にある.以下は、Snの融点以上の加熱下での圧縮、
そしてNb3Sn生成のための拡散加熱処理などいずれ
も第1図の場合と変りはない. しかし、本実施例においては、超電導線66一間が十分
に接近し、傾斜面を介して接続部と接続されているから
、長手方向の横断面において機械的性質の弱い混合粉末
の融合部を最少限とすることができ、所謂拡散圧接状態
とすることができ、接続部の機械的強度を格段に向上で
きる特徴がある.しかも、超電導接続が混合粉末によっ
て連続生成されたNbs Sn層によって達戒される点
においては第1図の場合と変りはないのである.本発明
を実施するに当っての具体的数値は下記の通りであり、
それによって本発明の所期目的を十分に発揮できること
が確認された. 第1図におけるSnの溶融状態下での実作業は、450
℃で30分間の加熱とし、圧縮荷重は45m/閣2とし
た,加熱温度は300℃〜500℃程度が適当であり、
加熱温度が500℃を越えると超電導特性が劣化する.
また、圧mvi重は30〜60kg/rm2程度の範囲
では特性の変化はないが、圧縮荷重が1 20kg/m
2を越えると線材の変形が起り好ましくない. その後、この接続された超電導線全体を外部から600
℃〜700℃の温度で100〜200時間程度加熱して
熱処理を行ない、撚合せたNbフィラメントl.,1−
、Nbスリーブ11内部及びNb7、Sn8粉末間に連
続的にNb3Sn層を形成させることができ、これらと
超電導線6,6−のNba Snとは連続状態となるこ
とも確認された. 第2図の接続すべき端面を傾斜切断する例においては、
Nbフィラメントを2〜10amの長さで露出するのが
適当である.その後前述の第1図の実膝例で示す加熱温
度450℃30分間、圧縮荷重45kg/rm2の条件
で圧縮することにより、斜面に露出しているCu−Sn
ブロンズおよびCu安定化材がそれぞれ拡散圧接による
接続状態となり、機械的強度は一段と向上する. なお、接続部にNbスリーブを使用したことによりその
部分のCu安定化材が欠落することになるが、それを補
うにはさらにCu被覆を行なえばよいものである.また
、Nbスリーブ内に入れるNb,Sn,Cuの粉末は、
Nb粉末の廻りに銅をコーティングし、さらにその廻り
にSnをコーティングする所謂複合粉末を用いることに
より一層均一な混合状態で#続を行なうことが可能とな
る. [発明の効果] 以上の通り、本発明に係る接続方法によれば、ブロンズ
法により製造するNb3Sn系化合物超電導線における
安定した超電導接続を確立できる上、接続部の機械的強
度をも確保可能ならしめるものであり、斯業界における
本発明の有する工業上の価値は極めて大きい.
The process of exposing the Nb filament 1 (1- does not appear in the figure) by etching the submulti line 4 (4' does not appear in the figure) is the same as the process explained in FIG. 1 above. The difference in this embodiment is that the protruding length of the Nb filament 1.1 is not made too large, and therefore the interval between the inclined planes of the superconducting wires 6, 6- cut at an angle is not too large, and there is a gap between them. The point is that a mixed powder of Nb powder 7, Sn powder 8, and Cu powder 9 is filled and the Nb sleeve 11 is attached. The following is compression under heating above the melting point of Sn,
The diffusion heat treatment for Nb3Sn production is the same as in the case shown in Figure 1. However, in this embodiment, since the superconducting wires 66 are sufficiently close to each other and connected to the connection part through the inclined surface, the fused part of the mixed powder with weak mechanical properties can be avoided in the longitudinal cross section. It has the feature that it can be minimized, it can be in a so-called diffusion pressure welding state, and it can significantly improve the mechanical strength of the connection part. Furthermore, there is no difference from the case shown in Fig. 1 in that the superconducting connection is achieved by the NbsSn layer continuously generated by the mixed powder. Specific numerical values for carrying out the present invention are as follows,
As a result, it was confirmed that the intended purpose of the present invention could be fully achieved. The actual work under the molten state of Sn in Fig. 1 is 450
℃ for 30 minutes, the compressive load was 45 m/kaku2, and the appropriate heating temperature was about 300℃ to 500℃.
When the heating temperature exceeds 500°C, the superconducting properties deteriorate.
In addition, there is no change in the characteristics when the pressure mvi weight is in the range of about 30 to 60 kg/rm2, but when the compressive load is 1 to 20 kg/m
If it exceeds 2, deformation of the wire will occur, which is undesirable. After that, the entire connected superconducting wire was
The twisted Nb filaments l. ,1-
It was also confirmed that an Nb3Sn layer could be formed continuously inside the Nb sleeve 11 and between the Nb7 and Sn8 powders, and that these and the NbaSn of the superconducting wires 6 and 6- were in a continuous state. In the example of cutting the end faces to be connected at an angle in Fig. 2,
It is appropriate to expose the Nb filament with a length of 2 to 10 am. Thereafter, the Cu-Sn exposed on the slope was compressed at a heating temperature of 450°C for 30 minutes and a compressive load of 45 kg/rm2 as shown in the example of the actual knee shown in Fig. 1.
Bronze and Cu stabilizing materials are connected by diffusion pressure welding, further improving mechanical strength. Note that by using the Nb sleeve at the connection part, the Cu stabilizing material in that part will be missing, but to compensate for this, it is sufficient to further coat with Cu. In addition, the Nb, Sn, and Cu powders placed in the Nb sleeve are
By using a so-called composite powder in which copper is coated around the Nb powder and Sn is further coated around the Nb powder, it becomes possible to carry out #coating in a more uniformly mixed state. [Effects of the Invention] As described above, according to the connection method of the present invention, it is possible to establish a stable superconducting connection in the Nb3Sn-based compound superconducting wire manufactured by the bronze method, and it is also possible to ensure the mechanical strength of the connection part. Therefore, the industrial value of the present invention in this industry is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る方法を実施している様子を示す説
明図、第2図は本発明に係る別な実施例を示す説明図、
第3図は従来例の説明図、第4図はブロンズ法による超
電導線の具体的構成を示す説明図である. 1.1−:Nbフィラメント、 2−:ブロンズ、 3−:Nbバリア、 4−:サブマルチ線、 5”:Cu安定化材、 6−:超電導線、 7:Nb粉末、 8:Sn粉末、 9:Cu粉末、 11:Nbスリーブ.
FIG. 1 is an explanatory diagram showing how the method according to the present invention is implemented, FIG. 2 is an explanatory diagram showing another embodiment according to the present invention,
Fig. 3 is an explanatory diagram of a conventional example, and Fig. 4 is an explanatory diagram showing a specific structure of a superconducting wire by the bronze method. 1.1-: Nb filament, 2-: bronze, 3-: Nb barrier, 4-: submulti wire, 5”: Cu stabilizing material, 6-: superconducting wire, 7: Nb powder, 8: Sn powder, 9 : Cu powder, 11: Nb sleeve.

Claims (2)

【特許請求の範囲】[Claims] (1)Nb_3Sn系マルチフィラメント型の超電導線
相互を接続する方法であって、先ず接続すべき超電導線
の対応する端部の安定化Cu、NbバリアおよびCu−
Snブロンズを酸等により溶解除去してNbフィラメン
トを所定長残存露出させ、ついで露出したNbフィラメ
ント相互を撚合せて接合させ、当該撚合せたNbフィラ
メントをNb、Sn、Cuそれぞれの粉末の混合物中に
挿入すると共にその外周にNbスリーブを着合させ、そ
のようにして形成した接続部をSn粉末の溶融温度より
も高い温度に加熱してSn粉末が溶融した状態下で接続
部を外部より圧縮一体化し、その後接続部並びに超電導
線全体をNb_3Snの生成温度において加熱し、超電
導線内の Nbフィラメントの界面および接続部に Nb_3Snの連続した化合物を生成させる化合物系超
電導線の接続方法。
(1) A method for connecting Nb_3Sn multifilament type superconducting wires, first of all, stabilizing Cu, Nb barrier and Cu-
The Sn bronze is dissolved and removed with an acid or the like to expose a predetermined length of the Nb filament, and then the exposed Nb filaments are twisted and bonded to each other, and the twisted Nb filament is placed in a mixture of powders of Nb, Sn, and Cu. At the same time, a Nb sleeve is attached to the outer periphery of the Nb sleeve, and the connection part thus formed is heated to a temperature higher than the melting temperature of the Sn powder, and the connection part is compressed from the outside while the Sn powder is melted. A method for connecting compound-based superconducting wires, in which the connected portion and the entire superconducting wire are heated at a Nb_3Sn generation temperature to form a continuous compound of Nb_3Sn at the interface of the Nb filament in the superconducting wire and at the connected portion.
(2)Nb_3Sn系マルチフィラメント型の超電導線
相互を接続する方法であって、先ず接続すべき超電導線
の対応する端部をやや平行状態となるような傾斜面に切
断し、安定化Cu、NbバリアおよびCu−Snブロン
ズを酸等により溶解除去してNbフィラメントを前記そ
れぞれの傾斜面より余り大きく突出しない程度の長さに
露出突出させ、Nbフィラメントを突出させた傾斜面の
間にNb、Sn、 Cuそれぞれの粉末の混合物を充填すると共にその外周
にNbスリーブを着合させ、そのようにして形成した接
続部をSn粉末の溶融温度よりも高い温度に加熱してS
n粉末が溶融した状態下で接続部を外部より圧縮一体化
し、その後接続部並びに超電導線全体を Nb_3Snの生成温度において加熱し、超電導線内の
Nbフィラメントの界面および接続部にNb_3Snの
連続した化合物を生成させる化合物系超電導線の接続方
法。
(2) A method for connecting Nb_3Sn multifilament-type superconducting wires, in which the corresponding ends of the superconducting wires to be connected are first cut into inclined surfaces that are slightly parallel to each other, and the stabilized Cu, Nb The barrier and the Cu-Sn bronze are dissolved and removed using acid or the like, and the Nb filaments are exposed and protruded to a length that does not protrude too much from the respective sloped surfaces, and between the sloped surfaces from which the Nb filaments are projected, Nb, Sn , Cu, and a Nb sleeve was attached to the outer periphery of the mixture, and the thus formed connection was heated to a temperature higher than the melting temperature of the Sn powder.
The joints are compressed together from the outside in a state where the n powder is molten, and then the joints and the entire superconducting wire are heated at the Nb_3Sn formation temperature to form a continuous compound of Nb_3Sn at the interface of the Nb filaments in the superconducting wire and at the joints. A method for connecting compound-based superconducting wires that produces
JP2002779A 1990-01-10 1990-01-10 How to connect compound superconducting wires Expired - Lifetime JP2606393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002779A JP2606393B2 (en) 1990-01-10 1990-01-10 How to connect compound superconducting wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002779A JP2606393B2 (en) 1990-01-10 1990-01-10 How to connect compound superconducting wires

Publications (2)

Publication Number Publication Date
JPH03208279A true JPH03208279A (en) 1991-09-11
JP2606393B2 JP2606393B2 (en) 1997-04-30

Family

ID=11538829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002779A Expired - Lifetime JP2606393B2 (en) 1990-01-10 1990-01-10 How to connect compound superconducting wires

Country Status (1)

Country Link
JP (1) JP2606393B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290638A (en) * 1992-07-24 1994-03-01 Massachusetts Institute Of Technology Superconducting joint with niobium-tin
JPH06196241A (en) * 1992-12-25 1994-07-15 Mitsubishi Electric Corp Connecting method for superconducting wire and superconducting wire with connection section
US5583319A (en) * 1993-10-21 1996-12-10 Lieurance; Dennis W. Low resistance superconductor cable splice and splicing method
WO2002063060A2 (en) * 2001-01-02 2002-08-15 Composite Materials Technology, Inc. Nb-based super conductor and method of making
US6543123B1 (en) 1999-04-20 2003-04-08 Composite Materials Technology, Inc. Process for making constrained filament niobium-based superconductor composite
US6836955B2 (en) 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US6918172B2 (en) * 2000-03-21 2005-07-19 Composite Materials Technology, Inc. Process for manufacturing Nb3Sn superconductor
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
GB2487926A (en) * 2011-02-08 2012-08-15 Siemens Plc Very low resistance joints between superconducting wires
US8858738B2 (en) 2006-09-26 2014-10-14 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877789A (en) * 1971-12-27 1973-10-19
JPS59141178A (en) * 1983-02-01 1984-08-13 三菱電機株式会社 Method of connecting superconductive wire
JPS6433871A (en) * 1987-07-28 1989-02-03 Toshiba Corp Connecting method for compound superconductive cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877789A (en) * 1971-12-27 1973-10-19
JPS59141178A (en) * 1983-02-01 1984-08-13 三菱電機株式会社 Method of connecting superconductive wire
JPS6433871A (en) * 1987-07-28 1989-02-03 Toshiba Corp Connecting method for compound superconductive cable

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398398A (en) * 1992-07-24 1995-03-21 Massachusetts Institute Of Technology Method of producing a superconducting joint with niobium-tin
US5290638A (en) * 1992-07-24 1994-03-01 Massachusetts Institute Of Technology Superconducting joint with niobium-tin
JPH06196241A (en) * 1992-12-25 1994-07-15 Mitsubishi Electric Corp Connecting method for superconducting wire and superconducting wire with connection section
US5583319A (en) * 1993-10-21 1996-12-10 Lieurance; Dennis W. Low resistance superconductor cable splice and splicing method
US6543123B1 (en) 1999-04-20 2003-04-08 Composite Materials Technology, Inc. Process for making constrained filament niobium-based superconductor composite
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
US7480978B1 (en) 2000-03-21 2009-01-27 Composite Materials Technology, Inc. Production of electrolytic capacitors and superconductors
US6836955B2 (en) 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US6918172B2 (en) * 2000-03-21 2005-07-19 Composite Materials Technology, Inc. Process for manufacturing Nb3Sn superconductor
WO2002063060A2 (en) * 2001-01-02 2002-08-15 Composite Materials Technology, Inc. Nb-based super conductor and method of making
WO2002063060A3 (en) * 2001-01-02 2003-03-06 Composite Materials Tech Nb-based super conductor and method of making
US8858738B2 (en) 2006-09-26 2014-10-14 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode
GB2487926A (en) * 2011-02-08 2012-08-15 Siemens Plc Very low resistance joints between superconducting wires
GB2487926B (en) * 2011-02-08 2013-06-19 Siemens Plc Joints with very low resistance between superconducting wires and methods for making such joints
US8838194B2 (en) 2011-02-08 2014-09-16 Siemens Plc Joints with very low resistance between superconducting wires and methods for making such joints
US8914087B1 (en) 2011-02-08 2014-12-16 Siemens Plc Joints with very low resistance between superconducting wires and methods for making such joints

Also Published As

Publication number Publication date
JP2606393B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JPH03208279A (en) Connection of compound superconducting wire
EP0501394B2 (en) Junction between wires employing oxide superconductors and joining method therefor
US4797510A (en) Device for joining superconducting wire
JPH0365638B2 (en)
JP2549705B2 (en) How to connect oxide superconducting conductors
JPH1116618A (en) Method for connecting superconductive wire
RU94046209A (en) Compression joint
JP3107320B2 (en) Superconducting wire connection method
JPH031469A (en) Connecting method for superconductive wire and compound superconductive wire
JPH0450719B2 (en)
JPS6139322A (en) Method of producing superconductive substance and superconductive substance used therefor
US4354075A (en) Electrical contact element and process for its manufacture
JPS6035796B2 (en) How to connect superconducting wires
JPH0433272A (en) Connecting method for superconducting wire
JPH02106885A (en) Connection of superconductive wire
JPH0376101A (en) Joint of superconductive conductor
JPH08138820A (en) Joining method of compound superconductive wire and conductor
JPS6433871A (en) Connecting method for compound superconductive cable
JPH0634362B2 (en) Superconducting wire joining method
JPS62123669A (en) Joint of superconducting wire
JPS63241891A (en) Connecting method for superconducting wire
JPS63285879A (en) Connection structure for superconductive wire
JPH01187715A (en) Manufacture of oxide superconductive material
JPH03245507A (en) Current lead
JPH09115635A (en) Connecting method for oxide superconducting wire

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

EXPY Cancellation because of completion of term