JP2603916B2 - Heater panel for electrolyte plate production of molten carbonate fuel cell - Google Patents

Heater panel for electrolyte plate production of molten carbonate fuel cell

Info

Publication number
JP2603916B2
JP2603916B2 JP59197223A JP19722384A JP2603916B2 JP 2603916 B2 JP2603916 B2 JP 2603916B2 JP 59197223 A JP59197223 A JP 59197223A JP 19722384 A JP19722384 A JP 19722384A JP 2603916 B2 JP2603916 B2 JP 2603916B2
Authority
JP
Japan
Prior art keywords
heater panel
electrolyte plate
fuel cell
panel
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59197223A
Other languages
Japanese (ja)
Other versions
JPS6177271A (en
Inventor
芳浩 赤坂
和夫 篠崎
秀行 大図
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59197223A priority Critical patent/JP2603916B2/en
Publication of JPS6177271A publication Critical patent/JPS6177271A/en
Application granted granted Critical
Publication of JP2603916B2 publication Critical patent/JP2603916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は溶融炭酸塩燃料電池の電解質板の製造に用い
られるヒーターパネルの改良に関する。
Description: TECHNICAL FIELD The present invention relates to an improvement of a heater panel used for manufacturing an electrolyte plate of a molten carbonate fuel cell.

〔発明の技術的背景〕[Technical background of the invention]

従来、高能率のエネルギー変換装置として燃料電池が
広く知られている。燃料電池は、使用する電解質によっ
て、リン酸塩型、溶融炭酸塩型、固体電解質型に分類さ
れる。なかでも、溶融炭酸塩燃料電池は、動作温度が高
いため、電極反応が起り易く、高価な貴金属触媒を必要
としないこと、また発電熱効率が高いことなどの大きな
特長を有している。
Conventionally, fuel cells are widely known as high-efficiency energy conversion devices. Fuel cells are classified into phosphate type, molten carbonate type, and solid electrolyte type depending on the electrolyte used. Above all, the molten carbonate fuel cell has major features such as high operating temperature, electrode reaction easily occurring, no need for expensive noble metal catalyst, and high power generation thermal efficiency.

このような溶融炭酸塩燃料電池は、通常、対向配置さ
れた一対の多孔質電極板、すなわち酸化剤極と燃料極と
の間にアルカリ炭酸塩を電解質とする電解質層を介在さ
せて単位電池とし、通常この単位電池をインタコネクタ
を介して複数積層することにより構成されている。そし
て、運転時においては、上記アルカリ炭酸塩を500〜750
℃の高温下で溶融状態にし、この炭酸塩と、各電極板に
それぞれ拡散された酸化剤ガス及び燃料ガスとを反応さ
せて、電気化学的プロセスにより直流電力を得るように
している。
Such a molten carbonate fuel cell is usually made into a unit cell with a pair of porous electrode plates opposed to each other, i.e., an electrolyte layer containing an alkali carbonate as an electrolyte between an oxidant electrode and a fuel electrode. Usually, a plurality of the unit batteries are stacked via an interconnector. And, during operation, the above-mentioned alkali carbonate is added to 500 to 750.
In a molten state at a high temperature of ℃, the carbonate reacts with the oxidizing gas and the fuel gas respectively diffused in the respective electrode plates to obtain a DC power by an electrochemical process.

このような溶融炭酸塩燃料電池の電解質層は、以下の
条件を満たしていることが必要である。すなわち、 (イ)溶融炭酸塩の保持能力が十分であることは勿論の
こと、作動温度で十分な機械的強度、特に圧縮強度を有
し、燃料電池内で電解質層の割れによるガスの交差混合
が生じないこと、 (ロ)単位電池当りの内部抵抗を少なくするため、各電
極との接触が十分にとれ、かつ可能な限り薄いこと、 (ハ)単位電池当りの出力を大きくするために大型化で
き、かつ燃料電池の高い量産性を確保できるように歩留
りが良いこと、 などである。
The electrolyte layer of such a molten carbonate fuel cell needs to satisfy the following conditions. (A) It has sufficient mechanical strength, especially compressive strength, at the operating temperature, as well as sufficient ability to retain the molten carbonate, and cross-mixing of gas due to cracking of the electrolyte layer in the fuel cell. (B) The contact with each electrode should be sufficient to reduce the internal resistance per unit battery, and it should be as thin as possible. (C) Large in order to increase the output per unit battery And high yield to ensure high mass productivity of fuel cells.

ところで、溶融炭酸塩燃料電池の、いわゆるペースト
型と称される電解質層は、電解質保持用の骨材と、炭酸
塩とを混合し、400〜500℃、200〜500kg/cm2の条件でホ
ットプレスして得た、いわゆる電解質タイルと呼ばれる
板状体として使用されている。この電解質タイルは、従
来第4図に示すようなステンレス鋼からなるパネル本体
1内に、数本の棒状の発熱体2、3、4、5をパネル本
体1の一辺と平行になるように埋設したヒーターパネル
を用いて製造されている。なお、これらの発熱体2〜5
には単一の電源により電圧が印加されている。
By the way, the electrolyte layer of the molten carbonate fuel cell, which is a so-called paste type, is prepared by mixing an aggregate for holding the electrolyte and a carbonate, and hot-mixing at 400 to 500 ° C. and 200 to 500 kg / cm 2. It is used as a plate-like body called a so-called electrolyte tile obtained by pressing. In this electrolyte tile, several rod-shaped heating elements 2, 3, 4, 5 are embedded in a panel body 1 made of stainless steel as shown in FIG. 4 so as to be parallel to one side of the panel body 1. It is manufactured using a heated heater panel. In addition, these heating elements 2-5
Is applied with a voltage from a single power supply.

〔背景技術の問題点〕[Problems of background technology]

しかし、第4図に示したようなヒーターパネルでは加
熱面内の中央部及び周辺部において、縦方向あるいは横
方向に大きな温度差が生じることがある。こうした温度
分布の不均一なヒーターパネルを用いてホップレスを行
なうと、加熱時に炭酸塩の不均一溶融及び不均一流動が
生じ、製造される電解質板内で密度分布が不均一とな
り、特に温度の低い部分では気孔含有率が増加してしま
うことがあった。このため、従来のヒーターパネルを用
いて製造された電解質板は、気孔含有率の高い部分で機
械的強度が低下し、大型化すると通常のハンドリングで
も容易に破損してしまう。したがって、電解質板の電池
内への組込みに注意を要するうえ、組込み後においても
電池の熱サイクルに起因する割れを生じ、ガスの交差混
合が発生しやすいという問題があった。
However, in the heater panel as shown in FIG. 4, a large temperature difference may be generated in the vertical direction or the horizontal direction in the central portion and the peripheral portion in the heating surface. When hopless is performed using a heater panel having such a non-uniform temperature distribution, non-uniform melting and non-uniform flow of carbonates occur during heating, resulting in non-uniform density distribution in the manufactured electrolyte plate, particularly at low temperatures. In some parts, the pore content was sometimes increased. For this reason, the electrolyte plate manufactured using the conventional heater panel has a reduced mechanical strength in a portion having a high porosity, and is easily broken even in ordinary handling when the size is increased. Therefore, attention must be paid to the incorporation of the electrolyte plate into the battery, and even after the incorporation, cracks are caused due to the thermal cycle of the battery, and cross-mixing of gases is likely to occur.

〔発明の目的〕[Object of the invention]

本発明は上記欠点を解消するためになされたものであ
り、密度の均一な電解質板を成形することができ、電解
質板の機械的強度を向上させ得る溶融炭酸塩燃料電池の
電解質板製造用ヒーターパネルを提供しようとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and a heater for manufacturing an electrolyte plate of a molten carbonate fuel cell capable of forming an electrolyte plate having a uniform density and improving the mechanical strength of the electrolyte plate. It is intended to provide a panel.

〔発明の概要〕[Summary of the Invention]

本発明の溶融炭酸塩燃料電池の電解質板製造用ヒータ
ーパネルは、パネル本体内に発熱体を複数に分割して埋
設し、分割された各発熱体を独立して制御する機構を設
けたことを特徴とするものである。
A heater panel for manufacturing an electrolyte plate of a molten carbonate fuel cell according to the present invention is characterized in that a heating element is divided into a plurality of parts and embedded in a panel body, and a mechanism for independently controlling each of the divided heating elements is provided. It is a feature.

このようなヒーターパネルによれば、発熱体の埋設箇
所とその他の箇所とで温度差が小さく、加熱時に炭酸塩
の不均一溶融及び不均一流動が生じないので、製造され
る電解質板の相対密度を均一にすることができる。
According to such a heater panel, the temperature difference between the buried portion of the heating element and other portions is small, and non-uniform melting and non-uniform flow of the carbonate do not occur during heating, so that the relative density of the manufactured electrolyte plate is reduced. Can be made uniform.

なお、パネル本体として炭酸塩に対して化学的に安定
で、しかも第1表に示すように従来のステンレス鋼より
も熱伝導性が良好で、熱膨張係数が小さい材質(炭化ホ
ウ素、窒化ケイ素、窒化アルミニウム、炭化ケイ素又は
グラファイト)を用いれば、ヒーターパネルの加熱面内
の温度の均一性を一層向上することができ、また電解質
板の板厚を均一にすることができる。
The panel body is made of a material that is chemically stable to carbonates, has better thermal conductivity than conventional stainless steel, and has a smaller coefficient of thermal expansion (boron carbide, silicon nitride, If aluminum nitride, silicon carbide or graphite is used, the uniformity of the temperature within the heating surface of the heater panel can be further improved, and the thickness of the electrolyte plate can be made uniform.

また、ヒーターパネルによるホットプレス成形時には
中心部に応力が集中し易いため、周辺部での応力の低さ
を補うために、圧力をかけない状態では周辺部の温度が
高くなるような温度制御を行なうことが望ましい。上記
のような温度制御は発熱体を例えば放射状あるいは同心
円状に埋設すると容易となる。
In addition, stress tends to concentrate at the center during hot press molding with a heater panel.To compensate for the low stress at the periphery, temperature control is performed so that the temperature in the periphery increases when no pressure is applied. It is desirable to do. The above-described temperature control is facilitated by burying the heating elements in, for example, a radial or concentric manner.

〔発明の実施例〕(Example of the invention)

以下、本発明の実施例を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1 市販の緻密質グラファイト(C)を用い、第1図に示
すように360×360×30mmのパネル本体11内に対角線方向
に延びる発熱体12およびパネル本体11の各辺の中央部に
直交して延びる発熱体13を放射状に分割して埋設したヒ
ーターパネルを作製した。これらの発熱体12、13は、図
示しない温度コントローラーにより独立して加熱状態を
制御できるようになっている。
Example 1 A commercially available dense graphite (C) was used, and as shown in FIG. 1, a heating element 12 extending diagonally into a panel body 11 of 360 × 360 × 30 mm and a central portion of each side of the panel body 11. A heater panel in which the heating elements 13 extending perpendicularly were radiated and embedded was produced. The heating state of these heating elements 12 and 13 can be independently controlled by a temperature controller (not shown).

このヒーターパネル11を最高使用温度800℃、最大許
容圧力100t/cm2のホットプレス装置に装着し、設定温度
を485℃として昇温を開始した。まず、発熱体12に最大
出力の65%の電力を通電して昇温加熱し、さらにヒータ
ーパネル11に挿入した熱電対(図示せず)により中央部
および周辺部の温度差を検出し、ヒーターパネル11内の
温度分布が均一になるように発熱体13の出力レベルを制
御した。このように制御して運転したヒーターパネルの
温度分布は図2に示すように483〜485℃であり、温度差
はわずかに2℃であった。
The heater panel 11 was mounted on a hot press at a maximum operating temperature of 800 ° C. and a maximum allowable pressure of 100 t / cm 2 , and the set temperature was set to 485 ° C. to start heating. First, 65% of the maximum output power is supplied to the heating element 12 to heat it up, and the temperature difference between the central part and the peripheral part is detected by a thermocouple (not shown) inserted into the heater panel 11. The output level of the heating element 13 was controlled so that the temperature distribution in the panel 11 became uniform. The temperature distribution of the heater panel operated in this manner was 483 to 485 ° C. as shown in FIG. 2, and the temperature difference was only 2 ° C.

また、γ−LiAlO2、Li2CO3およびK2CO3の各粉末を重
量比で40:28:32の割合で混合し、この混合粉末150gを電
解質板成形用型に充填し、ホットプレス装置を465℃、3
00kg/cm2の条件で稼動し、約2.34mmの電解質板を得た。
得られた電解質板を切り出して15×15mmの小片とし、そ
の相対密度(気孔が全く存在しない場合の理論密度に対
する実際の密度)および厚みを測定した。相対密度およ
び標準偏差を第2表に示す。
Further, each powder of γ-LiAlO 2 , Li 2 CO 3 and K 2 CO 3 was mixed at a weight ratio of 40:28:32, and 150 g of the mixed powder was filled in a mold for forming an electrolyte plate, and hot pressed. Equipment at 465 ° C, 3
Operating under the condition of 00 kg / cm 2 , an electrolyte plate of about 2.34 mm was obtained.
The obtained electrolyte plate was cut out into small pieces of 15 × 15 mm, and the relative density (actual density with respect to the theoretical density when no pores existed) and the thickness were measured. Table 2 shows the relative density and standard deviation.

実施例2 市販の緻密質グラファイト(C)を用い、第3図に示
すように360×360×30mmのパネル本体21内に互いの径の
異なる円形の発熱体22、23、24を同心円状に分割して埋
設したヒーターパネルを作製した。これらの発熱体22、
23、24は、図示しない温度コントローラーにより独立し
て加熱状態を制御できるようになっている。
Example 2 Using a commercially available dense graphite (C), circular heating elements 22, 23 and 24 having different diameters are concentrically arranged in a panel body 21 of 360 × 360 × 30 mm as shown in FIG. A divided and buried heater panel was produced. These heating elements 22,
23 and 24 can independently control the heating state by a temperature controller (not shown).

このヒーターパネル21を最高使用温度800℃、最大許
容圧力100t/cm2のホットプレス装置に装着し、設定温度
を485℃として昇温を開始した。まず、発熱体22、23に
最大出力の65%の電力を通電して昇温加熱し、さらにヒ
ーターパネル21に挿入した熱電対(図示せず)により中
央部および周辺部の温度差を検出し、ヒーターパネル内
の温度分布が均一になるように発熱体24の出力レベルを
制御した。このように制御して運転したヒーターパネル
の温度分布は実施例1とほぼ同様であった。
The heater panel 21 was mounted on a hot press at a maximum operating temperature of 800 ° C. and a maximum allowable pressure of 100 t / cm 2 , and the set temperature was set to 485 ° C. to start heating. First, a power of 65% of the maximum output is supplied to the heating elements 22 and 23 to heat up the temperature, and the temperature difference between the central part and the peripheral part is detected by a thermocouple (not shown) inserted into the heater panel 21. The output level of the heating element 24 was controlled so that the temperature distribution in the heater panel became uniform. The temperature distribution of the heater panel operated in such a manner was almost the same as that in Example 1.

このヒーターパネルを用い、実施例1と同様な条件で
電解質板を製造し、得られた電解質板を切り出して実施
例1と同様の小片とし、その相対密度および厚みを測定
した。相対密度および標準偏差を第2表に示す。
Using this heater panel, an electrolyte plate was manufactured under the same conditions as in Example 1, and the obtained electrolyte plate was cut out into small pieces similar to those in Example 1, and the relative density and thickness were measured. Table 2 shows the relative density and standard deviation.

比較例 第4図に示すようなステンレス鋼からなるパネル本体
1内に棒状の発熱体2を平行に配置して埋設したヒータ
ーパネルを用いて、実施例1と同様な条件でヒーターパ
ネルを昇温したところ、第5図に示す如く加熱面内での
温度は471〜484℃であり、温度差は13℃であった。
Comparative Example A heater panel was heated under the same conditions as in Example 1 by using a heater panel in which bar-shaped heating elements 2 were disposed in parallel and buried in a panel body 1 made of stainless steel as shown in FIG. As a result, as shown in FIG. 5, the temperature on the heating surface was 471 to 484 ° C., and the temperature difference was 13 ° C.

また、このヒータープレートを用い、実施例1と同様
な条件で電解質板を製造し、得られた電解質板を実施例
1と同様に小片とし、その相対密度及び厚みを測定し
た。この結果を第2表に示す。
Using this heater plate, an electrolyte plate was manufactured under the same conditions as in Example 1. The obtained electrolyte plate was made into small pieces as in Example 1, and the relative density and thickness were measured. Table 2 shows the results.

第2表に示すように実施例1では試験片の相対密度は
94.7〜98.7%の間に分布し、平均値は95.8%、標準偏差
は0.81であった。また、厚みのバラツキは190μm程度
であり、平均値は2.34mm、標準偏差は0.09であった。こ
れらの値は実施例2でもほぼ同様である。すなわち、実
施例1及び2では相対密度、厚みともに第4図図示の従
来のヒーターパネルを用いた場合よりもバラツキが少な
くなっている。
As shown in Table 2, in Example 1, the relative density of the test piece was
It was distributed between 94.7 and 98.7% with an average value of 95.8% and a standard deviation of 0.81. The thickness variation was about 190 μm, the average value was 2.34 mm, and the standard deviation was 0.09. These values are almost the same in the second embodiment. That is, in Examples 1 and 2, the variation in both the relative density and the thickness is smaller than in the case where the conventional heater panel shown in FIG. 4 is used.

本発明に係るヒーターパネルを用いた場合、相対密度
のバラツキが小さいのは、パネル本体に発熱体を分割し
て埋設し、これらを独立して制御するようにしたこと
と、パネル本体の熱伝導性が向上したことにより、加熱
面内で温度分布が均一となり、炭酸塩の不均一溶融及び
不均一流動が生じなかったためであると考えられる。こ
の結果、製造される電解質板を大型化しても機械的強度
が向上するためハンドリングが容易であり、稼働時の熱
サイクルによっても割れを生じることがなく、ガスの交
差混合が生じない。
When the heater panel according to the present invention is used, the variation in the relative density is small because the heating element is divided and embedded in the panel body, and these are independently controlled, and the heat conduction of the panel body is reduced. This is considered to be because the temperature distribution became uniform in the heating surface due to the improvement in the property, and the non-uniform melting and non-uniform flow of the carbonate did not occur. As a result, even if the electrolyte plate to be manufactured is enlarged, the mechanical strength is improved and the handling is easy because the mechanical strength is improved, the crack is not generated even by the thermal cycle during operation, and the gas does not cross-mix.

また、本発明に係るヒーターパネルを用いた場合、製
造される電解質板の厚みのバラツキが小さいのは、パネ
ル本体の熱伝導率が高いことに加えて、熱膨張率が小さ
いため、ホットプレス時においてもヒーターパネル自体
の平滑性を維持できるためであると考えられる。この結
果、燃料電池の運転初期における電解質板と各電極板と
の密着性も良好となる。
When the heater panel according to the present invention is used, the variation in the thickness of the manufactured electrolyte plate is small because, in addition to the high thermal conductivity of the panel body, the coefficient of thermal expansion is small, It is considered that this is because the heater panel itself can maintain its smoothness. As a result, the adhesion between the electrolyte plate and each electrode plate in the early stage of operation of the fuel cell is also improved.

また、本発明に係るヒーターパネルのパネル本体は炭
酸塩に対して化学的に安定であるので、長期間稼働させ
てもパネル表面での腐蝕は生じなかった。
In addition, since the panel body of the heater panel according to the present invention is chemically stable against carbonate, no corrosion occurred on the panel surface even after long-term operation.

更に、本発明に係るヒーターパネルはパネル本体の熱
伝導性が良好なので温度の立ち上がりがよく、密度が小
さいため軽量であり、しかも熱容量が小さいためホット
プレス時の必要電力を低減することもできる。
Furthermore, the heater panel according to the present invention has good thermal conductivity of the panel body, has a good temperature rise, has a small density, is lightweight, and has a small heat capacity, so that the power required during hot pressing can be reduced.

なお、上記実施例ではヒーターパネルのパネル本体と
してグラファイトを用いた場合について説明したが、こ
れに限らずパネル本体として炭化ホウ素、窒化ケイ素、
窒化アルミニウム、炭化ケイ素等を用いても実施例と同
様の効果を得ることができる。
In the above embodiment, the case where graphite was used as the panel body of the heater panel was described, but not limited to this, boron carbide, silicon nitride,
Even if aluminum nitride, silicon carbide or the like is used, the same effect as that of the embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く本発明の溶融炭酸塩燃料電池の電解
質板製造用ヒーターパネルによれば、製造される電解質
板の密度を均一にして機械的強度を向上できるうえに厚
みを均一にして電極板との密着性を良好にできる等顕著
な効果を奏するものである。
As described in detail above, according to the heater panel for manufacturing an electrolyte plate of a molten carbonate fuel cell of the present invention, the density of the manufactured electrolyte plate can be made uniform, the mechanical strength can be improved, and the thickness of the electrode plate can be made uniform. And a remarkable effect such as improvement in the adhesion to the substrate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1における溶融炭酸塩燃料電池
の電解質板製造用ヒーターパネルの平面図、第2図は同
ヒーターパネルの稼働時の温度分布を示す説明図、第3
図は本発明の実施例2における溶融炭酸塩燃料電池の電
解質板製造用ヒーターパネルの平面図、第4図は従来の
溶融炭酸塩燃料電池の電解質板製造用ヒーターパネルの
平面図、第5図は同ヒーターパネルの稼働時の温度分布
を示す説明図である。 11、21……パネル本体、12、13、22、23、24……発熱
体。
FIG. 1 is a plan view of a heater panel for manufacturing an electrolyte plate of a molten carbonate fuel cell in Example 1 of the present invention, FIG. 2 is an explanatory diagram showing a temperature distribution during operation of the heater panel, and FIG.
FIG. 4 is a plan view of a heater panel for manufacturing an electrolyte plate of a molten carbonate fuel cell in Example 2 of the present invention. FIG. 4 is a plan view of a heater panel for manufacturing an electrolyte plate of a conventional molten carbonate fuel cell. FIG. 4 is an explanatory diagram showing a temperature distribution during operation of the heater panel. 11, 21 ... Panel body, 12, 13, 22, 23, 24 ... Heating element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柘植 章彦 川崎市幸区小向東芝町1番地 株式会社 東芝総合研究所内 (56)参考文献 特開 昭54−97907(JP,A) 特開 昭57−29407(JP,A) 特開 昭50−51910(JP,A) 特開 昭55−114500(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akihiko Tsuge 1 Kogamu Toshiba-cho, Saiwai-ku, Kawasaki City Inside Toshiba Research Institute, Inc. (56) References JP-A-54-97907 (JP, A) JP-A-57 JP-A-50-51910 (JP, A) JP-A-55-114500 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パネル本体に発熱体を埋設し、電解質粉末
のホットプレスを行なう溶融炭酸塩燃料電池の電解質板
製造用ヒーターパネルにおいて、パネル本体内に発熱体
を複数に分割して放射状又は同心円状に埋設し、分割さ
れた各発熱体を独立して制御する機構を設けたことを特
徴とする溶融炭酸塩燃料電池の電解質板製造用ヒーター
パネル。
1. A heater panel for manufacturing an electrolyte plate of a molten carbonate fuel cell in which a heating element is buried in a panel body and hot pressing of an electrolyte powder is performed, wherein the heating element is divided into a plurality of radial or concentric circles in the panel body. A heater panel for manufacturing an electrolyte plate of a molten carbonate fuel cell, comprising a mechanism embedded in a shape and independently controlling each of the divided heating elements.
【請求項2】パネル本体が炭化ホウ素、窒化ケイ素、窒
化アルミニウム、炭化ケイ素又はグラファイトであるこ
とを特徴とする特許請求の範囲第1項記載の溶融炭酸塩
燃料電池の電解質板製造用ヒーターパネル。
2. The heater panel according to claim 1, wherein the panel body is made of boron carbide, silicon nitride, aluminum nitride, silicon carbide, or graphite.
JP59197223A 1984-09-20 1984-09-20 Heater panel for electrolyte plate production of molten carbonate fuel cell Expired - Fee Related JP2603916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197223A JP2603916B2 (en) 1984-09-20 1984-09-20 Heater panel for electrolyte plate production of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197223A JP2603916B2 (en) 1984-09-20 1984-09-20 Heater panel for electrolyte plate production of molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6177271A JPS6177271A (en) 1986-04-19
JP2603916B2 true JP2603916B2 (en) 1997-04-23

Family

ID=16370883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197223A Expired - Fee Related JP2603916B2 (en) 1984-09-20 1984-09-20 Heater panel for electrolyte plate production of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2603916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334028B1 (en) * 2013-07-03 2013-11-28 (주)금오전자 Microwave-heated hot pack material and mathod thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295360A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051910A (en) * 1973-09-10 1975-05-09
JPS5497907A (en) * 1978-01-19 1979-08-02 Kobe Steel Ltd High temperature hot hydrostatic device
JPS55114500A (en) * 1979-02-26 1980-09-03 Shozo Kamata Hot press device
JPS5729407A (en) * 1980-07-29 1982-02-17 Ibigawa Electric Ind Co Ltd Graphitic hot press mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334028B1 (en) * 2013-07-03 2013-11-28 (주)금오전자 Microwave-heated hot pack material and mathod thereof

Also Published As

Publication number Publication date
JPS6177271A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
US4247604A (en) Carbonate fuel cell anodes
CA1087243A (en) Molten carbonate fuel cell electrolyte
US4389467A (en) Porous electrolyte retainer for molten carbonate fuel cell
JP2603916B2 (en) Heater panel for electrolyte plate production of molten carbonate fuel cell
JP7069509B2 (en) Equipment and firing method for cell firing of solid oxide fuel cells
JP2979911B2 (en) Fuel reforming catalyst for fuel cells
JP2007194170A (en) Flat solid oxide fuel cell and method of manufacturing same
JPS60160572A (en) Electrolyte plate molding tool for molten carbonate fuel cell
JPH0222504B2 (en)
JPS6035471A (en) Electrode for fuel cell
JP2003217609A (en) Method for manufacturing separator for solid high polymer type fuel cell
CN109888308A (en) It is a kind of using electrolyte layer as fuel cell of matrix and preparation method thereof
US6218037B1 (en) Process for the production of an insulating component for a high temperature fuel cell, and high temperature fuel cell
KR100368561B1 (en) Method for Manufacturing Electrolyte Plate of Molten Carbonate Fuel Cells
JPH09115542A (en) Manufacture of solid oxide fuel cell
JPH0222505B2 (en)
JPH0261095B2 (en)
JPS60241656A (en) Electrolytic plate for fused carbonate fuel cell
JPH06290792A (en) Manufacture of electrode for molten carbonate fuel cell
JPS5826463A (en) Fuel cell and its manufacturing method
JPH0548581B2 (en)
JPS63184265A (en) Manufacture of bubble pressure resistant layer for fuel cell
JP2001229931A (en) Separator for fuel cell, and its molding and production method
JPS6322421B2 (en)
JPH07262996A (en) Fuel electrode for molten carbonate fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees