JP2603551B2 - Oil-resistant vinyl chloride resin composition and oil-resistant electric cable - Google Patents

Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Info

Publication number
JP2603551B2
JP2603551B2 JP2172136A JP17213690A JP2603551B2 JP 2603551 B2 JP2603551 B2 JP 2603551B2 JP 2172136 A JP2172136 A JP 2172136A JP 17213690 A JP17213690 A JP 17213690A JP 2603551 B2 JP2603551 B2 JP 2603551B2
Authority
JP
Japan
Prior art keywords
parts
weight
chloride resin
resin composition
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2172136A
Other languages
Japanese (ja)
Other versions
JPH0459851A (en
Inventor
正幸 林
茂 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2172136A priority Critical patent/JP2603551B2/en
Publication of JPH0459851A publication Critical patent/JPH0459851A/en
Application granted granted Critical
Publication of JP2603551B2 publication Critical patent/JP2603551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、電線等の被覆材として用いられる軟質塩化
ビニル樹脂組成物に係り、特に、鉱物油に浸漬しても低
温脆性の低下の招来を抑制することのできる耐油性塩化
ビニル樹脂組成物、及び移動式機械に布設され、常時機
械油(鉱物油)に浸漬される電線ケーブルの絶縁シース
の耐油性、耐低温脆性を向上することのできる耐油性電
線ケーブルに関する。
The present invention relates to a soft vinyl chloride resin composition used as a covering material for electric wires and the like, and in particular, an oil-resistant vinyl chloride resin composition capable of suppressing a decrease in low-temperature brittleness even when immersed in mineral oil, The present invention also relates to an oil-resistant electric cable capable of improving oil resistance and low-temperature brittleness of an insulating sheath of an electric cable laid in a mobile machine and constantly immersed in machine oil (mineral oil).

【従来の技術】[Prior art]

一般に、塩化ビニル樹脂組成物は、鉱物油に浸漬する
と、組成物の低温脆性が該組成物に含有する可塑剤の種
類の如何に拘らず著しく低下(悪化)する。これは、塩
化ビニル樹脂組成物鉱物を油に浸漬すると、鉱物油が塩
化ビニル樹脂組成物中に侵入し、初期の段階では可塑剤
を抽出したり、可塑剤に移行したりし、さらには塩化ビ
ニル樹脂組成物を膨潤させて、低温脆性を低下させるこ
とによる。すなわち、塩化ビニル樹脂組成物は、温度が
低下していくと、この温度低下に伴って、引張り強さ、
硬度などが徐々に増加していくが、逆に伸びなどは低下
していき、ある温度以下で外部から衝撃的に応力を加え
ると急に脆く破壊し易くなる場合(脆化現象)があり、
この脆化現象が低温脆性である。そして、靱性状態から
脆性状態に変化する温度、すなわち、急な衝撃に対して
脆くなる温度を遷移温度と称している。 このような塩化ビニル樹脂組成物に低温脆性の低下
(悪化)を来すと、寒冷時に本来破壊されることがない
ような小さな力が塩化ビニル樹脂組成物に加わってもひ
びや割れが簡単に入るようになってしまう。そこで、従
来、塩化ビニル樹脂組成物の耐油性を向上させる方法と
して、高分子量のポリエステル系可塑剤が用いられてい
る。 この塩化ビニル樹脂組成物は、電線ケーブルの絶縁シ
ースとして用いられる。このように塩化ビニル樹脂組成
物を絶縁シースとして用いている電線ケーブルは、移動
式機械にも布設されている。この移動式機械に布設され
る電線ケーブルは、常時、鉱物油に浸漬されていること
が多い。このため、この種の電線ケーブルは、最外層に
耐油性を向上させるためにポリエステル系可塑剤が用い
られた塩化ビニル樹脂組成物が用いられていた。
In general, when a vinyl chloride resin composition is immersed in mineral oil, the low-temperature brittleness of the composition is significantly reduced (deteriorated) regardless of the type of plasticizer contained in the composition. This is because when the vinyl chloride resin composition mineral is immersed in oil, the mineral oil penetrates into the vinyl chloride resin composition, and in the initial stage, the plasticizer is extracted or transferred to the plasticizer, and furthermore, By reducing the low-temperature brittleness by swelling the vinyl resin composition. That is, as the temperature of the vinyl chloride resin composition decreases, the tensile strength,
Hardness etc. gradually increases, but conversely elongation etc. decreases, and if a stress is applied from the outside at a certain temperature or below, there is a case where it is suddenly brittle and easily breaks (brittleness phenomenon),
This embrittlement phenomenon is low-temperature embrittlement. The temperature at which the material changes from the tough state to the brittle state, that is, the temperature at which the material becomes brittle against a sudden impact is referred to as a transition temperature. When the low-temperature brittleness is reduced (deteriorated) in such a vinyl chloride resin composition, cracks and cracks easily occur even when a small force that does not inherently break in cold is applied to the vinyl chloride resin composition. You will be able to enter. Then, conventionally, as a method of improving the oil resistance of the vinyl chloride resin composition, a high molecular weight polyester plasticizer has been used. This vinyl chloride resin composition is used as an insulating sheath of an electric cable. As described above, the electric cable using the vinyl chloride resin composition as the insulating sheath is laid on a mobile machine. The electric cable laid in the mobile machine is often always immersed in mineral oil. For this reason, this type of electric cable uses a vinyl chloride resin composition in which a polyester plasticizer is used in the outermost layer to improve oil resistance.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら、耐油性を向上させる方法として添加さ
れるポリエステル系可塑剤は、引張り強さ、伸び等につ
いて耐油性能をほぼ維持できるが、鉱物油に浸漬後の低
温脆性を著しく低下させてしまうという問題点を有して
いる。これは、鉱物油が塩化ビニル樹脂組成物中に侵入
し、初期では可塑剤を抽出したり、可塑剤に移行したり
し、さらには組成物を膨潤させることによるものであ
る。 また、塩化ビニル樹脂組成物に耐寒性に優れるセバケ
ート、アゼレート、アジペート等の可塑剤を用いても、
鉱物油に浸漬後の低温脆性を著しく低下させてしまうと
いう問題点を有している。 また、移動式機械に布設されている電線ケーブルの絶
縁シースとして用いられている塩化ビニル樹脂組成物
は、最外層にポリエステル系可塑剤を用いても、引張り
強さ、伸び等について耐油性能をほぼ維持できるが、鉱
物油に浸漬後の低温脆性を著しく低下させてしまうとい
う問題点を有している。これは、鉱物油が塩化ビニル樹
脂組成物中に侵入し、初期では可塑剤を抽出したり、可
塑剤に移行したりし、さらには組成物を膨潤させること
によるものである。 また、最外層の塩化ビニル樹脂組成物に耐寒性に優れ
るセバケート、アゼレート、アジペート等の可塑剤を用
いても、鉱物油に浸漬後の低温脆性を著しく低下させて
しまうという問題点を有している。 本願第1の発明は、鉱物油に浸漬しても低温脆性の低
下の招来を抑制することのできる耐油性塩化ビニル樹脂
組成分を提供することを目的としている。 本願第2の発明は、移動式機械に布設され、常時機械
油(鉱物油)に浸漬される電線ケーブルの絶縁シースの
耐油性、耐低温脆性を向上することのできる耐油性電線
ケーブルを提供することを目的としている。
However, polyester plasticizers added as a method for improving oil resistance can substantially maintain oil resistance performance with respect to tensile strength, elongation, etc., but significantly reduce low-temperature brittleness after immersion in mineral oil. have. This is due to the mineral oil penetrating into the vinyl chloride resin composition, initially extracting the plasticizer, transferring to the plasticizer, and swelling the composition. Further, even if using a plasticizer such as sebacate, azelate, adipate excellent in cold resistance to the vinyl chloride resin composition,
There is a problem that the low-temperature brittleness after immersion in mineral oil is significantly reduced. In addition, the vinyl chloride resin composition used as an insulating sheath of electric cables laid in mobile machines has almost no oil resistance in terms of tensile strength, elongation, etc., even when a polyester plasticizer is used for the outermost layer. Although it can be maintained, there is a problem that low-temperature brittleness after immersion in mineral oil is significantly reduced. This is due to the mineral oil penetrating into the vinyl chloride resin composition, initially extracting the plasticizer, transferring to the plasticizer, and swelling the composition. Further, even if a plasticizer such as sebacate, azelate or adipate having excellent cold resistance is used for the outermost vinyl chloride resin composition, there is a problem that the low-temperature brittleness after immersion in mineral oil is significantly reduced. I have. It is an object of the first invention of the present application to provide an oil-resistant vinyl chloride resin composition that can suppress a decrease in low-temperature brittleness even when immersed in mineral oil. The second invention of the present application provides an oil-resistant electric cable capable of improving oil resistance and low-temperature brittleness of an insulating sheath of an electric cable laid in a mobile machine and constantly immersed in machine oil (mineral oil). It is intended to be.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本発明の耐油性塩化ビニ
ル樹脂においては、その組成を、ポリ塩化ビニル樹脂10
0重量部に、ポリエステル系可塑剤30〜150重量部、安定
剤1〜10重量部、充填剤0〜200重量部、ブタジエンア
クリロニトリルゴム1〜100重量部を配合して構成する
ものである。 また、上記目的を達成するために、本発明の耐油性電
線ケーブルにおいては、その組成を、ポリ塩化ビニル樹
脂100重量部に、ポリエステル系可塑剤30〜150重量部、
安定剤1〜10重量部、充填剤0〜200重量部、ブタジエ
ンアクリロニトリルゴム1〜100重量部を配合して構成
するものである。
In order to achieve the above object, in the oil-resistant vinyl chloride resin of the present invention, the composition thereof is
0 to 100 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber. Further, in order to achieve the above object, in the oil-resistant electric wire cable of the present invention, the composition thereof, 100 parts by weight of polyvinyl chloride resin, 30 to 150 parts by weight of a polyester plasticizer,
It comprises 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber.

【作用】[Action]

また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部、充填
剤0〜200重量部、ブタジエンアクリロニトリルゴム51
〜100重量部を配合してあるため、鉱物油に浸漬しても
低温脆性の低下の招来を抑制することができる。 また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部、充填
剤0〜200重量部、ブタジエンアクリロニトリルゴム51
〜100重量部を配合してなる耐油性塩化ビニル樹脂組成
物を絶縁シース材として用いるため、移動式機械に布設
され、常時機械油(鉱物油)に浸漬される電線ケーブル
の絶縁シースの耐油性、耐低温脆性を向上することがで
きる。
Also, 100 parts by weight of a polyvinyl chloride resin, 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, butadiene acrylonitrile rubber 51
Since it is contained in an amount of 100 to 100 parts by weight, it is possible to suppress the reduction in low-temperature brittleness even when immersed in mineral oil. Also, 100 parts by weight of a polyvinyl chloride resin, 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, butadiene acrylonitrile rubber 51
Oil resistant vinyl chloride resin composition containing up to 100 parts by weight is used as an insulating sheath material, so it is laid on a mobile machine and is always immersed in machine oil (mineral oil). , Low-temperature brittleness resistance can be improved.

【実施例】【Example】

以下、本発明の実施例について説明する。 《第1の発明》 本願第1の発明の具体的実施例について比較例、従来
例と比較して説明する。 実施例 本実施例は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、ポリエステル系可塑剤を30〜150重量部、
安定剤(Pb、Ba−Zn、Ca−Zn、Snの各系)を1〜10重量
部、充填剤(CaCO3、焼成クレー、金属水酸化物)を0
〜200重量部、ブタジエンアクリロニトリルゴム(NBR)
を51〜100重量部を配合したものである。 比較例1 比較例1は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、フタレート系可塑剤を30〜150重量部、安
定剤(Pb、Ba−Zn、Ca−Zn、Snの各系)を1〜10重量
部、充填剤(CaCO3、焼成クレー、金属水酸化物)を0
〜200重量部、ブタジエンアクリロニトリルゴム(NBRを
51〜100重量部を配合したものである。 比較例2 比較例2は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、セバケート系可塑剤又はアゼレート系可塑
剤を30〜150重量部、安定剤(Pb、Ba−Zn、Ca−Zn、Sn
の各系)を1〜10重量部、充填剤(CaCO3、焼成クレ
ー、金属水酸化物)を0〜200重量部、ブタジエンアク
リロニトリルゴム(NBR)を1〜100重量部を配合したも
のである。 従来例1 従来例1は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、フタレート系可塑剤を30〜150重量部、安
定剤(Pb、Ba−Zn、Ca−Zn、Snの各系)を1〜10重量
部、充填剤(CaCO3、焼成クレー、金属水酸化物)を0
〜200重量部を配合したものである。 従来例2 従来例2は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、ポリエステル系可塑剤を30〜150重量部、
安定剤(Pb、Ba−Zn、Ca−Zn、Snの各系)を1〜10重量
部、充填剤(CaCO3、焼成クレー、金属水酸化物)を0
〜200重量部を配合したものである。 従来例3 従来例3は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、セバケート系可塑剤又はアゼレート系可塑
剤30〜150重量部、安定剤(Pb、Ba−Zn、Ca−Zn、Snの
各系)を1〜10重量部、充填剤(CaCO3、焼成クレー、
金属水酸化物)を0〜200重量部を配合したものであ
る。 これらの実施例、従来例に基づく塩化ビニル樹脂組成
物について鉱物油(具体的には、出光興産(株)製のダ
ブニーコロネックスグリース、ASTMNo.2オイル)浸漬前
の脆化温度、鉱物油浸漬後の脆化温度、Ts(引張強度)
残率、E(伸び)残率の比較結果が第1表に示してあ
る。 この第1表の実施例、比較例、従来例の比較結果にお
ける鉱物油浸漬試験は、実施例、比較例、従来例に基づ
く塩化ビニル樹脂組成物を85℃の鉱物油(具体的には、
出光興産(株)製のダブニーコロネックスグリース、AS
TMNo.2オイル)に350Hr浸漬したものについて行ったも
のである。また、第1表中のTs(引張強度)残率は、浸
漬前のTs(引張強度)を100としたときの鉱物油浸漬後
の引張強度(Ts)を残り率(%)で表わしたものであ
る。また、E(伸び)残率は、浸漬前のE(伸び)を10
0としたときの鉱物油浸漬後の伸び(E)を残り率
(%)で表わしたものである。 第1表の実施例においては、ブタジエンアクリロニト
リルゴム(NBR)を51〜100重量部配合している。このNB
Rは、アクリロニトリルブタジエンゴム、ニトリルゴ
ム、アクリロニトリルとブタジエンの共重合体である。
このブタジエンアクリロニトリルゴム(NBR)は、塩化
ビニル樹脂と親和性が良く、鉱物油による膨潤を抑制す
ることが可能であり、その結果、低温脆性の低下を抑制
することができる。また、ポリエステル系可塑剤との併
用は、さらに大きな効果を生むことができる。 第1表の結果から明らかな如く、従来例1は、塩化ビ
ニル樹脂組成物にフタレート系可塑剤を配合した場合
で、この塩化ビニル樹脂組成物を鉱物油に浸漬する前の
引張強度(Ts)に対して20%〜150%とフタレート系可
塑剤の配合量が増加するにしたがって引張強度(Ts)は
増加していき、伸び(E)は、鉱物油に浸漬する前の伸
び(E)に対して5%〜15%と甚しい低下を来たしてい
る。すなわち、全体として硬化している。しかも、塩化
ビニル樹脂組成物を鉱物油に浸漬する前の脆化温度が−
20℃〜−40℃で、85℃の鉱物油に350Hr浸漬した後の脆
化温度が−2℃〜−6℃と低温脆性が著しく悪化してい
る。 従来例2は、塩化ビニル樹脂組成物にポリエステル系
可塑剤を配合した場合で、この塩化ビニル樹脂組成物を
鉱物油に浸漬する前の引張強度(Ts)に対して70%〜95
%とポリエステル系可塑剤の配合量が増加するにしたが
って引張強度(Ts)を初期値同様に保持することがで
き、伸び(E)も、鉱物油に浸漬する前の伸び(E)に
対して50%〜93%とポリエステル系可塑剤の配合量を増
加するにしたがって伸び(E)を初期値同様に保持する
ことができる。すなわち、塩化ビニル樹脂組成物の硬化
を初期値同様に保つことができる。しかし、脆化温度
は、塩化ビニル樹脂組成物を鉱物油に浸漬する前が−14
℃〜−30℃であるのに対し、85℃の鉱物油に350Hr浸漬
した後が−2℃〜−6℃となり、低温脆性が著しく悪化
している。 従来例3は、塩化ビニル樹脂組成物にセバケート系又
はアゼレート系可塑剤を配合した場合で、この塩化ビニ
ル樹脂組成物を鉱物油に浸漬する前の引張強度(Ts)に
対して15%〜150%とセバケート系又はアゼレート系可
塑剤の配合量が増加するにしたがって引張強度(Ts)は
増加していき、伸び(E)は、鉱物油に浸漬する前の伸
び(E)に対して5%〜12%と甚しい低下を来たしてい
る。すなわち、全体として硬化している。しかも、脆化
温度は、塩化ビニル樹脂組成物を鉱物油に浸漬する前が
−30℃〜−60℃で、85℃の鉱物油に350Hr浸漬した後の
脆化温度が−1℃〜−6℃と低温脆性が著しく悪化して
いる。 また、比較例1は、フタレート系可塑剤を用い、NBR
を1〜100重量部を配合した場合で、この塩化ビニル樹
脂組成物を鉱物油に浸漬する前の引張強度(Ts)に対し
て20%〜150%とフタレート系可塑剤の配合量が増加す
るにしたがって引張強度(Ts)は増加していき、伸び
(E)は、鉱物油に浸漬する前の伸び(E)に対して6
%〜18%と甚しい低下を来たしている。すなわち、全体
として硬化している。しかも、塩化ビニル樹脂組成物を
鉱物油に浸漬する前の脆化温度が−24℃〜−58℃で、85
℃の鉱物油に350Hr浸漬した後の脆化温度が−2℃〜−1
2℃と低温脆化が著しく悪化している。 比較例2は、塩化ビニル樹脂組成物にセバケート系又
はアゼレート系可塑剤を用い、NBRを1〜100重量部を配
合した場合で、この塩化ビニル樹脂組成物を鉱物油に浸
漬する前の引張強度(Ts)に対して15%〜150%とセバ
ケート系又はアゼレート系可塑剤の配合量が増加するに
したがって引張強度(Ts)は増加していき、伸び(E)
は、鉱物油に浸漬する前の伸び(E)に対して8%〜18
%と甚しい低下を来たしている。すなわち、全体として
硬化している。しかも、脆化温度は、塩化ビニル樹脂組
成物を鉱物油に浸漬する前が−32℃〜−72℃で、85℃の
鉱物油に350Hr浸漬した後の脆化温度が−4℃〜−10℃
と低温脆性が著しく悪化している。 実施例は、塩化ビニル樹脂組成物にポリエステル系可
塑剤を用い、NBRを51〜100重量部配合した場合で、この
塩化ビニル樹脂組成物を鉱物油に浸漬する前の引張強度
(Ts)に対して75%〜95%とポリエステル系可塑剤の配
合量を増加するにしたがって引張強度(Ts)を初期値同
様に保持することができ、伸び(E)も、鉱物油に浸漬
する前の伸び(E)に対して55%〜95%とポリエステル
系可塑剤の配合量を増加するにしたがって伸び(E)を
初期値同様に保持することができる。すなわち、塩化ビ
ニル樹脂組成物の硬化を初期値同様に保つことができ
る。しかも、脆化温度を、塩化ビニル樹脂組成物を鉱物
油に浸漬する前の−16℃〜−50℃の値を、85℃の鉱物油
に350Hr浸漬した後−12℃〜−50℃と、ほぼ塩化ビニル
樹脂組成物を鉱物油に浸漬する前の値(初期値)に保つ
ことができる。 この脆化温度は、NBRの配合量が多くなるにしたがっ
て向上する。 このように塩化ビニル樹脂組成物にポリエステル系可
塑剤を用い、NBRを51〜100重量部を配合した場合、引っ
張り強さ、伸びには、大きな影響を与えないで、低温脆
性の低下を防止することができる。 《第2の発明》 本願第2の発明の具体的実施例について比較例、従来
例と比較して説明する。 実施例 本実施例における耐油性電線ケーブルの絶縁シース材
に用いる耐油性塩化ビニル樹脂組成物の組成を、軟質ポ
リ塩化ビニル樹脂組成物100重量部に対して、ポリエス
テル系可塑剤を30〜150重量部、安定剤(Pb、Ba−Zn、C
a−Zn、Snの各系)を1〜10重量部、充填剤(CaCO3、焼
成クレー、金属水酸化物)を0〜200重量部、ブタジエ
ンアクリロニトリルゴム(NBR)を51〜100重量部配合し
て構成したものである。 比較例1 本実施例における耐油性電線ケーブルの絶縁シース材
に用いる耐油性塩化ビニル樹脂組成物の組成を、軟質ポ
リ塩化ビニル樹脂組成物100重量部に対して、フタレー
ト系可塑剤を30〜150重量部、安定剤(Pb、Ba−Zn、Ca
−Zn、Snの各系)を1〜10重量部、充填剤(CaCO3、焼
成クレー、金属水酸化物)を0〜200重量部、ブタジエ
ンアクリロニトリルゴム(NBR)を1〜100重量部を配合
して構成したものである。 比較例2 本実施例における耐油性電線ケーブルの絶縁シース材
に用いる耐油性塩化ビニル樹脂組成物の組成を、軟質ポ
リ塩化ビニル樹脂組成物100重量部に対して、セバケー
ト系可塑剤又はアゼレート系可塑剤を30〜150重量部、
安定剤(Pb、Ba−Zn、Ca−Zn、Snの各系)を1〜10重量
部、充填剤(CaCO3、焼成クレー、金属水酸化物)を0
〜200重量部、ブタジエンアクリロニトリルゴム(NBR)
を1〜100重量部配合して構成したものである。 従来例1 従来例1は、電線ケーブルの絶縁シース材に用いる塩
化ビニル樹脂組成物の組成を、軟質ポリ塩化ビニル樹脂
組成物100重量部に対して、フタレート系可塑剤を30〜1
50重量部、安定剤(Pb、Ba−Zn、Ca−Zn、Snの各系)を
1〜10重量部、充填剤(CaCO3、焼成クレー、金属水酸
化物)を0〜200重量部を配合して構成したものであ
る。 従来例2 従来例2は、電線ケーブルの絶縁シース材に用いる塩
化ビニル樹脂組成物の組成を、軟質ポリ塩化ビニル樹脂
組成物100重量部に対して、ポリエステル系可塑剤を30
〜150重量部、安定剤(Pb、Ba−Zn、Ca−Zn、Snの各
系)を1〜10重量部、充填剤(CaCO3、焼成クレー、金
属水酸化物)を0〜200重量部を配合して構成したもの
である。 従来例3 従来例3は、電線ケーブルの絶縁シース材に用いる塩
化ビニル樹脂組成物の組成を、軟質ポリ塩化ビニル樹脂
組成物100重量部に対して、セバケート系可塑剤又はア
ゼレート系可塑剤を30〜150重量部、安定剤(Pb、Ba−Z
n、Ca−Zn、Snの各系)を1〜10重量部、充填剤(CaC
O3、焼成クレー、金属水酸化物)を0〜200重量部を配
合して構成したものである。 これらの実施例、従来例に基づく塩化ビニル樹脂組成
物を絶縁シースに用いた電線ケーブルについての鉱物油
(具体的には、出光興産(株)製のダブニーコロネック
スグリース、ASTMNo.2オイル)浸漬前の脆化温度、鉱物
油浸漬後の脆化温度、Ts(引張強度)残率、E(伸び)
残率の比較結果が第2表に示してある。 この第2表の耐油性電線ケーブルの絶縁シース材に用
いる耐油性塩化ビニル樹脂組成物の実施例、比較例、従
来例の比較結果は、耐油性塩化ビニル樹脂組成物の実施
例、比較例、従来例の比較結果と同様な結果となってい
る。すなわち、比較例1、2、従来例1、2、3のいず
れも塩化ビニル樹脂組成物を鉱物油に浸漬する前の引張
強度(Ts)及び伸び(E)から鉱物油に浸漬した後甚し
い低下を来たし、かつ、低温脆性が著しく悪化してい
る。 これに対し、実施例は、脆化温度が、耐油性電線ケー
ブルの絶縁シース材に用いる耐油性塩化ビニル樹脂組成
物を鉱物油に浸漬する前と、85℃の鉱物油に350Hr浸漬
した後とほぼ同一に保つことができる。
Hereinafter, examples of the present invention will be described. << First Invention >> A specific example of the first invention of the present application will be described in comparison with a comparative example and a conventional example. Example This example is based on 100 parts by weight of a soft polyvinyl chloride resin composition, 30 to 150 parts by weight of a polyester plasticizer,
1-10 parts by weight of a stabilizer (each of Pb, Ba-Zn, Ca-Zn and Sn) and 0 of filler (CaCO 3 , calcined clay, metal hydroxide)
~ 200 parts by weight, butadiene acrylonitrile rubber (NBR)
Is blended in an amount of 51 to 100 parts by weight. Comparative Example 1 In Comparative Example 1, 30 to 150 parts by weight of a phthalate plasticizer and 100 parts by weight of a stabilizer (Pb, Ba-Zn, Ca-Zn, Sn) were added to 100 parts by weight of a soft polyvinyl chloride resin composition. 1) to 10 parts by weight, and filler (CaCO 3 , calcined clay, metal hydroxide)
~ 200 parts by weight, butadiene acrylonitrile rubber (NBR
It contains 51 to 100 parts by weight. Comparative Example 2 Comparative Example 2 is based on 100 parts by weight of a soft polyvinyl chloride resin composition, 30 to 150 parts by weight of a sebacate-based plasticizer or an azelate-based plasticizer, and stabilizers (Pb, Ba-Zn, Ca-Zn). , Sn
1 to 10 parts by weight), 0 to 200 parts by weight of filler (CaCO 3 , calcined clay, metal hydroxide) and 1 to 100 parts by weight of butadiene acrylonitrile rubber (NBR). . Conventional Example 1 In Conventional Example 1, 30 to 150 parts by weight of a phthalate plasticizer and 100 parts by weight of a soft polyvinyl chloride resin composition, and stabilizers (Pb, Ba-Zn, Ca-Zn, and Sn-based plasticizers) were used. 1) to 10 parts by weight, and filler (CaCO 3 , calcined clay, metal hydroxide)
200200 parts by weight. Conventional Example 2 Conventional Example 2 is based on 100 parts by weight of a soft polyvinyl chloride resin composition, and 30 to 150 parts by weight of a polyester plasticizer,
1-10 parts by weight of a stabilizer (each of Pb, Ba-Zn, Ca-Zn and Sn) and 0 of filler (CaCO 3 , calcined clay, metal hydroxide)
200200 parts by weight. Conventional Example 3 In Conventional Example 3, 30 to 150 parts by weight of a sebacate-based plasticizer or an azelate-based plasticizer and 100 parts by weight of a soft polyvinyl chloride resin composition, and a stabilizer (Pb, Ba-Zn, Ca-Zn, 1 to 10 parts by weight of Sn system), filler (CaCO 3 , calcined clay,
Metal hydroxide) in an amount of 0 to 200 parts by weight. For these vinyl chloride resin compositions based on these examples and conventional examples, the embrittlement temperature before immersion in mineral oil (specifically, Dabney Coronex grease manufactured by Idemitsu Kosan Co., Ltd., ASTM No. 2 oil), the immersion in mineral oil Embrittlement temperature, Ts (tensile strength)
Table 1 shows the comparison results of the residual ratio and E (elongation) residual ratio. The mineral oil immersion test in the examples, comparative examples, and comparative examples of Table 1 in the results of the mineral oil immersion test at 85 ° C.
Dabney Coronex Grease from Idemitsu Kosan Co., Ltd., AS
TMNo.2 oil) for 350 hours. The residual ratio of Ts (tensile strength) in Table 1 is the tensile strength (Ts) after immersion in mineral oil when the Ts (tensile strength) before immersion is set to 100, expressed as a residual ratio (%). It is. Further, the E (elongation) residual ratio is obtained by calculating the E (elongation) before immersion by 10%.
The elongation (E) after immersion in mineral oil when it is set to 0 is represented by the remaining rate (%). In the examples shown in Table 1, 51 to 100 parts by weight of butadiene acrylonitrile rubber (NBR) are blended. This NB
R is acrylonitrile butadiene rubber, nitrile rubber, or a copolymer of acrylonitrile and butadiene.
This butadiene acrylonitrile rubber (NBR) has a good affinity for a vinyl chloride resin and can suppress swelling due to mineral oil, and as a result, can suppress a decrease in low-temperature brittleness. Further, when used in combination with a polyester-based plasticizer, a greater effect can be produced. As is clear from the results shown in Table 1, Conventional Example 1 is a case where a phthalate-based plasticizer is added to the vinyl chloride resin composition, and the tensile strength (Ts) before dipping the vinyl chloride resin composition in mineral oil. The tensile strength (Ts) increases as the blending amount of the phthalate-based plasticizer increases from 20% to 150%, and the elongation (E) is equal to the elongation (E) before immersion in mineral oil. On the other hand, there is a drastic decrease of 5% to 15%. That is, it is cured as a whole. Moreover, the brittle temperature before immersing the vinyl chloride resin composition in mineral oil is-
The embrittlement temperature after immersion in mineral oil at 85 ° C for 350 hours at a temperature of 20 ° C to -40 ° C is -2 ° C to -6 ° C, and the low-temperature embrittlement is significantly deteriorated. Conventional example 2 is a case in which a polyester plasticizer is blended in the vinyl chloride resin composition, and the tensile strength (Ts) before dipping the vinyl chloride resin composition in mineral oil is 70% to 95%.
% And the amount of the polyester-based plasticizer increase, the tensile strength (Ts) can be maintained at the same value as the initial value, and the elongation (E) is also higher than the elongation (E) before immersion in mineral oil. As the blending amount of the polyester plasticizer increases from 50% to 93%, the elongation (E) can be maintained at the same value as the initial value. That is, the curing of the vinyl chloride resin composition can be maintained at the same level as the initial value. However, the embrittlement temperature is -14 before the vinyl chloride resin composition is immersed in mineral oil.
C. to -30.degree. C., whereas after being immersed in mineral oil at 85.degree. C. for 350 hours, the temperature becomes -2.degree. C. to -6.degree. Conventional example 3 is a case where a sebacate-based or azelate-based plasticizer is blended in a vinyl chloride resin composition, and the vinyl chloride resin composition has a tensile strength (Ts) of 15% to 150% before immersion in mineral oil. % And the amount of the sebacate or azelate plasticizer increased, the tensile strength (Ts) increased, and the elongation (E) was 5% of the elongation (E) before immersion in mineral oil. ~ 12% has fallen drastically. That is, it is cured as a whole. Moreover, the embrittlement temperature is −30 ° C. to −60 ° C. before the vinyl chloride resin composition is immersed in mineral oil, and the embrittlement temperature after immersion in mineral oil at 85 ° C. for 350 hours is −1 ° C. to −6. ° C and low-temperature brittleness are remarkably deteriorated. In Comparative Example 1, a phthalate plasticizer was used, and NBR was used.
When the vinyl chloride resin composition is blended in an amount of 1 to 100 parts by weight, the blending amount of the phthalate plasticizer increases by 20% to 150% with respect to the tensile strength (Ts) before immersing the vinyl chloride resin composition in mineral oil. , The tensile strength (Ts) increases, and the elongation (E) is 6% of the elongation (E) before immersion in mineral oil.
% To 18% has fallen significantly. That is, it is cured as a whole. Moreover, the embrittlement temperature before immersing the vinyl chloride resin composition in mineral oil is −24 ° C. to −58 ° C.,
Embrittlement temperature after immersion in mineral oil at 350 ° C for -2 ° C to -1
The low temperature embrittlement at 2 ° C is significantly worse. Comparative Example 2 used a sebacate-based or azelate-based plasticizer in a vinyl chloride resin composition and blended 1 to 100 parts by weight of NBR. Tensile strength before dipping the vinyl chloride resin composition in mineral oil The tensile strength (Ts) increases and the elongation (E) increases as the amount of the sebacate-based or azelate-based plasticizer increases with 15% to 150% of (Ts).
Is 8% to 18% of the elongation (E) before immersion in mineral oil.
% Has come down significantly. That is, it is cured as a whole. Moreover, the embrittlement temperature is −32 ° C. to −72 ° C. before immersing the vinyl chloride resin composition in mineral oil, and the embrittlement temperature after immersion in mineral oil at 85 ° C. for 350 hours is −4 ° C. to −10. ° C
And the low temperature brittleness is remarkably deteriorated. In the example, a polyester plasticizer was used in the vinyl chloride resin composition, and NBR was blended in an amount of 51 to 100 parts by weight. The tensile strength (Ts) before dipping the vinyl chloride resin composition in mineral oil was determined. As the blending amount of the polyester plasticizer increases from 75% to 95%, the tensile strength (Ts) can be maintained at the same value as the initial value, and the elongation (E) also increases before immersion in mineral oil ( The elongation (E) can be maintained in the same manner as the initial value as the blending amount of the polyester plasticizer is increased to 55% to 95% of E). That is, the curing of the vinyl chloride resin composition can be maintained at the same level as the initial value. Moreover, the embrittlement temperature, the value of -16 ℃ ~ -50 ℃ before immersing the vinyl chloride resin composition in mineral oil, -12 ℃ ~ -50 ℃ after immersing 350Hr in mineral oil of 85 ℃, The value (initial value) can be kept substantially before the vinyl chloride resin composition is immersed in mineral oil. The embrittlement temperature increases as the amount of NBR increases. Thus, when the polyester resin is used in the vinyl chloride resin composition and NBR is blended in an amount of 51 to 100 parts by weight, the tensile strength and the elongation are not significantly affected, and the lowering of the low-temperature brittleness is prevented. be able to. << Second Invention >> A specific example of the second invention of the present application will be described in comparison with a comparative example and a conventional example. Example The composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant wire cable in the present example is 100 parts by weight of the soft polyvinyl chloride resin composition, and the polyester plasticizer is 30 to 150 parts by weight. Parts, stabilizers (Pb, Ba-Zn, C
1 to 10 parts by weight of a-Zn and Sn), 0 to 200 parts by weight of filler (CaCO 3 , calcined clay, metal hydroxide), and 51 to 100 parts by weight of butadiene acrylonitrile rubber (NBR) It is configured as follows. Comparative Example 1 The composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable in the present example was obtained by adding a phthalate-based plasticizer to 30 to 150 parts by weight of 100 parts by weight of the soft polyvinyl chloride resin composition. Parts by weight, stabilizer (Pb, Ba-Zn, Ca
1 to 10 parts by weight of each of Zn and Sn), 0 to 200 parts by weight of filler (CaCO 3 , calcined clay, metal hydroxide), and 1 to 100 parts by weight of butadiene acrylonitrile rubber (NBR) It is configured as follows. Comparative Example 2 The composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable in the present example was determined by adding 100 parts by weight of the soft polyvinyl chloride resin composition to a sebacate-based plasticizer or an azelate-based plasticizer. 30 to 150 parts by weight of the agent,
1-10 parts by weight of a stabilizer (each of Pb, Ba-Zn, Ca-Zn and Sn) and 0 of filler (CaCO 3 , calcined clay, metal hydroxide)
~ 200 parts by weight, butadiene acrylonitrile rubber (NBR)
Is blended in an amount of 1 to 100 parts by weight. Conventional Example 1 In Conventional Example 1, the composition of a vinyl chloride resin composition used for an insulating sheath material of an electric cable was prepared by adding a phthalate-based plasticizer to 100 to 100 parts by weight of a soft polyvinyl chloride resin composition.
50 parts by weight, 1 to 10 parts by weight of stabilizer (Pb, Ba-Zn, Ca-Zn, Sn system) and 0 to 200 parts by weight of filler (CaCO 3 , calcined clay, metal hydroxide) It is composed by mixing. Conventional Example 2 In Conventional Example 2, a composition of a vinyl chloride resin composition used for an insulating sheath material of an electric cable was prepared by adding 30 parts of a polyester plasticizer to 100 parts by weight of a soft polyvinyl chloride resin composition.
150 parts by weight, the stabilizer 1 to 10 parts by weight of (Pb, Ba-Zn, Ca -Zn, the system Sn), fillers (CaCO 3, calcined clay, metal hydroxide) 0 to 200 parts by weight Is blended. Conventional Example 3 In Conventional Example 3, a composition of a vinyl chloride resin composition used for an insulating sheath material of an electric cable was prepared by adding a sebacate-based plasticizer or an azelate-based plasticizer to 100 parts by weight of a soft polyvinyl chloride resin composition. ~ 150 parts by weight, stabilizer (Pb, Ba-Z
n, Ca-Zn, Sn system) in an amount of 1 to 10 parts by weight, a filler (CaC
O 3 , calcined clay, metal hydroxide) in an amount of 0 to 200 parts by weight. Mineral oil (specifically, Dubney Coronex grease, ASTM No. 2 oil manufactured by Idemitsu Kosan Co., Ltd.) for electric wire cables using a vinyl chloride resin composition based on these examples and a conventional example for an insulating sheath. Embrittlement temperature before, embrittlement temperature after immersion in mineral oil, Ts (tensile strength) residual ratio, E (elongation)
Table 2 shows the comparison results of the residual ratio. Examples of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric cable shown in Table 2, comparative examples, and comparative results of the conventional examples are Examples of the oil-resistant vinyl chloride resin composition, comparative examples, The result is similar to the comparison result of the conventional example. That is, in each of Comparative Examples 1 and 2, and Conventional Examples 1, 2, and 3, the tensile strength (Ts) and the elongation (E) of the vinyl chloride resin composition before immersion in the mineral oil were severe after immersion in the mineral oil. And the low-temperature brittleness is significantly worsened. On the other hand, in the example, the embrittlement temperature was before immersing the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric cable in mineral oil, and after immersing it in mineral oil at 85 ° C for 350 hours. It can be kept almost the same.

【発明の効果】【The invention's effect】

本発明は、以上説明したように構成されているので、
以下に記載されるような効果を奏する。 ポリ塩化ビニル樹脂100重量部に、ポリエステル系可
塑剤30〜150重量部、安定剤1〜10重量部、充填剤0〜2
00重量部、ブタジエンアクリロニトリルゴム51〜100重
量部を配合してあるため、鉱物油に浸漬しても低温脆性
の低下の招来を抑制することができる。 また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部、充填
剤0〜200重量部、ブタジエンアクリロニトリルゴム51
〜100重量部を配合してなる耐油性塩化ビニル樹脂組成
物を絶縁シース材として用いているため、移動式機械に
布設され、常時機械油(鉱物油)に浸漬される電線ケー
ブルの絶縁シースの耐油性、耐低温脆性を向上すること
ができる。
Since the present invention is configured as described above,
The following effects are obtained. 100 parts by weight of polyvinyl chloride resin, 30 to 150 parts by weight of polyester plasticizer, 1 to 10 parts by weight of stabilizer, 0 to 2 parts of filler
Since 00 parts by weight and 51 to 100 parts by weight of butadiene acrylonitrile rubber are compounded, it is possible to suppress the lowering of low-temperature brittleness even when immersed in mineral oil. Also, 100 parts by weight of a polyvinyl chloride resin, 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, butadiene acrylonitrile rubber 51
Since the oil-resistant vinyl chloride resin composition containing up to 100 parts by weight is used as an insulating sheath material, it is installed on a mobile machine and is always immersed in machine oil (mineral oil). Oil resistance and low-temperature brittleness resistance can be improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 27/06 LEM C08L 27/06 LEM 67/00 LPA 67/00 LPA H01B 3/44 H01B 3/44 B 7/28 7/28 A Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C08L 27/06 LEM C08L 27/06 LEM 67/00 LPA 67/00 LPA H01B 3/44 H01B 3 / 44 B 7/28 7/28 AZ

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリ塩化ビニル樹脂100重量部に、ポリエ
ステル系可塑剤30〜150重量部、安定剤1〜10重量部、
充填剤0〜200重量部、ブタジエンアクリロニトリルゴ
ム51〜100重量部を配合してなる耐油性塩化ビニル樹脂
組成物。
(1) 100 parts by weight of a polyvinyl chloride resin, 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer,
An oil-resistant vinyl chloride resin composition comprising 0 to 200 parts by weight of a filler and 51 to 100 parts by weight of butadiene acrylonitrile rubber.
【請求項2】ポリ塩化ビニル樹脂100重量部に、ポリエ
ステル系可塑剤30〜150重量部、安定剤1〜10重量部、
充填剤0〜200重量部、ブタジエンアクリロニトリルゴ
ム51〜100重量部を配合してなる耐油性塩化ビニル樹脂
組成物を絶縁シース材として用いた耐油性電線ケーブ
ル。
2. 100 parts by weight of a polyvinyl chloride resin, 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer,
An oil-resistant electric cable using an oil-resistant vinyl chloride resin composition containing 0 to 200 parts by weight of a filler and 51 to 100 parts by weight of butadiene acrylonitrile rubber as an insulating sheath material.
JP2172136A 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable Expired - Fee Related JP2603551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172136A JP2603551B2 (en) 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172136A JP2603551B2 (en) 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Publications (2)

Publication Number Publication Date
JPH0459851A JPH0459851A (en) 1992-02-26
JP2603551B2 true JP2603551B2 (en) 1997-04-23

Family

ID=15936237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172136A Expired - Fee Related JP2603551B2 (en) 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Country Status (1)

Country Link
JP (1) JP2603551B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361704B2 (en) * 2003-09-30 2008-04-22 Adeka Corporation Vinyl chloride resin composition for vehicles
CN103865193A (en) * 2014-02-18 2014-06-18 苏州贝斯特装饰新材料有限公司 Formula of dry cleaning new PVC (polyvinyl chloride) decorative material
US20190225790A1 (en) * 2016-06-29 2019-07-25 Riken Technos Corporation Thermoplastic resin composition for electric wire coating and electric wire using the same
CN106935313A (en) * 2017-03-22 2017-07-07 合肥浦尔菲电线科技有限公司 A kind of New-style electrical wire insulation sheath and preparation method thereof
CN107033420A (en) * 2017-06-15 2017-08-11 合肥市闵葵电力工程有限公司 It is a kind of for electric wire insulation layer of communication equipment and preparation method thereof
CN110885483A (en) * 2019-12-17 2020-03-17 芜湖航天特种电缆厂股份有限公司 High-temperature-resistant cable insulating material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111954A (en) * 1976-03-16 1977-09-20 Showa Electric Wire & Cable Co Ltd Vinyl chloride resin compositions and preparation
JPS63105408A (en) * 1986-10-22 1988-05-10 大日本インキ化学工業株式会社 Resin composition for covering wire

Also Published As

Publication number Publication date
JPH0459851A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
EP0216866B1 (en) Antistatic composition and articles made therefrom
US2349413A (en) Electrical conductor carrying vinyl resin composition
JP2603551B2 (en) Oil-resistant vinyl chloride resin composition and oil-resistant electric cable
JP2000276953A (en) Covered electric wire
JP2000109638A (en) Flame retardant resin composition having flexiblility and wire using same
US2397592A (en) Resinous compositions for wire coatings and the like
US3845166A (en) Curable composition comprising polyvinyl chloride,chlorinated polyolfin and an ethylene polymer,and the cured product thereof
US4327001A (en) Low smoke polyolefin jacket composition for electrical wire
JP5929036B2 (en) Vinyl chloride resin composition for covering thin-walled wear-resistant electric wires and thin-walled wear-resistant electric wires
US5527612A (en) Fluorocarbon copolymer-insulated wire
FR2558168A1 (en) FIRE-RESISTANT THERMOPLASTIC COMPOSITION BASED ON ETHYLENE POLYMER OR COPOLYMER
US3324229A (en) Retractile cord having a vulcanized ethylene-propylene-diene terpolymer jacket
US3111495A (en) Plastic conductor composition
JP2001172460A (en) Vinyl chloride-based resin composition and its use
US4810577A (en) Heat and oil-resistant electric insulated wire
JPS58225504A (en) Crosslinked polyethylene cable
JP3943795B2 (en) Polyvinyl chloride composition and electric wire cable using the same
JP3088055B2 (en) Composition for semiconductive layer of power cable
JP3321969B2 (en) Fluororesin-coated wires and Fluororesin-coated shielded wires
JPH087652A (en) Resin composition for automobile electric wire and thin low voltage cable for automobile
KR920001224B1 (en) Compsite with conductinity
JPS62190241A (en) Heat-resistant, oil-resistant rubber composition
EP0159788B1 (en) Insulated wires
JPS59157134A (en) Flame-retardant composition
JP2902088B2 (en) Vibration damping material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees