JPH0459851A - Oil-resistant vinyl chloride resin composition and oil-resistant electric wire cable - Google Patents

Oil-resistant vinyl chloride resin composition and oil-resistant electric wire cable

Info

Publication number
JPH0459851A
JPH0459851A JP2172136A JP17213690A JPH0459851A JP H0459851 A JPH0459851 A JP H0459851A JP 2172136 A JP2172136 A JP 2172136A JP 17213690 A JP17213690 A JP 17213690A JP H0459851 A JPH0459851 A JP H0459851A
Authority
JP
Japan
Prior art keywords
chloride resin
weight
parts
oil
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2172136A
Other languages
Japanese (ja)
Other versions
JP2603551B2 (en
Inventor
Masayuki Hayashi
正幸 林
Shigeru Ohashi
大橋 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2172136A priority Critical patent/JP2603551B2/en
Publication of JPH0459851A publication Critical patent/JPH0459851A/en
Application granted granted Critical
Publication of JP2603551B2 publication Critical patent/JP2603551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain the subject composition without causing deterioration in low-temperature embrittling even in dipping in mineral oils by blending PVC resin with a polyester-based plasticizer, a stabilizer, a filler and butadiene acrylonitrile rubber. CONSTITUTION:The objective composition is obtained by blending 100 pts.wt. PVC resin with preferably 30-150 pts.wt. polyester-based plasticizer, preferably 1-10 pts.wt. stabilizer, preferably 0-200 pts.wt. filler and preferably 1-100 pts.wt. butadiene acrylonitrile rubber.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電線等の被覆材として用いられる軟質塩化ビ
ニル樹脂組成物に係り、特に、鉱物油に浸漬しても低温
脆性の低下の招来を抑制することのできる耐油性塩化ビ
ニル樹脂組成物、及び移動式機械に布設され、常時機械
油(鉱物油)に浸漬される電線ケーブルの絶縁シースの
耐油性、耐低温脆性を向上することのできる耐油性電線
ケーブルに関する。
The present invention relates to a soft vinyl chloride resin composition used as a coating material for electric wires, etc., and in particular, an oil-resistant vinyl chloride resin composition that can suppress deterioration of low-temperature brittleness even when immersed in mineral oil. The present invention also relates to an oil-resistant electric wire/cable that can improve the oil resistance and low-temperature embrittlement resistance of the insulated sheath of the electric wire/cable installed in a mobile machine and constantly immersed in machine oil (mineral oil).

【従来の技術】[Conventional technology]

一般に、塩化ビニル樹脂組成物は、鉱物油に浸漬すると
、組成物の低温脆性が該組成物に含有する可塑剤の種類
の如何に拘らず著しく低下(悪化)する。これは、塩化
ビニル樹脂組成物を鉱物油に浸漬すると、鉱物油が塩化
ビニル樹脂組成物中に侵入し、初期の段階では可塑剤を
抽出したり、可塑剤に移行したりし、さらには塩化ビニ
ル樹脂組成物を膨潤させて、低温脆性を低下させること
による。すなわち、塩化ビニル樹脂組成物は、温度が低
下していくと、この温度低下に伴って、引張り強さ、硬
度などが徐々に増加していくが、逆に伸びなどは低下し
ていき、ある温度以下で外部から衝撃的に応力を加える
と急に脆く破壊し易くなる場合(脆化現象)があり、こ
の脆化現象が低温脆性である。そして、靭性状態から脆
性状態に変化する温度、すなわち、急な衝撃に対して脆
くなる温度を遷移温度と称している。 このように塩化ビニル樹脂組成物に低温脆性の低下(悪
化)を来すと、寒冷時に本来破壊されることがないよう
な小さな力が塩化ビニル樹脂組成物に加わってもひびや
割れが簡単に入るようになってしまう、そこで、従来、
塩化ビニル樹脂組成物の耐油性を向上させる方法として
、高分子量のポリエステル系可塑剤が用いられている。 この塩化ビニル樹脂組成物は、電線ケーブルのM縁シー
スとして用いられる。このように塩化ビニル樹脂組成物
を絶縁シースとして用いている電線ケーブルは、移動式
機械にも布設されている。 この移動式機械に布設される電線ケーブルは、常時、鉱
物油に浸漬されていることが多い。このため、この種の
電線ケーブルは、最外層に耐油性を向上させるためにポ
リエステル系可塑剤が用いられた塩化ビニル樹脂組成物
が用いられていた。
Generally, when a vinyl chloride resin composition is immersed in mineral oil, the low-temperature brittleness of the composition is significantly reduced (deteriorated) regardless of the type of plasticizer contained in the composition. This is because when a vinyl chloride resin composition is immersed in mineral oil, the mineral oil enters into the vinyl chloride resin composition, extracts the plasticizer in the initial stage, transfers to the plasticizer, and further chlorinates the resin composition. By swelling the vinyl resin composition to reduce low temperature brittleness. In other words, as the temperature of a vinyl chloride resin composition decreases, its tensile strength and hardness gradually increase, but conversely its elongation decreases, and When external impact stress is applied below the temperature, there are cases where the material suddenly becomes brittle and easily broken (embrittlement phenomenon), and this embrittlement phenomenon is called low-temperature embrittlement. The temperature at which the tough state changes to the brittle state, that is, the temperature at which the material becomes brittle against sudden impacts, is called the transition temperature. If the low-temperature brittleness of a vinyl chloride resin composition is reduced (worsened) in this way, it will easily crack or crack even if a small force is applied to the vinyl chloride resin composition, which would normally not cause it to break in cold weather. Therefore, conventionally,
A high molecular weight polyester plasticizer is used as a method for improving the oil resistance of vinyl chloride resin compositions. This vinyl chloride resin composition is used as an M-edge sheath for electric wire cables. Electric wire cables using a vinyl chloride resin composition as an insulating sheath are also installed on mobile machines. The electric wires and cables installed in this mobile machine are often constantly immersed in mineral oil. For this reason, this type of electric wire cable uses a vinyl chloride resin composition in which a polyester plasticizer is used in the outermost layer to improve oil resistance.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、耐油性を向上させる方法として添加され
るポリエステル系可塑剤は、引張り強さ、伸び等につい
て耐油性能をほぼ維持できるが、鉱物油に浸漬後の低温
脆性を著しく低下させてしまうという問題点を有してい
る。これは、鉱物油が塩化ビニル樹脂組成物中に侵入し
、初期では可塑剤を抽出したり、可塑剤に移行したりし
、さらには組成物を膨潤させることによるものである。 また、塩化ビニル樹脂組成物に耐寒性に優れるセバケー
ト、アゼレート、アジペート等の可塑剤を用いても、鉱
物油に浸漬後の低温脆性を著しく低下させてしまうとい
う問題点を有している。 また、移動式機械に布設されている電線ケーブルの絶縁
シースとして用いられている塩化ビニル樹脂組成物は、
最外層にポリエステル系可塑剤を用いても、引張り強さ
、伸び等について耐油性能をほぼ維持できるが、鉱物油
に浸漬後の低温脆性を著しく低下させてしまうという問
題点を有している。これは、鉱物油が塩化ビニル樹脂組
成物中に侵入し、初期では可塑剤を抽出したり、可塑剤
に移行したりし、さらには組成物を膨潤させることによ
るものである。 また、最外層の塩化ビニル樹脂組成物に耐寒性に優れる
セバケート、アゼレート、アジペート等の可塑剤を用い
ても、鉱物油に浸漬後の低温脆性を著しく低下させてし
まうという問題点を有している。 本願第1の発明は、鉱物油に浸漬しても低温脆性の低下
の招来を抑制することのできる耐油性塩化ビニル樹脂組
成物を提供することを目的としている。 本願第2の発明は、移動式機械に布設され、常時機械油
(鉱物油)に浸漬される電線ケーブルの絶縁シースの耐
油性、耐低温脆性を向上することのできる耐油性電線ケ
ーブルを提供することを目的としている。
However, polyester plasticizers added as a method to improve oil resistance can maintain most of the oil resistance in terms of tensile strength, elongation, etc., but have the problem of significantly reducing low-temperature brittleness after immersion in mineral oil. have. This is because the mineral oil enters the vinyl chloride resin composition, initially extracts the plasticizer, migrates to the plasticizer, and further swells the composition. Furthermore, even if plasticizers such as sebacate, azelate, and adipate, which have excellent cold resistance, are used in vinyl chloride resin compositions, there is a problem in that the low-temperature brittleness after immersion in mineral oil is significantly reduced. In addition, vinyl chloride resin compositions used as insulating sheaths for electric cables installed in mobile machines are
Even if a polyester plasticizer is used in the outermost layer, it is possible to maintain almost all oil resistance in terms of tensile strength, elongation, etc., but there is a problem in that low-temperature brittleness after immersion in mineral oil is significantly reduced. This is because the mineral oil enters the vinyl chloride resin composition, initially extracts the plasticizer, migrates to the plasticizer, and further swells the composition. Furthermore, even if plasticizers such as sebacate, azelate, and adipate, which have excellent cold resistance, are used in the outermost layer of the vinyl chloride resin composition, there is a problem in that the low-temperature brittleness after immersion in mineral oil is significantly reduced. There is. A first aspect of the present invention aims to provide an oil-resistant vinyl chloride resin composition that can suppress deterioration of low-temperature brittleness even when immersed in mineral oil. The second invention of the present application provides an oil-resistant electric wire cable that can improve the oil resistance and low-temperature resistance of the insulating sheath of the electric wire cable installed in a mobile machine and constantly immersed in machine oil (mineral oil). The purpose is to

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、本発明の耐油性塩化ビニル
樹脂組成物においては、ポリ塩化ビニル樹脂に、ポリエ
ステル系可塑剤、安定剤、充填剤を添加してなる塩化ビ
ニル樹脂組成物において、ブタジェンアクリロニトリル
ゴムを適量配合したものである。 そして、本発明の耐油性塩化ビニル樹脂組成物の組成を
、ポリ塩化ビニル樹脂100重量部に、ポリエステル系
可塑剤30〜150重量部、安定剤1〜10重量部、充
填剤0〜200重量部、ブタジェンアクリロニトリルゴ
ム1〜100重量部を配合して構成するものである。 また、上記目的を達成するために、本発明の耐油性電線
ケーブルにおいては、ポリ塩化ビニル樹脂に、ポリエス
テル系可塑剤、安定剤、充填剤を添加してなる塩化ビニ
ル樹脂組成物を絶縁シース材として用いた電線ケーブル
において、上記絶縁シース材にブタジェンアクリロニト
リルゴムを配合したものである。 そして、本発明の耐油性電線ケーブルの絶縁シース材に
用いる耐油性塩化ビニル樹脂組成物の組成を、ポリ塩化
ビニル樹脂100重量部に、ポリエステル系可塑剤30
〜150重量部、安定剤1〜10重量部、充填剤0〜2
00重量部、ブタジェンアクリロニトリルゴム1〜10
0重量部を配合して構成するものである。
In order to achieve the above object, in the oil-resistant vinyl chloride resin composition of the present invention, a polyester plasticizer, a stabilizer, and a filler are added to a polyvinyl chloride resin. Contains an appropriate amount of gen-acrylonitrile rubber. The composition of the oil-resistant vinyl chloride resin composition of the present invention is as follows: 100 parts by weight of polyvinyl chloride resin, 30 to 150 parts by weight of polyester plasticizer, 1 to 10 parts by weight of stabilizer, and 0 to 200 parts by weight of filler. , and 1 to 100 parts by weight of butadiene acrylonitrile rubber. In addition, in order to achieve the above object, in the oil-resistant electric wire cable of the present invention, an insulating sheath material is made of a vinyl chloride resin composition obtained by adding a polyester plasticizer, a stabilizer, and a filler to a polyvinyl chloride resin. In the electric wire cable used as the above, butadiene acrylonitrile rubber was blended with the above-mentioned insulating sheath material. The composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable of the present invention was added to 100 parts by weight of the polyvinyl chloride resin and 30 parts by weight of the polyester plasticizer.
~150 parts by weight, 1 to 10 parts by weight of stabilizer, 0 to 2 parts by weight of filler
00 parts by weight, butadiene acrylonitrile rubber 1-10
It is constituted by blending 0 parts by weight.

【作用】[Effect]

ポリ塩化ビニル樹脂に、ポリエステル系可塑剤、安定剤
、充填剤を添加してなる塩化ビニル樹脂組成物に、ブタ
ジェンアクリロニトリルゴムを適量配合しであるため、
鉱物油に浸漬しても低温脆性の低下の招来を抑制するこ
とができる。 また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部
、充填剤0〜200重量部、ブタジェンアクリロニトリ
ルゴム1〜100重量部を配合しであるため、鉱物油に
浸漬しても低温脆性の低下の招来を抑制することができ
る。 さらに、ポリ塩化ビニル樹脂に、ポリエステル系可塑剤
、安定剤、充填剤を添加してなる塩化ビニル樹脂組成物
を絶縁シース材として用いた電線ケーブルの絶縁シース
材にブタジェンアクリロニトリルゴムを配合しであるた
め、移動式機械に布設され、常時機械油(鉱物油)に浸
漬される電線ケーブルのI!縁シースの耐油性、耐低温
脆性を向上することができる。 また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部
、充填剤0〜200重量部、ブタジェンアクリロニトリ
ルゴム1〜100重量部を配合してなる耐油性塩化ビニ
ル樹脂組成物を絶縁シース材として用いているため、移
動式機械に布設され、常時機械油(鉱物油)に浸漬され
る電線ケーブルの絶縁シースの耐油性、耐低温脆性を向
上することができる。
Because the appropriate amount of butadiene acrylonitrile rubber is blended into a vinyl chloride resin composition made by adding a polyester plasticizer, stabilizer, and filler to polyvinyl chloride resin,
Even if it is immersed in mineral oil, it is possible to suppress the deterioration of low-temperature brittleness. Additionally, 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber may be blended with 100 parts by weight of polyvinyl chloride resin. Therefore, even when immersed in mineral oil, deterioration in low-temperature brittleness can be suppressed. Furthermore, butadiene acrylonitrile rubber can be blended into the insulation sheath material of electric wire cables that use a vinyl chloride resin composition made by adding polyester plasticizers, stabilizers, and fillers to polyvinyl chloride resin. Therefore, the I! of electric wires and cables installed in mobile machines and constantly immersed in machine oil (mineral oil). The oil resistance and low temperature brittleness resistance of the edge sheath can be improved. In addition, 100 parts by weight of polyvinyl chloride resin is blended with 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber. The oil-resistant vinyl chloride resin composition used as the insulating sheath material improves the oil resistance and low-temperature brittleness of the insulating sheath of electric wire cables installed in mobile machinery and constantly immersed in machine oil (mineral oil). can do.

【実施例1 以下、本発明の実施例について説明する。 (第1、第2の発明) 本願第1、第2の発明の具体的実施例について比較例、
従来例と比較して説明する。 実施例 本実施例は、軟質ポリ塩化ビニル樹脂組成物1oO重量
部に対して、ポリエステル系可塑剤を30〜150重量
部、安定剤(Pb、Ba−Zn、Ca−Zn、Snの各
県)を1〜10重量部、充填剤(CaCO3,焼成りレ
ー、金属水酸化物)を0〜200重量部、ブタジェンア
クリロニトリルゴム(NBR)を1〜100重量部を配
合したものである。 比較例1 比較例1は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、フタレート系可塑剤を30〜150重量部
、安定剤(Pb、Ba−Zn、Ca−Zn、Snの各県
)を1〜lO重量部、充填剤(Ca CO2、焼成りレ
ー、金属水酸化物)を0〜200重量部、ブタジェンア
クリロニトリルゴム(NBR)を1〜100重量部を配
合したものである。 比較例2 比較例2は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、セバケート系可塑剤又はアゼレート系可塑
剤を30〜150重量部、安定剤(Pb、Ba−Zn、
Ca−Zn、Snの各県)を1〜10重量部、充填剤(
Ca COa−焼成りレー、金属水酸化物)を0〜20
0重量部、ブタジェンアクリロニトリルゴム(NBR)
を1〜100重量部を配合したものである。 従来例1 従来例1は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、フタレート系可塑剤を30〜150重量部
、安定剤(Pb、Ba−Zn、Ca−Zn、Snの各県
)を1〜10重量部、充填剤(CaCO,、焼成りレー
、金属水酸化物)を0〜200重量部を配合したもので
ある6従来例2 従来例2は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、ポリエステル系可塑剤を30〜150重量
部、安定剤(Pb、Ba−Zn、Ca−Zn、Snの各
県)を1〜10重量部、充填剤(Ca COa 、焼成
りレー、金属水酸化物)を0〜200重量部を配合した
ものである。 従来例3 従来例3は、軟質ポリ塩化ビニル樹脂組成物100重量
部に対して、セバケート系可塑剤又はアゼレート系可塑
剤を30〜150重量部、安定剤(Pb、Ba−Zn、
Ca−Zn、Snの各県)を1〜10重量部、充填剤(
CaCO3,焼成りレー、金属水酸化物)を0〜200
重量部を配合したものである。 これらの実施例、従来例に基づく塩化ビニル樹脂組成物
についての鉱物油(具体的には、出光興産(株)製のダ
ブニーコロネックスゲリース、AS TMNα2オイル
)浸漬前の脆化温度、鉱物油浸漬後の脆化温度、Ts(
引張強度)残率、E(伸び)残率の比較結果が第1表に
示しである。 (以下余白) この第1表の実施例、比較例、従来例の比較結果におけ
る鉱物油浸漬試験は、実施例、比較例、従来例に基づく
塩化ビニル樹脂組成物を85℃の鉱物油(具体的には、
出光興産(株)製のダブニーコロネックスゲリース、A
 S T M Nα2オイル)に350Hr浸漬したも
のについて行ったものである。また、第1表中のTs(
引張強度)残率は。 浸漬前のTs(引張強度)を100としたときの鉱物油
浸漬後の引張強度(T s )を残り率(%)で表わし
たものである。また、E(伸び)残率は、浸漬前のE(
伸び)を100としたときの鉱物油浸漬後の伸・び(E
)を残り率(%)で表わしたものである。 第1表の実施例は、いずれもブタジェンアクリロニトリ
ルゴム(NBR)を1〜100重量部を配合している。 このNBRは、アクリロニトリルブタジェンゴム、ニト
リルゴム、アクリロニトリルとブタジェンの共重合体で
ある。このブタジェンアクリロニトリルゴム(NBR)
は、塩化ビニル樹脂と親和性が良く、鉱物油による膨潤
を抑制することが可能であり、その結果、低温脆性の低
下を抑制することができる。また、ポリエステル系可塑
剤との併用は、さらに大きな効果を生むことができる。 第1表の結果から明らかな如く、従来例1は、塩化ビニ
ル樹脂組成物にフタレート系可塑剤を配合した場合で、
この塩化ビニル樹脂組成物を鉱物油に浸漬する前の引張
強度(Ts)に対して20%〜150%とフタレート系
可塑剤の配合量が増加するにしたがって引張強度(Ts
)は増加していき、伸び(E)は、鉱物油に浸漬する前
の伸び(E)に対して5%〜15%と甚しい低下を来た
している。すなわち、全体として硬化している。 しかも、塩化ビニル樹脂組成物を鉱物油に浸漬する前の
脆化温度が一20℃〜−40℃で、85℃の鉱物油に3
50)h−浸漬した後の脆化温度が一2℃〜−6℃と低
温脆性が著しく悪化している。 従来例2は、塩化ビニル樹脂組成物にポリエステル系可
塑剤を配合した場合で、この塩化ビニル樹脂組成物を鉱
物油に浸漬する前の引張強度(TS)に対して70%〜
95%とポリエステル系可塑剤の配合量が増加するにし
たがって引張強度(T s )を初期値同様に保持する
ことができ、伸び(E)も、鉱物油に浸漬する前の伸び
(E)に対して50%〜93%とポリエステル系可塑剤
の配合量を増加するにしたがって伸び(E)を初期値同
様に保持することができる。すなわち、塩化ビニル樹脂
組成物の硬化を初期値同様に保つことができる。しかし
、脆化温度は、塩化ビニル樹脂組成物を鉱物油に浸漬す
る前が一14℃〜−30℃であるのに対し、85℃の鉱
物油に350)h−浸漬した後が一2℃〜−6℃となり
、低温脆性が著しく悪化している。 従来例3は、塩化ビニル樹脂組成物にセバケート系又は
アゼレート系可塑剤を配合した場合で、この塩化ビニル
樹脂組成物を鉱物油に浸漬する前の引張強度(Ts)に
対して15%〜150%とセバケート系又はアゼレート
系可塑剤の配合量が増加するにしたがって引張強度(T
s)は増加していき、伸び(E)は、鉱物油に浸漬する
前の伸び(E)に対して5%〜12%と甚しい低下を来
たしている。すなわち、全体として硬化している。 しかも、脆化温度は、塩化ビニル樹脂組成物を鉱物油に
浸漬する前が一30℃〜−60℃で、85℃の鉱物油に
350HI−浸漬した後の脆化温度が一1℃〜−6℃と
低温脆性が著しく悪化している。 また、比較例1は、フタレート系可塑剤を用い、NBR
を1〜100重量部を配合した場合で、この塩化ビニル
樹脂組成物を鉱物油に浸漬する前の引張強度(Ts)に
対して20%〜150%とフタレート系可塑剤の配合量
が増加するにしたがって引張強度(Ts)は増加してい
き、伸び(E)は、鉱物油に浸漬する前の伸び(E)に
対して6%〜18%と甚しい低下を来たしている。すな
わち、全体として硬化している。しかも、塩化ビニル樹
脂組成物を鉱物油に浸漬する前の脆化温度が一24℃〜
−58℃で、85℃の鉱物油に350七浸漬した後の脆
化温度が一2℃〜−12℃と低温脆性が著しく悪化して
いる。 比較例2は、塩化ビニル樹脂組成物にセバケート系又は
アゼレート系可塑剤を用い、NBRを1〜100重量部
を配合した場合で、この塩化ビニル樹脂組成物を鉱物油
に浸漬する前の引張強度(Ts)に対して15%〜15
0%とセバケート系又はアゼレート系可塑剤の配合量が
増加するにしたがって引張強度(Ts)は増加していき
、伸び(E)は、鉱物油に浸漬する前の伸び(E)に対
して8%〜18%と甚しい低下を来たしている。 すなわち、全体として硬化している。しかも、脆化温度
は、塩化ビニル樹脂組成物を鉱物油に浸漬する前が一3
2℃〜−72℃で、85℃の鉱物油に350Hr浸漬し
た後の脆化温度が一4℃〜−10℃と低温脆性が著しく
悪化している。 実施例は、塩化ビニル樹脂組成物にポリエステル系可塑
剤を用い、NBRを1〜100重量部を配合した場合で
、この塩化ビニル樹脂組成物を鉱物油に浸漬する前の引
張強度(Ts)に対して75%〜95%とポリエステル
系可塑剤の配合量を増加するにしたがって引張強度(T
 s )を初期値同様に保持することができ、伸び(E
)も、鉱物油に浸漬する前の伸び(E)に対して55%
〜95%とポリエステル系可塑剤の配合量を増加するに
したがって伸び(E)を初期値同様に保持することがで
きる。すなわち、塩化ビニル樹脂組成物の硬化を初期値
同様に保つことができる。しかも、脆化温度を、塩化ビ
ニル樹脂組成物を鉱物油に浸漬する前の一り6℃〜−5
0”Cの値を、83℃の鉱物油に350)h−浸漬した
後−12℃〜−50℃と、はぼ塩化ビニル樹脂組成物を
鉱物油に浸漬する前の値(初期値)に保つことができる
。 このように塩化ビニル樹脂組成物にポリエステル系可塑
剤を用い、NBRを1〜1−00重量部を配合した場合
、引っ張り強さ、伸びには、大きな影響を与えないで、
低温脆性の悪化を防止することができる。 (第3、第4の発明) 本願第3、第4の発明の具体的実施例について比較例、
従来例と比較して説明する。 実施例 本実施例における耐油性電線ケーブルの絶縁シース材に
用いる耐油性塩化ビニル樹脂組成物の組成を、軟質ポリ
塩化ビニル樹脂組成物100重量部に対して、ポリエス
テル系可塑剤を30〜150重量部、安定剤(Pb、B
a−Zn、Ca−Zn、Snの各県)を1〜10重量部
、充填剤(CaCO3,焼成りレー、金属水酸化物)を
0〜200重量部、ブタジェンアクリロニトリルゴム(
NBR)を1〜100重量部を配合して構成したもので
ある。 比較例1 本実施例における耐油性電線ケーブルの絶縁シース材に
用いる耐油性塩化ビニル樹脂組成物の組成を、軟質ポリ
塩化ビニル樹脂組成物100重量部に対して、フタレー
ト系可塑剤を30〜150重量部、安定剤(Pb、Ba
−Zn、Ca−Zn、Snの各県)を1〜10重量部、
充填剤(CaCO3、焼成りレー、金属水酸化物)を0
〜200重量部、ブタジェンアクリロニトリルゴム(N
BR)を1〜100重量部を配合して構成したものであ
る。 比較例2 本実施例における耐油性電線ケーブルの絶縁シース材に
用いる耐油性塩化ビニル樹脂組成物の組成を、軟質ポリ
塩化ビニル樹脂組成物100重量部に対して、セバケー
ト系可塑剤又はアゼレート系可塑剤を30〜150重量
部、安定剤(pb、Ba−Zn、Ca−Zn、Snの各
県)を1〜10重量部、充填剤(CaCO1、焼成りレ
ー、金属水酸化物)を0〜200重量部、ブタジェンア
クリロニトリルゴム(NBR)を1−100重量部を配
合して構成したものである。 従来例1 従来例1は、電線ケーブルの絶縁シース材に用いる塩化
ビニル樹脂組成物の組成を、軟質ポリ塩化ビニル樹脂組
成物100重量部に対して、フタレート系可塑剤を30
〜150重量部、安定剤(Pb、Ba−Zn、Ca−Z
n、Snの各県)を1〜10重量部、充填剤−(Ca 
C0a−焼成りレー、金属水酸化物)を0〜200重量
部を配合して構成したものである。 従来例2 従来例2は、電線ケーブルの絶縁シース材に用いる塩化
ビニル樹脂組成物の組成を、軟質ポリ塩化ビニル樹脂組
成物100重量部に対して、ポリエステル系可塑剤を3
0〜150重量部、安定剤(Pb、Ba−Zn、Ca−
Zn、Snの各県)を1〜10重量部、充填剤(Ca 
CO2、焼成りレー、金属水酸化物)を0〜200重量
部を配合して構成したものである。 従来例3 従来例3は、電線ケーブルの絶縁シース材に用いる塩化
ビニル樹脂組成物の組成を、軟質ポリ塩化ビニル樹脂組
成物100重量部に対して、セバケート系可塑剤又はア
ゼレート系可塑剤を30〜150重量部、安定剤(Pb
、Ba−Zn、Ca−Zn、Snの各県)を1−10重
量部、充填剤(Ca COz’−焼成りレー、金属水酸
化物)を0〜200重量部を配合して構成したものであ
る。 これらの実施例、従来例に基づく塩化ビニル樹脂組成物
を絶縁シースに用いた電線ケーブルについての鉱物油(
具体的には、出光興産(株)製のダブニーコロネックス
ゲリース、ASTM&2オイル)浸漬前の脆化温度、鉱
物油浸漬後の脆化温度、Ts(引張強度)残率、E(伸
び)残率の比較結果が第2表に示しである。 (以下余白) この第2表の耐油性電線ケーブルの絶縁シース材に用い
る耐油性塩化ビニル樹脂組成物の実施例、比較例、従来
例の比較結果は、耐油性塩化ビニル樹脂組成物の実施例
、比較例、従来例の比較結果と同様な結果となっている
。すなわち、比較例1.2、従来例1.2.3のいずれ
も塩化ビニル樹脂組成物を鉱物油に浸漬する前の引張強
度(Ts)及び伸び(E)から鉱物油に浸漬した後甚し
い低下を来たし、かつ、低温脆性が著しく悪化している
。 これに対し、実施例は、脆化温度が、耐油性電線ケーブ
ルの絶縁シース材に用いる耐油性塩化ビニル樹脂組成物
を鉱物油に浸漬する前と、85℃の鉱物油に350HI
−浸漬した後とほぼ同一に保つことができる。 【発明の効果】 本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。 ポリ塩化ビニル樹脂に、ポリエステル系可塑剤、安定剤
、充填剤を添加してなる塩化ビニル樹脂組成物に、ブタ
ジェンアクリボニトリルゴムを適量配合しであるため、
鉱物油に浸漬しても低温脆性の低下の招来を抑制するこ
とができる。 また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部
、充填剤0〜200重量部、ブタジェンアクリロニトリ
ルゴム1〜100重量部を配合しであるため、鉱物油に
浸漬しても低温脆性の低下の招来を抑制することができ
る。 さらに、ポリ塩化ビニル樹脂に、ポリエステル系可塑剤
、安定剤、充填剤を添加してなる塩化ビニル樹脂組成物
を絶縁シース材として用いた電線ケーブルの絶縁シース
材にブタジェンアクリロニトリルゴムを配合しであるた
め、移動式機械に布設され、常時機械油(鉱物油)に浸
漬される電線ケーブルの絶縁シースの耐油性、耐低温脆
性を向上することができる6 また、ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部
、充填剤0〜200重量部、ブタジェンアクリロニトリ
ルゴム1〜100重量部を配合してなる耐油性塩化ビニ
ル樹脂組成物を絶縁シース材として用いているため、移
動式機械に布設され、常時機械油(鉱物油)に浸漬され
る電線ケーブルの絶縁シースの耐油性、耐低温脆性を向
上することができる。
[Example 1] Hereinafter, an example of the present invention will be described. (First and second inventions) Comparative examples of specific embodiments of the first and second inventions of the present application,
This will be explained in comparison with a conventional example. Example In this example, 30 to 150 parts by weight of a polyester plasticizer and stabilizers (Pb, Ba-Zn, Ca-Zn, and Sn) were added to 100 parts by weight of a soft polyvinyl chloride resin composition. 1 to 10 parts by weight of filler (CaCO3, fired clay, metal hydroxide), and 1 to 100 parts by weight of butadiene acrylonitrile rubber (NBR). Comparative Example 1 In Comparative Example 1, 30 to 150 parts by weight of a phthalate plasticizer and stabilizers (Pb, Ba-Zn, Ca-Zn, and Sn) were added to 100 parts by weight of a soft polyvinyl chloride resin composition. ), 0 to 200 parts by weight of a filler (CaCO2, fired clay, metal hydroxide), and 1 to 100 parts by weight of butadiene acrylonitrile rubber (NBR). Comparative Example 2 In Comparative Example 2, 30 to 150 parts by weight of a sebacate plasticizer or an azelate plasticizer and stabilizers (Pb, Ba-Zn,
1 to 10 parts by weight of Ca-Zn, Sn), filler (
Ca COa - calcined clay, metal hydroxide) from 0 to 20
0 parts by weight, butadiene acrylonitrile rubber (NBR)
1 to 100 parts by weight. Conventional Example 1 In Conventional Example 1, 30 to 150 parts by weight of a phthalate plasticizer and stabilizers (Pb, Ba-Zn, Ca-Zn, and Sn) were added to 100 parts by weight of a soft polyvinyl chloride resin composition. ) and 0 to 200 parts by weight of a filler (CaCO, fired clay, metal hydroxide) 6 Conventional Example 2 Conventional Example 2 is a soft polyvinyl chloride resin composition. For 100 parts by weight of the material, 30 to 150 parts by weight of polyester plasticizer, 1 to 10 parts by weight of stabilizers (Pb, Ba-Zn, Ca-Zn, Sn), fillers (CaCOa, 0 to 200 parts by weight of sintered clay, metal hydroxide). Conventional Example 3 In Conventional Example 3, 30 to 150 parts by weight of a sebacate plasticizer or an azelate plasticizer and stabilizers (Pb, Ba-Zn,
1 to 10 parts by weight of Ca-Zn, Sn), filler (
CaCO3, calcined clay, metal hydroxide) from 0 to 200
parts by weight. The embrittlement temperature and mineral oil before immersion in mineral oil (specifically, Dabney Coronex Gelease, AS TMNα2 oil manufactured by Idemitsu Kosan Co., Ltd.) for vinyl chloride resin compositions based on these examples and conventional examples. The embrittlement temperature after immersion, Ts(
Table 1 shows the comparison results of tensile strength) retention and E (elongation) retention. (Leaving space below) The mineral oil immersion test in the comparative results of Examples, Comparative Examples, and Conventional Examples in Table 1 was conducted by immersing the vinyl chloride resin compositions in mineral oil (specifically Specifically,
Dabney Coronex Gelise, A manufactured by Idemitsu Kosan Co., Ltd.
This test was carried out on samples immersed in STM Nα2 oil for 350 hours. Also, Ts(
tensile strength) residual rate. The tensile strength (T s ) after immersion in mineral oil is expressed as a residual percentage (%) when Ts (tensile strength) before immersion is taken as 100. In addition, the E (elongation) residual rate is the E (elongation) before immersion.
Elongation (E) after immersion in mineral oil when elongation) is 100
) is expressed as a remaining rate (%). All of the examples in Table 1 contain 1 to 100 parts by weight of butadiene acrylonitrile rubber (NBR). This NBR is acrylonitrile butadiene rubber, nitrile rubber, or a copolymer of acrylonitrile and butadiene. This butadiene acrylonitrile rubber (NBR)
has good affinity with vinyl chloride resin and can suppress swelling caused by mineral oil, and as a result, can suppress a decrease in low-temperature brittleness. Moreover, the combined use with a polyester plasticizer can produce even greater effects. As is clear from the results in Table 1, Conventional Example 1 is a case where a phthalate plasticizer is blended into a vinyl chloride resin composition.
The tensile strength (Ts) of this vinyl chloride resin composition before being immersed in mineral oil is 20% to 150%, and as the amount of phthalate plasticizer increases, the tensile strength (Ts
) increases, and the elongation (E) significantly decreases by 5% to 15% compared to the elongation (E) before immersion in mineral oil. That is, it is hardened as a whole. Moreover, the embrittlement temperature of the vinyl chloride resin composition before immersing it in mineral oil is between -20°C and -40°C, and when it is immersed in mineral oil at 85°C,
50) The embrittlement temperature after h-immersion is 12°C to -6°C, which shows that the low-temperature brittleness has deteriorated significantly. Conventional Example 2 is a case where a polyester plasticizer is blended into a vinyl chloride resin composition, and the tensile strength (TS) of this vinyl chloride resin composition before being immersed in mineral oil is 70% to
As the blending amount of polyester plasticizer increases to 95%, the tensile strength (T s ) can be maintained at the same initial value, and the elongation (E) also changes to the elongation (E) before immersion in mineral oil. On the other hand, as the blending amount of the polyester plasticizer increases from 50% to 93%, the elongation (E) can be maintained at the same initial value. That is, the curing of the vinyl chloride resin composition can be maintained at the same initial value. However, the embrittlement temperature is 114°C to -30°C before the vinyl chloride resin composition is immersed in mineral oil, whereas it is 12°C after it is immersed in mineral oil at 85°C for 350 h. The temperature was -6°C, and the low-temperature brittleness was significantly worsened. Conventional Example 3 is a case where a sebacate-based or azelate-based plasticizer is blended into a vinyl chloride resin composition, and the tensile strength (Ts) of the vinyl chloride resin composition before being immersed in mineral oil is 15% to 150%. % and the amount of sebacate or azelate plasticizer increases, the tensile strength (T
s) increases, and the elongation (E) significantly decreases by 5% to 12% compared to the elongation (E) before immersion in mineral oil. That is, it is hardened as a whole. Moreover, the embrittlement temperature is 130°C to -60°C before the vinyl chloride resin composition is immersed in mineral oil, and the embrittlement temperature is 11°C to -60°C after it is immersed in 85°C mineral oil for 350 HI. At 6°C, low-temperature brittleness has significantly worsened. In addition, in Comparative Example 1, a phthalate plasticizer was used, and NBR
When 1 to 100 parts by weight of phthalate plasticizer is blended, the amount of phthalate plasticizer increases by 20% to 150% with respect to the tensile strength (Ts) before immersing this vinyl chloride resin composition in mineral oil. Accordingly, the tensile strength (Ts) increases, and the elongation (E) significantly decreases by 6% to 18% compared to the elongation (E) before immersion in mineral oil. That is, it is hardened as a whole. Moreover, the embrittlement temperature of the vinyl chloride resin composition before immersing it in mineral oil is from 124°C to
The embrittlement temperature after being immersed in 85°C mineral oil at -58°C was 12°C to -12°C, which shows that the low-temperature embrittlement has deteriorated significantly. Comparative Example 2 is a case where a sebacate-based or azelate-based plasticizer is used in a vinyl chloride resin composition and 1 to 100 parts by weight of NBR is blended, and the tensile strength of this vinyl chloride resin composition before being immersed in mineral oil is 15% to 15 for (Ts)
As the amount of sebacate or azelate plasticizer increases, the tensile strength (Ts) increases, and the elongation (E) is 8% compared to the elongation (E) before immersion in mineral oil. % to 18%, resulting in a severe decline. That is, it is hardened as a whole. In addition, the embrittlement temperature is 13% before the vinyl chloride resin composition is immersed in mineral oil.
The embrittlement temperature after being immersed in 85°C mineral oil for 350 hours at 2°C to -72°C is 14°C to -10°C, which shows that the low-temperature embrittlement has deteriorated significantly. Examples are cases in which a polyester plasticizer is used in a vinyl chloride resin composition and 1 to 100 parts by weight of NBR is blended, and the tensile strength (Ts) of this vinyl chloride resin composition before being immersed in mineral oil is The tensile strength (T
s ) can be maintained at the same initial value, and the elongation (E
) is also 55% of the elongation (E) before immersion in mineral oil.
As the blending amount of the polyester plasticizer increases to 95%, the elongation (E) can be maintained at the same initial value. That is, the curing of the vinyl chloride resin composition can be maintained at the same initial value. Furthermore, the embrittlement temperature of the vinyl chloride resin composition before being immersed in mineral oil is 6°C to -5°C.
The value of 0"C was set to -12°C to -50°C after immersion in mineral oil at 83°C for 350 hours, and the value (initial value) before immersing the vinyl chloride resin composition in mineral oil. In this way, when a polyester plasticizer is used in a vinyl chloride resin composition and 1 to 1-00 parts by weight of NBR is blended, the tensile strength and elongation are not significantly affected.
Deterioration of low temperature brittleness can be prevented. (Third and fourth inventions) Comparative examples of specific embodiments of the third and fourth inventions of the present application,
This will be explained in comparison with a conventional example. Example In this example, the composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable was 100 parts by weight of the soft polyvinyl chloride resin composition, and 30 to 150 parts by weight of the polyester plasticizer. parts, stabilizers (Pb, B
1 to 10 parts by weight of a-Zn, Ca-Zn, Sn), 0 to 200 parts by weight of filler (CaCO3, calcined clay, metal hydroxide), butadiene acrylonitrile rubber (
It is composed of 1 to 100 parts by weight of NBR). Comparative Example 1 The composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable in this example was 30 to 150 parts by weight of the phthalate plasticizer per 100 parts by weight of the soft polyvinyl chloride resin composition. Parts by weight, stabilizers (Pb, Ba
-1 to 10 parts by weight of each prefecture of Zn, Ca-Zn, and Sn,
0 fillers (CaCO3, fired clay, metal hydroxide)
~200 parts by weight, butadiene acrylonitrile rubber (N
BR) in an amount of 1 to 100 parts by weight. Comparative Example 2 The composition of the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable in this example was changed to 100 parts by weight of the soft polyvinyl chloride resin composition, and a sebacate-based plasticizer or an azelate-based plasticizer. 30 to 150 parts by weight of the agent, 1 to 10 parts by weight of the stabilizer (PB, Ba-Zn, Ca-Zn, and Sn), and 0 to 10 parts of the filler (CaCO1, calcined clay, metal hydroxide). 200 parts by weight and 1-100 parts by weight of butadiene acrylonitrile rubber (NBR). Conventional Example 1 In Conventional Example 1, the composition of the vinyl chloride resin composition used for the insulating sheath material of electric wire cables was 100 parts by weight of the soft polyvinyl chloride resin composition, and 30 parts by weight of the phthalate plasticizer.
~150 parts by weight, stabilizers (Pb, Ba-Zn, Ca-Z
1 to 10 parts by weight of each prefecture (n, Sn), filler - (Ca
It is composed of 0 to 200 parts by weight of C0a-fired clay, metal hydroxide). Conventional Example 2 In Conventional Example 2, the composition of the vinyl chloride resin composition used for the insulating sheath material of electric wire cables was 100 parts by weight of the soft polyvinyl chloride resin composition, and 3 parts by weight of the polyester plasticizer.
0 to 150 parts by weight, stabilizers (Pb, Ba-Zn, Ca-
1 to 10 parts by weight of each prefecture (Zn, Sn), filler (Ca
It is composed of 0 to 200 parts by weight of CO2, fired clay, and metal hydroxide. Conventional Example 3 Conventional Example 3 has a composition of a vinyl chloride resin composition used for an insulating sheath material of an electric wire cable, in which 30 parts by weight of a sebacate plasticizer or an azelate plasticizer is added to 100 parts by weight of a soft polyvinyl chloride resin composition. ~150 parts by weight, stabilizer (Pb
, Ba-Zn, Ca-Zn, Sn) and 0 to 200 parts by weight of a filler (CaCOz'-calcined clay, metal hydroxide). It is. Mineral oil (
Specifically, the embrittlement temperature before immersion in Dabney Coronex Gelease manufactured by Idemitsu Kosan Co., Ltd. (ASTM & 2 oil), the embrittlement temperature after immersion in mineral oil, Ts (tensile strength) residual, E (elongation) residual. Table 2 shows the comparison results. (Leaving space below) The comparison results of the examples, comparative examples, and conventional examples of oil-resistant vinyl chloride resin compositions used for insulating sheath materials of oil-resistant electric wire and cables in Table 2 are examples of oil-resistant vinyl chloride resin compositions. The results are similar to those of the comparative example and the conventional example. That is, in both Comparative Example 1.2 and Conventional Example 1.2.3, the tensile strength (Ts) and elongation (E) before immersing the vinyl chloride resin composition in mineral oil showed that the vinyl chloride resin composition after immersing in mineral oil had a significant In addition, low-temperature brittleness has significantly worsened. On the other hand, in the example, the embrittlement temperature was 350HI before immersing the oil-resistant vinyl chloride resin composition used for the insulating sheath material of the oil-resistant electric wire cable in mineral oil, and 350HI in mineral oil at 85°C.
- Can be kept almost the same as after soaking. [Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below. Because it is a vinyl chloride resin composition made by adding a polyester plasticizer, stabilizer, and filler to polyvinyl chloride resin, an appropriate amount of butadiene acribonitrile rubber is blended.
Even if it is immersed in mineral oil, it is possible to suppress the deterioration of low-temperature brittleness. Additionally, 100 parts by weight of polyvinyl chloride resin may be blended with 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber. Therefore, even when immersed in mineral oil, it is possible to suppress the deterioration of low-temperature brittleness. Furthermore, butadiene acrylonitrile rubber can be blended into the insulation sheath material of electric wire cables that use a vinyl chloride resin composition made by adding a polyester plasticizer, stabilizer, and filler to polyvinyl chloride resin as an insulation sheath material. Therefore, it is possible to improve the oil resistance and low temperature embrittlement resistance of the insulating sheath of electric wire cables installed in mobile machines and constantly immersed in machine oil (mineral oil)6. , 30 to 150 parts by weight of a polyester plasticizer, 1 to 10 parts by weight of a stabilizer, 0 to 200 parts by weight of a filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber. Since it is used as a sheath material, it is possible to improve the oil resistance and low-temperature brittleness resistance of the insulating sheath of electric wire cables installed in mobile machines and constantly immersed in machine oil (mineral oil).

Claims (4)

【特許請求の範囲】[Claims] (1)ポリ塩化ビニル樹脂に、ポリエステル系可塑剤、
安定剤、充填剤を添加してなる塩化ビニル樹脂組成物に
おいて、ブタジエンアクリロニトリルゴムを適量配合し
たことを特徴とする耐油性塩化ビニル樹脂組成物。
(1) Polyvinyl chloride resin, polyester plasticizer,
An oil-resistant vinyl chloride resin composition characterized in that a suitable amount of butadiene acrylonitrile rubber is blended into the vinyl chloride resin composition containing a stabilizer and a filler.
(2)ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部
、充填剤0〜200重量部、ブタジエンアクリロニトリ
ルゴム1〜100重量部を配合してなる耐油性塩化ビニ
ル樹脂組成物。
(2) 100 parts by weight of polyvinyl chloride resin, 30 to 150 parts by weight of polyester plasticizer, 1 to 10 parts by weight of stabilizer, 0 to 200 parts by weight of filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber. An oil-resistant vinyl chloride resin composition.
(3)ポリ塩化ビニル樹脂に、ポリエステル系可塑剤、
安定剤、充填剤を添加してなる塩化ビニル樹脂組成物を
絶縁シース材として用いた電線ケーブルにおいて、上記
絶縁シース材にブタジエンアクリロニトリルゴムを配合
したことを特徴とする耐油性電線ケーブル。
(3) polyvinyl chloride resin, polyester plasticizer,
An oil-resistant electric wire/cable using a vinyl chloride resin composition added with a stabilizer and a filler as an insulating sheath material, characterized in that butadiene acrylonitrile rubber is blended into the insulating sheath material.
(4)ポリ塩化ビニル樹脂100重量部に、ポリエステ
ル系可塑剤30〜150重量部、安定剤1〜10重量部
、充填剤0〜200重量部、ブタジエンアクリロニトリ
ルゴム1〜100重量部を配合してなる耐油性塩化ビニ
ル樹脂組成物を絶縁シース材として用いた耐油性電線ケ
ーブル。
(4) 100 parts by weight of polyvinyl chloride resin, 30 to 150 parts by weight of polyester plasticizer, 1 to 10 parts by weight of stabilizer, 0 to 200 parts by weight of filler, and 1 to 100 parts by weight of butadiene acrylonitrile rubber. An oil-resistant electric wire and cable using an oil-resistant vinyl chloride resin composition as an insulating sheath material.
JP2172136A 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable Expired - Fee Related JP2603551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172136A JP2603551B2 (en) 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172136A JP2603551B2 (en) 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Publications (2)

Publication Number Publication Date
JPH0459851A true JPH0459851A (en) 1992-02-26
JP2603551B2 JP2603551B2 (en) 1997-04-23

Family

ID=15936237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172136A Expired - Fee Related JP2603551B2 (en) 1990-06-29 1990-06-29 Oil-resistant vinyl chloride resin composition and oil-resistant electric cable

Country Status (1)

Country Link
JP (1) JP2603551B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005033197A1 (en) * 2003-09-30 2006-12-14 株式会社Adeka Vinyl chloride resin composition for vehicles
CN103865193A (en) * 2014-02-18 2014-06-18 苏州贝斯特装饰新材料有限公司 Formula of dry cleaning new PVC (polyvinyl chloride) decorative material
CN106935313A (en) * 2017-03-22 2017-07-07 合肥浦尔菲电线科技有限公司 A kind of New-style electrical wire insulation sheath and preparation method thereof
CN107033420A (en) * 2017-06-15 2017-08-11 合肥市闵葵电力工程有限公司 It is a kind of for electric wire insulation layer of communication equipment and preparation method thereof
WO2018003805A1 (en) * 2016-06-29 2018-01-04 リケンテクノス株式会社 Thermoplastic resin composition for electric wire coating, and electric wire using same
CN110885483A (en) * 2019-12-17 2020-03-17 芜湖航天特种电缆厂股份有限公司 High-temperature-resistant cable insulating material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111954A (en) * 1976-03-16 1977-09-20 Showa Electric Wire & Cable Co Ltd Vinyl chloride resin compositions and preparation
JPS63105408A (en) * 1986-10-22 1988-05-10 大日本インキ化学工業株式会社 Resin composition for covering wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111954A (en) * 1976-03-16 1977-09-20 Showa Electric Wire & Cable Co Ltd Vinyl chloride resin compositions and preparation
JPS63105408A (en) * 1986-10-22 1988-05-10 大日本インキ化学工業株式会社 Resin composition for covering wire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005033197A1 (en) * 2003-09-30 2006-12-14 株式会社Adeka Vinyl chloride resin composition for vehicles
JP4679367B2 (en) * 2003-09-30 2011-04-27 株式会社Adeka Vinyl chloride resin composition for vehicles
CN103865193A (en) * 2014-02-18 2014-06-18 苏州贝斯特装饰新材料有限公司 Formula of dry cleaning new PVC (polyvinyl chloride) decorative material
WO2018003805A1 (en) * 2016-06-29 2018-01-04 リケンテクノス株式会社 Thermoplastic resin composition for electric wire coating, and electric wire using same
CN106935313A (en) * 2017-03-22 2017-07-07 合肥浦尔菲电线科技有限公司 A kind of New-style electrical wire insulation sheath and preparation method thereof
CN107033420A (en) * 2017-06-15 2017-08-11 合肥市闵葵电力工程有限公司 It is a kind of for electric wire insulation layer of communication equipment and preparation method thereof
CN110885483A (en) * 2019-12-17 2020-03-17 芜湖航天特种电缆厂股份有限公司 High-temperature-resistant cable insulating material and preparation method thereof

Also Published As

Publication number Publication date
JP2603551B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US2349413A (en) Electrical conductor carrying vinyl resin composition
JPH0459851A (en) Oil-resistant vinyl chloride resin composition and oil-resistant electric wire cable
JP2000109638A (en) Flame retardant resin composition having flexiblility and wire using same
JP2000276953A (en) Covered electric wire
JP5929036B2 (en) Vinyl chloride resin composition for covering thin-walled wear-resistant electric wires and thin-walled wear-resistant electric wires
US20200118704A1 (en) Insulated electric wire and wire harness
JP3460619B2 (en) Flame-retardant abrasion-resistant resin composition and automotive electric wire using the same
JPH0547232A (en) Heat-resisting, bending-resisting and wear-resisting insulated cable
KR102402192B1 (en) Halogen-free insulating composition with excellent oil resistance and flame resistance, and cable having a thin dielectric layer formed from the same
JP2001172460A (en) Vinyl chloride-based resin composition and its use
JPS62190241A (en) Heat-resistant, oil-resistant rubber composition
JPH11313434A (en) Rubber composition for power cable joint and connecting sleeve
JPH087652A (en) Resin composition for automobile electric wire and thin low voltage cable for automobile
JPH0547234A (en) Heat-resisting, bending-resisting, and wear-resisting insulated cable
CN110741450B (en) Insulated wire and wire harness
JP3321969B2 (en) Fluororesin-coated wires and Fluororesin-coated shielded wires
JP2902468B2 (en) Vibration damping material
KR20170103154A (en) Fiber reinforced resin composition having excellent internal tearing strength and low-temperature resistance
JPH10212383A (en) Rubber composition for power cable reinforcing insulator
JP2000164036A (en) Covered electric wire
JPH081530Y2 (en) Heat-resistant / flexible / wear-resistant coating robot cables
JPH10241462A (en) Thin insulated electric wire
KR20210120460A (en) Fluororesin insulating composition having execellent heat resistance and flexibility and a cable comprising the same
JPH0547237A (en) Heat-resisting, bending-resisting, and wear-resisting insulated cable
JPH0782448A (en) Cold-resistant resin composition and electric wires and cables

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees