JP2602411B2 - Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water - Google Patents

Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water

Info

Publication number
JP2602411B2
JP2602411B2 JP6121287A JP12128794A JP2602411B2 JP 2602411 B2 JP2602411 B2 JP 2602411B2 JP 6121287 A JP6121287 A JP 6121287A JP 12128794 A JP12128794 A JP 12128794A JP 2602411 B2 JP2602411 B2 JP 2602411B2
Authority
JP
Japan
Prior art keywords
hot
steel
stainless steel
corrosion resistance
hot workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6121287A
Other languages
Japanese (ja)
Other versions
JPH07331388A (en
Inventor
最仁 藤原
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP6121287A priority Critical patent/JP2602411B2/en
Publication of JPH07331388A publication Critical patent/JPH07331388A/en
Application granted granted Critical
Publication of JP2602411B2 publication Critical patent/JP2602411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、熱間加工性および温
水中での耐食性、特に塩化物含有温水環境下における応
力腐食割れ性に優れ、石油焚き温水器や電気温水器など
の材料として好適に用いられる高Si含有オーステナイト
系ステンレス鋼に関するものである。
The present invention is excellent in hot workability and corrosion resistance in hot water, especially in stress corrosion cracking in a chloride-containing hot water environment, and is suitable as a material for oil-fired water heaters and electric water heaters. The present invention relates to a high Si content austenitic stainless steel used for steel.

【0002】[0002]

【従来の技術】ステンレス鋼は、その優れた耐食性ゆえ
に、温水器や食品加工用機械、あるいは厨房用品等の中
性塩化物環境下用の材料としてで広く使用されており、
特に温水器については発熱量の増大やコンパクト化が進
んだこともあって、従来のホーロー製品からこのステン
レス鋼への転換が急速に進んできた。こうした用途に用
いられているステンレス鋼としては、応力腐食割れが生
じにくいSUS 444 などのフェライト系ステンレス鋼が一
般的であるが、複雑な加工を必要とする温水器用缶体な
どの場合、成形性や溶接性に難があるSUS 444 では加工
不可能な場合が生じる。また、高温温水中で無防食で使
用すると、すき間構造部分や気液界面で著しい腐食が生
じるため、Al防食等の対策を取らざるを得ず、このこと
が製品のコスト高につながるという問題点を抱えてい
た。
2. Description of the Related Art Due to its excellent corrosion resistance, stainless steel has been widely used as a material for neutral chloride environments such as water heaters, food processing machines, and kitchenware.
In particular, with regard to water heaters, the conversion from conventional enameled products to stainless steel has rapidly progressed, partly due to the increase in the amount of heat generated and the downsizing. As stainless steel used for such applications, ferritic stainless steel such as SUS444, which is unlikely to cause stress corrosion cracking, is generally used. SUS444, which has poor weldability, may not be able to be machined. In addition, when used in high-temperature hot water without corrosion protection, significant corrosion occurs at the gap structure and gas-liquid interface, so it is necessary to take measures such as Al corrosion protection, which leads to higher product costs. I was having.

【0003】こうしたフェライト系ステンレス鋼の欠点
を補うものとして、成形性や溶接性の良いオーステナイ
ト系ステンレス鋼、例えばSUS 304 などの汎用オーステ
ナイト系ステンレス鋼の利用が検討されたが、この鋼種
のものは成形加工部や溶接構造部において残留応力によ
る応力腐食割れが生じやすく、これは温水温度が高い場
合にとくに顕著にあらわれ、水漏れが早期に発生して使
用不能に到るという欠点が見られた。
In order to compensate for such disadvantages of ferritic stainless steel, the use of austenitic stainless steel having good formability and weldability, for example, a general-purpose austenitic stainless steel such as SUS 304 has been studied. Stress corrosion cracking due to residual stress is likely to occur in the formed part and welded structure part, especially when the hot water temperature is high, and there was a defect that water leakage occurred early and it became unusable .

【0004】このことから従来、上記各鋼種の優れた特
性はそのまま生かしながら、欠けている特性、即ち、耐
応力腐食割れ性、あるいは耐すき間腐食性、耐酸性を向
上させる努力が払われている。例えば、特開昭56−4755
1 号公報、特開昭57−158359号公報、特開昭60−194016
号公報などでは、上述した耐食性を改善するために、2
wt%程度のCuを添加した鋼種である。しかしながら、こ
のCu添加ステンレス鋼もまた、中性塩化物温水中、特に
80℃位での応力腐食割れに対しては不十分なものであっ
た。
For this reason, efforts have heretofore been made to improve the lacking properties, that is, stress corrosion cracking resistance, crevice corrosion resistance, and acid resistance, while keeping the excellent properties of the above steel types as they are. . For example, JP-A-56-4755
No. 1, JP-A-57-158359, JP-A-60-194016
In order to improve the corrosion resistance described above,
It is a steel type to which about wt% of Cu is added. However, this Cu-added stainless steel is also in neutral chloride hot water, especially
It was insufficient for stress corrosion cracking at around 80 ° C.

【0005】そこで、こうした問題点を解決するものと
して、特開昭59−185763号公報では、Cuを0.30〜2.00wt
%添加すると同時にSiを2wt%以上4wt%以下添加した
鋼種を提案しており、耐応力腐食割れ性の臨界温度は80
℃を超えるものである。また、特開平1−159351号公報
では、上記の特開昭59−185763号公報において積極的に
添加したNが、すき間腐食が生じた時の浸食深さを助長
させ、これが起点となって応力腐食割れが生じやすくな
ることを突き止めて、その弊害を除くために、このNを
0.05wt%以下にした成分系のステンレス鋼を提案してい
る。すなわち、この鋼によれば、耐応力腐食割れ性臨界
温度は100 ℃を超えるものになった。しかしながら、上
記特開平1−159351号公報に開示の上記鋼も、Cuは熱間
加工性を劣化させる元素であるから、これを2wt%まで
添加している成分系に、さらに熱間での延性を大幅に低
下させかつ熱間で脆弱なσ相を形成しやすいSiを添加し
ていることで、熱間圧延が極めて困難で、コストアップ
につながるという問題があった。
In order to solve such a problem, Japanese Patent Laid-Open Publication No. Sho 59-185763 discloses that Cu is contained in an amount of 0.30 to 2.00 wt.
%, And at the same time, a steel type in which Si is added in an amount of 2 wt% or more and 4 wt% or less. The critical temperature of stress corrosion cracking resistance is 80%.
It is higher than ° C. Also, in Japanese Patent Application Laid-Open No. 1-159351, N added positively in the above-mentioned Japanese Patent Application Laid-Open No. 59-185763 promotes the erosion depth when crevice corrosion occurs. In order to find out that corrosion cracking is likely to occur,
A stainless steel with a composition of 0.05 wt% or less is proposed. That is, according to this steel, the critical temperature for stress corrosion cracking resistance exceeded 100 ° C. However, since the steel disclosed in Japanese Patent Application Laid-Open No. 1-159351 is also an element that deteriorates hot workability, Cu is added to a component system containing up to 2% by weight, and further hot ductility is added. And the addition of Si, which easily forms a brittle σ phase during hot working, has a problem that hot rolling is extremely difficult and leads to an increase in cost.

【0006】これに対して従来、高Siを含有する成分系
の熱間加工性を改善するために、BやCa, REM を添加し
たステンレス鋼を提案しているが(特開昭52−4418号公
報参照)、この技術の場合、逆にこれらの成分の析出物
が起点となって耐食性、とくに耐孔食性を劣化させると
いう新たな問題を生み、改善が必要であった。また、同
じような意図のもとに、本発明者は先に、熱間加工性に
有害なSを低減する方法(特開平2−48614 号公報参
照)を提案したが、高Si含有鋼、特に2wt%以上のSiを
含有する鋼の場合、それだけでは熱間での十分な延性を
確保することは極めて困難であった。しかも、最近の温
水器はますます小型化と性能の向上が求められており、
それに伴い伝熱面の温度は100 ℃を大幅に超え、使用材
料の耐応力腐食割れ性臨界温度上昇に対する要求性能は
ますます強くなっているのが実情である。
On the other hand, in order to improve the hot workability of a component system containing high Si, a stainless steel to which B, Ca, and REM are added has been proposed (JP-A-52-4418). In the case of this technique, on the other hand, a new problem arises in that corrosion resistance, particularly pitting corrosion resistance, is degraded starting from the precipitates of these components, and improvements have been required. Under the same intention, the present inventor has previously proposed a method of reducing S which is harmful to hot workability (see Japanese Patent Application Laid-Open No. 2-48614). In particular, in the case of steel containing 2 wt% or more of Si, it was extremely difficult to secure sufficient hot ductility by itself. Moreover, recent water heaters are increasingly required to be smaller and have higher performance.
As a result, the temperature of the heat transfer surface greatly exceeds 100 ° C., and the required performance for the critical temperature rise of stress corrosion cracking resistance of the materials used is actually becoming stronger.

【0007】本発明の目的は、かかる従来技術が抱える
問題点を解決できる熱間加工性および温水中での耐食性
に優れるオーステナイト系ステンレス鋼を提案するとこ
ろにある。本発明の他の目的は、塩化物含有温水環境下
における応力腐食割れ性に優れるオーステナイト系ステ
ンレス鋼の量産化を可能にして安価に製造することにあ
る。
An object of the present invention is to propose an austenitic stainless steel which is excellent in hot workability and corrosion resistance in hot water and can solve the problems of the prior art. Another object of the present invention is to enable mass production of an austenitic stainless steel excellent in stress corrosion cracking resistance in a chloride-containing hot water environment and to manufacture it inexpensively.

【0008】[0008]

【課題を解決するための手段】本発明者らの研究による
と、熱間加工性の改善にはSを低減することが有効なこ
とはもちろんであるが、高Si含有鋼、特に2wt%以上の
Siを含有する鋼の場合、凝固時のδ−フェライト量を適
正範囲にコントロールし、かつTiを0.05〜0.20wt%の範
囲内でしかも 2.0≦Si≦7(Ti+0.4)を満足するように
添加することで、熱間加工性が著しく改善できると同時
に、耐食性、特に耐応力腐食割れ性が向上し、温水中で
の耐応力腐食割れ性臨界温度が上昇することを見出し
た。
According to the study of the present inventors, it is of course effective to reduce S in order to improve hot workability, but it is necessary to reduce the content of high Si steel, especially 2 wt% or more. of
In the case of steel containing Si, the amount of δ-ferrite at the time of solidification is controlled to an appropriate range, and the Ti content is in the range of 0.05 to 0.20 wt% and 2.0 ≦ Si ≦ 7 (Ti + 0.4). It has been found that by adding the same, hot workability can be remarkably improved, and at the same time, corrosion resistance, particularly stress corrosion cracking resistance, is improved, and the critical temperature of stress corrosion cracking resistance in warm water is increased.

【0009】このような知見に基づいて構成した本発明
は、C:0.02〜0.08wt%、 Si:2.0 〜4.0 wt%、Mn:
1.0 wt%以下、 Cr:15〜25wt%、Ni:8 〜20wt%、
Mo:0.1 〜2.0 wt%、Ti:0.05〜0.20wt%、 C
u:1.5 〜4.0 wt%、N:0.05wt%以下、 P:0.030
wt%以下、S:0.003 wt%以下を含み、かつ、SiとTi
とは下記式; 2.0 ≦ Si ≦7(Ti+0.4 ) を満足して含有し、残部がFeと不可避的不純物からな
り、かつ、下記式に示す凝固時のδ−フェライト量; δ=1.3 ( 1.5Si(wt%) + Cr(wt%)+ Mo(wt%)+
0.5Ti(wt%)) −(30C(wt%)+30N(wt%)+0.5
Mn(wt%)+ Ni(wt%)+ Cu(wt%)) −8.5 が 1.0〜7.0 の範囲内である、熱間加工性および温水中
での耐食性に優れたオーステナイト系ステンレス鋼であ
る。
The present invention constructed on the basis of such findings is as follows: C: 0.02 to 0.08 wt%, Si: 2.0 to 4.0 wt%, Mn:
1.0 wt% or less, Cr: 15 to 25 wt%, Ni: 8 to 20 wt%,
Mo: 0.1 to 2.0 wt%, Ti: 0.05 to 0.20 wt%, C
u: 1.5 to 4.0 wt%, N: 0.05 wt% or less, P: 0.030
wt% or less, S: 0.003 wt% or less, and Si and Ti
Is the following formula; 2.0 ≦ Si ≦ 7 (Ti + 0.4) is satisfied, the balance is composed of Fe and inevitable impurities, and the amount of δ-ferrite at the time of solidification shown by the following formula: δ = 1.3 ( 1.5Si (wt%) + Cr (wt%) + Mo (wt%) +
0.5Ti (wt%))-(30C (wt%) + 30N (wt%) + 0.5
This is an austenitic stainless steel excellent in hot workability and corrosion resistance in hot water, in which Mn (wt%) + Ni (wt%) + Cu (wt%)) − 8.5 is in the range of 1.0 to 7.0.

【0010】[0010]

【作用】以下に、本発明オーステナイト系ステンレス鋼
を開発するに至った経緯について述べる。本発明者はま
ず、先に提案した低S鋼(特開平2−48614 号公報参
照)をベースにして、この鋼の耐食性をより一層改善す
ることを目指して研究をすすめた。そうした中で、多量
のSiを添加し、それによって耐応力腐食割れ性の他、耐
孔食性を改善する方法を考えた。しかしながら、Siを多
量に添加すると熱間加工性が著しく低下する。即ち、13
00℃超え、または1100℃未満の熱間延性が、Si添加量の
増加とともに急激に低下することから、熱間圧延可能な
温度域が実質的に狭くなり、そのため量産化が阻害され
ることがわかった。この点、上記先行提案技術では、S
およびOをそれぞれ0.0010wt%以下、0.0060wt%以下に
低減し、かつBを所定量添加することがこの熱間加工性
を改善させている。しかし、高Si含有オーステナイト系
ステンレス含有鋼では、それだけでは必ずしも十分では
なく、例えば、1300℃超えあるいは1100℃未満の熱間延
性に対しては殆ど効果がないことが判った。これは、高
Si含有により鋼中Oの影響を敏感に受ける状態となって
熱間強度が高くなるからである。このことはまた、Bを
添加したとしても、単に低融点化合物を生成するだけ
で、結局のところOの固定が不十分であるためと考えて
いる。
The following is a description of how the austenitic stainless steel of the present invention was developed. The inventor first studied on the basis of the previously proposed low S steel (see JP-A-2-48614) with the aim of further improving the corrosion resistance of this steel. Under such circumstances, a method was considered in which a large amount of Si was added, thereby improving pitting corrosion resistance as well as stress corrosion cracking resistance. However, when a large amount of Si is added, hot workability is significantly reduced. That is, 13
Since the hot ductility of more than 00 ° C or less than 1100 ° C sharply decreases with an increase in the amount of Si added, the temperature range in which hot rolling can be performed is substantially narrowed, and thus mass production is hindered. all right. In this respect, in the above-mentioned prior art, S
And O are reduced to 0.0010 wt% or less and 0.0060 wt% or less, respectively, and addition of a predetermined amount of B improves the hot workability. However, it has been found that a high Si-containing austenitic stainless steel-containing steel is not necessarily sufficient by itself, and has little effect on, for example, hot ductility exceeding 1300 ° C or less than 1100 ° C. This is high
This is because the presence of Si makes the steel sensitive to the influence of O in the steel, and the hot strength increases. This is also thought to be due to the fact that even if B is added, only a low-melting-point compound is generated, and ultimately, the fixation of O is insufficient.

【0011】そこで、本発明者は、そのOに対してより
親和力の強いTiに着目した。即ち、極低Sにした高Si含
有鋼の熱間加工性に対するTiの影響についてさらに研究
した。その結果、Ti含有量を0.05〜0.20wt%の範囲内と
し、かSi含有量とこのTi含有量との相関関係を求めて、
その関係を適正に維持することによって熱間加工性が向
上することが判った。特に、1パスで90%以上の圧下率
があり、スラブエッジ部分の温度低下を起こしやすいプ
ラネタリーミルでの熱間圧延においては、高温引張試験
での絞り値が80%を上回る温度範囲が 400℃以上であれ
ば耳割れもなく十分な歩留りも確保でき、工業的に量産
が可能である。
Therefore, the present inventor focused on Ti, which has a higher affinity for O. That is, the influence of Ti on the hot workability of the high Si content steel with extremely low S was further studied. As a result, the Ti content was set within the range of 0.05 to 0.20 wt%, and the correlation between the Si content and this Ti content was determined.
It has been found that maintaining the relationship properly improves hot workability. In particular, in hot rolling with a planetary mill, which has a rolling reduction of 90% or more in one pass and the temperature of the slab edge is liable to decrease, the temperature range in which the drawing value in a high-temperature tensile test exceeds 80% is 400%. When the temperature is higher than or equal to ° C., sufficient yield can be ensured without ear cracks, and industrial mass production is possible.

【0012】そこで、上述した知見を前提としてさら
に、TiとSiの含有量の関係を詳細に検討した結果、Si%
≦7(Ti%+0.4)なる関係式を満たせば、熱間延性が量
産化が可能な領域となることを知り、本発明を完成し
た。また、同時に、Tiの適量添加により、耐応力腐食割
れ性臨界温度も上昇することもわかった。図1は、 3.5
wt%Siを含有する鋼の熱間加工性に及ぼすTi、B添加の
影響を示すが、この種の成分系の鋼において、Tiの適量
添加により優れた熱間加工性を示すことがわかる。ま
た、図2には、SiとTiの熱間加工性に及ぼす影響を示す
が、Tiが0.05〜0.2wt%の範囲ではSi%≦7(Ti%+0.
4)の領域において、絞り値80%以上を示し、量産化が可
能でかつ十分な歩留りを確保できる領域ということがで
き、良好な熱間延性を有している。
Therefore, based on the above knowledge, the relationship between the contents of Ti and Si was examined in detail.
It was found that if the relational expression of ≦ 7 (Ti% + 0.4) was satisfied, hot ductility would be a region where mass production was possible, and completed the present invention. At the same time, it was also found that the critical temperature of stress corrosion cracking resistance was increased by adding an appropriate amount of Ti. Figure 1 shows 3.5
The effect of the addition of Ti and B on the hot workability of steel containing wt% Si is shown. It can be seen that excellent hot workability can be obtained by adding an appropriate amount of Ti to this type of steel. FIG. 2 shows the effect of Si and Ti on the hot workability. When Ti is in the range of 0.05 to 0.2 wt%, Si% ≦ 7 (Ti% + 0.1%).
In the area 4), the aperture value is 80% or more, which means that the area can be mass-produced and a sufficient yield can be secured, and has a good hot ductility.

【0013】以上説明したところから明らかなように、
本発明オーステナイト系ステンレス鋼は、低S、低O化
を前提としてTiの所定量を添加することにより、Bを添
加しなくても優れた耐食性を示し、かつ量産化の可能な
熱間加工特性を有するものである。
As is clear from the above description,
The austenitic stainless steel of the present invention exhibits excellent corrosion resistance without adding B by adding a predetermined amount of Ti on the premise of lowering S and lowering O, and has a hot working property that enables mass production. It has.

【0014】次に、本発明鋼における各成分元素の組成
限定の理由について説明する。 C:0.02〜0.08wt% Cは、オーステナイトを安定させる元素であり、また適
量添加は耐応力腐食割れ性の向上に寄与するが、過剰添
加は溶接時の粒界腐食感受性を増大させ、溶接熱影響部
の耐食性を劣化させるので、0.02〜0.08wt%とする。な
お、好ましくは0.03〜0.07wt%である。
Next, the reason for limiting the composition of each component element in the steel of the present invention will be described. C: 0.02 to 0.08 wt% C is an element stabilizing austenite, and addition of an appropriate amount contributes to improvement of stress corrosion cracking resistance, but excessive addition increases the intergranular corrosion susceptibility during welding and increases the welding heat. Since the corrosion resistance of the affected area is deteriorated, the content is set to 0.02 to 0.08 wt%. Incidentally, the content is preferably 0.03 to 0.07 wt%.

【0015】Si:2.0 〜4.0 wt% Siは、本発明において重要な元素であり、耐応力腐食割
れ性を改善させる効果が極めて強い。その効果を得るに
は 2.0wt%未満では十分ではなく、2.0 wt%以上の添加
が必要である。ところが、4.0 wt%を超えて添加すると
熱間延性が大幅に劣化するので、その範囲を 2.0〜4.0
wt%とする。なお、前述のようにTiの適量添加により高
Siを含有しても良好な熱間延性が得られるので、耐応力
腐食割れ性の観点から好ましい範囲としては 2.5〜4.0
wt%である。
Si: 2.0 to 4.0 wt% Si is an important element in the present invention, and has an extremely strong effect of improving stress corrosion cracking resistance. Less than 2.0 wt% is not enough to achieve the effect, and it is necessary to add 2.0 wt% or more. However, if added in excess of 4.0 wt%, the hot ductility is significantly degraded.
wt%. As described above, the addition of an appropriate amount of Ti
Since good hot ductility is obtained even if Si is contained, a preferable range from the viewpoint of stress corrosion cracking resistance is 2.5 to 4.0
wt%.

【0016】Mn:1.0 wt%以下 Mnは、製鋼時の脱炭剤として使用されるが、不純物とし
て多量に含有していると鋼中のSと化合物を形成し孔食
の起点となって耐食性の劣化を招くので、1.0wt%以下
とする。
Mn: 1.0 wt% or less Mn is used as a decarburizing agent in steel making. If it is contained in a large amount as an impurity, it forms a compound with S in the steel and becomes a starting point of pitting corrosion, resulting in corrosion resistance. Therefore, the content is set to 1.0 wt% or less.

【0017】Cr:15〜25wt% Crは、耐食性確保の点で必須の元素であり、15wt%以上
の添加が必要である。このCrは添加量が多いほど良い
が、25wt%までで十分な耐食性が得られるので、Crの範
囲を15〜25wt%とする。
Cr: 15 to 25 wt% Cr is an essential element from the viewpoint of ensuring corrosion resistance, and it is necessary to add 15 wt% or more. The higher the amount of Cr added, the better, but up to 25 wt% provides sufficient corrosion resistance, so the range of Cr is 15 to 25 wt%.

【0018】Ni:8〜20wt% Niは、オーステナイト生成元素であり、得られる組織が
オーステナイト単相組織とするためには少なくとも8wt
%以上の添加が必要である。しかしながら、Niは非常に
高価な元素であり、また、20wt%も添加すれば十分にオ
ーステナイト単相組織が得られるので、Niの範囲を8〜
20wt%とする。
Ni: 8 to 20% by weight Ni is an austenite-forming element, and at least 8% by weight is required to obtain an austenite single-phase structure.
% Or more is required. However, Ni is a very expensive element, and a sufficient austenitic single-phase structure can be obtained by adding as much as 20 wt%.
20 wt%.

【0019】Mo:0.1 〜2.0 wt% Moは、耐孔食性および耐すき間腐食性に有効な元素であ
るが、耐応力腐食割れ性には有害な元素である。本発明
鋼では、Siの多量添加やTiの適量添加により耐応力腐食
割れ性に対するMoの有害性は抑制されるが、Moは高価な
元素であり、また多量添加によってσ相を生成しやすく
なるので、Moの範囲を 0.1〜2.0 wt%とする。
Mo: 0.1 to 2.0 wt% Mo is an element effective for pitting corrosion resistance and crevice corrosion resistance, but is harmful to stress corrosion cracking resistance. In the steel of the present invention, the harmfulness of Mo to stress corrosion cracking resistance is suppressed by adding a large amount of Si or an appropriate amount of Ti, but Mo is an expensive element, and the addition of a large amount makes it easy to generate a σ phase Therefore, the range of Mo is set to 0.1 to 2.0 wt%.

【0020】Ti:0.05〜0.20wt% Tiは、本発明において極めて重要な役割を担う元素であ
り、熱間加工性および耐応力腐食割れ性を改善させる効
果が大きい。その効果は、0.05wt%未満の添加では十分
ではなく、また、0.20wt%を超える添加量だと熱間での
延性が低下するので、Tiの範囲を0.05〜0.20wt%とす
る。なお、このTiは、後述するように、Siとの関連にお
いてさらに制限される。
Ti: 0.05 to 0.20 wt% Ti is an element that plays a very important role in the present invention, and has a great effect of improving hot workability and stress corrosion cracking resistance. The effect is not sufficient if the addition is less than 0.05% by weight, and if the addition amount exceeds 0.20% by weight, the ductility during hot work is reduced. Therefore, the range of Ti is set to 0.05 to 0.20% by weight. Note that Ti is further restricted in relation to Si, as described later.

【0021】Cu:1.5 〜4.0 wt% Cuは、耐応力腐食割れ性および耐酸性、耐すき間腐食性
に極めて有効な元素であり、本発明において極めて重要
な役割を担う成分である。所定の耐食性を得るには1.5
wt%以上の添加が必要であるが、4%を超えると熱間加
工性が急激に劣化するので、Cuの範囲は1.5 〜4.0 wt%
に制限する。好ましくは 1.5〜3.0 wt%とする。
Cu: 1.5 to 4.0 wt% Cu is an element that is extremely effective for stress corrosion cracking resistance, acid resistance, and crevice corrosion resistance, and plays an extremely important role in the present invention. 1.5 to get the required corrosion resistance
It is necessary to add more than wt%, but if it exceeds 4%, hot workability deteriorates rapidly, so the range of Cu is 1.5-4.0 wt%.
Restrict to Preferably, it is 1.5 to 3.0 wt%.

【0022】N:0.05wt%以下 Nは、耐孔食性および耐すき間腐食性を改善させる元素
であるが、一方で耐応力腐食割れ性や熱間加工性に対し
ては有害である。また、Nが多量添加されていると、本
発明鋼において必須となるTiと結合して粗大な析出物を
形成し、鋼板製造時にスリーバー状の疵が発生し易くな
るので、できるだけ低減させることが望ましい。従っ
て、Nの上限は0.05wt%以下とする。好ましくは0.03wt
%以下とする。
N: 0.05 wt% or less N is an element that improves pitting corrosion resistance and crevice corrosion resistance, but is harmful to stress corrosion cracking resistance and hot workability. Further, if a large amount of N is added, it is combined with Ti which is essential in the steel of the present invention to form coarse precipitates, and a sliver-like flaw is easily generated during steel sheet production. desirable. Therefore, the upper limit of N is set to 0.05 wt% or less. Preferably 0.03wt
% Or less.

【0023】P:0.030 wt%以下 Pは、耐応力腐食割れ性および熱間での延性を劣化させ
るので、0.030 wt%を上限とする。
P: 0.030 wt% or less P deteriorates stress corrosion cracking resistance and hot ductility, so the upper limit is 0.030 wt%.

【0024】S:0.003 wt%以下 Sは、熱間加工性に極めて有害な元素であり、本発明に
おいては特に熱間加工性の改善を主眼においているわけ
であるから、S含有量は極力低減させる必要がある。し
かしながら、工業的に限界があるので、その上限を0.00
3 wt%以下とする。
S: 0.003 wt% or less S is an element extremely harmful to hot workability. In the present invention, since the main purpose is to improve hot workability, S content is reduced as much as possible. Need to be done. However, there is an industrial limit, so the upper limit is 0.00
It should be 3 wt% or less.

【0025】なお、上記Siについては、Tiとの関係にお
いて、下記式を満足するように添加しなければならな
い。 2.0 ≦ Si ≦7(Ti+0.4 ) 耐応力腐食割れ性を改善させるためには、上記式のよう
にSiを2.0 wt%以上添加する必要があるが、Siを多量添
加すると熱間加工性が劣化する。これを補うためには、
Tiの適量添加が必須となるが、熱間加工性が量産化を可
能にならしめる程度にするためには、δ−フェライト量
を示す下記式を満足するように成分調整する必要があ
る。 δ=1.3 ( 1.5Si(wt%) + Cr(wt%)+ Mo(wt%)+
0.5Ti(wt%))−(30C(wt%)+30N(wt%)+0.5M
n(wt%)+ Ni(wt%)+ Cu(wt%))−8.5
The above-mentioned Si must be added so as to satisfy the following formula in relation to Ti. 2.0 ≦ Si ≦ 7 (Ti + 0.4) In order to improve the stress corrosion cracking resistance, it is necessary to add Si in an amount of 2.0 wt% or more as in the above formula. to degrade. To compensate for this,
Although it is necessary to add an appropriate amount of Ti, it is necessary to adjust the components so as to satisfy the following expression indicating the amount of δ-ferrite, in order to make hot workability possible for mass production. δ = 1.3 (1.5Si (wt%) + Cr (wt%) + Mo (wt%) +
0.5Ti (wt%)-(30C (wt%) + 30N (wt%) + 0.5M
n (wt%) + Ni (wt%) + Cu (wt%)-8.5

【0026】上記式にて表わすことのできる凝固時のδ
−フェライト量は、熱間加工性を左右する指標であり、
1.0 未満あるいは 7.0を超えると熱間加工性が著しく低
下するので、上記式で表されるδ−フェライト量の範囲
は 1.0〜7.0 とする。
Δ at the time of solidification which can be expressed by the above equation
-Ferrite content is an index that affects hot workability,
If it is less than 1.0 or more than 7.0, the hot workability is remarkably reduced, so the range of the amount of δ-ferrite represented by the above formula is from 1.0 to 7.0.

【0027】[0027]

【実施例】表1に示す成分組成の鋼を実験室規模で溶製
して10kg鋼塊とし、この鋼塊から試験用試料を調整し
た。即ち、その一部は鋳込み状態で超高温引張試験を行
って絞り値から熱間加工性を評価する試料とし、その他
のものは、確性試験用として熱間鍛造、冷間圧延で 1.0
mmt×100 mmw×lの大きさとし、1100℃×10分水冷の
熱処理を施して供試材とした。これらの試験片は、いず
れも#400 湿式研磨仕上としたものを用いた。表2に、
熱間加工性および確性試験結果を示す。この表2に示す
結果からわかるように、本発明鋼1〜6は、高Si含有鋼
にも拘わらず最終熱間圧延温度に近い900 ℃での絞り値
が80%を上回り、さらに高温で絞り値が急激に低下する
温度(Ni1温度)が比較鋼に対して上昇し、絞り値が80
%を上回る温度範囲が400 ℃以上になり、特に、プラネ
タリーミルでの量産化が可能であることが明白である。
さらに本発明鋼種は、いずれも温水中での耐応力腐食割
れ性臨界温度が100 ℃を上回り、高SiおよびTi複合添加
による比較鋼と比べて耐応力腐食割れ性が向上している
ことが判る。
EXAMPLES Steel having the composition shown in Table 1 was melted on a laboratory scale to form a 10 kg steel ingot, and test samples were prepared from the steel ingot. That is, a part of the sample was subjected to an ultra-high temperature tensile test in a cast state to evaluate the hot workability from the drawn value, and the other was subjected to hot forging and cold rolling for accuracy test.
It was made to have a size of mmt × 100 mmw × l and subjected to a heat treatment of water cooling at 1100 ° C. × 10 minutes to obtain a test material. All of these test pieces had a # 400 wet polishing finish. In Table 2,
The results of hot workability and accuracy test are shown. As can be seen from the results shown in Table 2, the steels 1 to 6 of the present invention have a reduction of more than 80% at 900 ° C., which is close to the final hot rolling temperature, even though the steel has a high Si content. The temperature at which the value sharply drops (Ni1 temperature) increases with respect to the comparative steel, and the aperture value decreases to 80.
% Is over 400 ° C., and it is clear that mass production is possible, especially with planetary mills.
Further, it is understood that the steels of the present invention all have a critical temperature of stress corrosion cracking resistance in hot water exceeding 100 ° C, and have improved stress corrosion cracking resistance as compared with the comparative steel with the addition of high Si and Ti composites. .

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】以上説明したように本発明は、温水中で
の耐応力腐食割れ性を改善するためにSiを多量に添加し
たオーステナイト系ステンレス鋼について、さらにTiを
Siとの関連において適量添加することによって、その耐
食性を劣化させることなく量産化を可能にするための熱
間加工性をも有するものである。しかも、耐食性に優れ
た高Si含有オーステナイト系ステンレス鋼を比較的安価
に提供できる。特に、本発明にかかるステンレス鋼は、
温水器やボイラーなどの高温中性塩化物水環境下で長期
にわたり安定して使用できることが判る。
As described above, the present invention relates to an austenitic stainless steel to which a large amount of Si has been added in order to improve the stress corrosion cracking resistance in hot water, and to further increase the Ti content.
By adding an appropriate amount in connection with Si, it also has hot workability for enabling mass production without deteriorating its corrosion resistance. Moreover, a high Si-containing austenitic stainless steel excellent in corrosion resistance can be provided at relatively low cost. In particular, stainless steel according to the present invention,
It can be seen that it can be used stably for a long time in a high temperature neutral chloride water environment such as a water heater or a boiler.

【図面の簡単な説明】[Brief description of the drawings]

【図1】3.5 wt%のSiを含有する鋼についての熱間加工
性に及ぼすB、Ti添加の影響を示すグラフ。
FIG. 1 is a graph showing the effect of the addition of B and Ti on the hot workability of steel containing 3.5 wt% of Si.

【図2】高Si含有鋼の熱間加工性に及ぼすSi、Tiの複合
添加の影響を示すグラフ。
FIG. 2 is a graph showing the effect of a composite addition of Si and Ti on the hot workability of a high Si content steel.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.02〜0.08wt%、 Si:2.0 〜4.0 wt
%、 Mn:1.0 wt%以下、 Cr:15〜25wt%、 Ni:8 〜20wt%、 Mo:0.1 〜2.0 wt%、 Ti:0.05〜0.20wt%、 Cu:1.5 〜4.0 wt%、 N:0.05wt%以下、 P:0.030 wt%以下、 S:0.003 wt%以下を含み、 かつ、SiとTiとは下記式; 2.0 ≦ Si ≦7(Ti+0.4 ) を満足して含有し、残部がFeと不可避的不純物からな
り、 かつ、下記式に示す凝固時のδ−フェライト量; δ=1.3 ( 1.5Si(wt%) + Cr(wt%)+ Mo(wt%)+
0.5Ti(wt%)) −(30C(wt%)+30N(wt%)+0.5
Mn(wt%)+ Ni(wt%)+ Cu(wt%)) −8.5 が 1.0〜7.0 の範囲内である、熱間加工性および温水中
での耐食性に優れたオーステナイト系ステンレス鋼。
1. C: 0.02 to 0.08 wt%, Si: 2.0 to 4.0 wt%
%, Mn: 1.0 wt% or less, Cr: 15 to 25 wt%, Ni: 8 to 20 wt%, Mo: 0.1 to 2.0 wt%, Ti: 0.05 to 0.20 wt%, Cu: 1.5 to 4.0 wt%, N: 0.05 wt% or less, P: 0.030 wt% or less, S: 0.003 wt% or less, and Si and Ti satisfies the following formula: 2.0 ≦ Si ≦ 7 (Ti + 0.4), with the balance being Fe And unavoidable impurities, and the amount of δ-ferrite during solidification as shown in the following formula: δ = 1.3 (1.5Si (wt%) + Cr (wt%) + Mo (wt%) +
0.5Ti (wt%))-(30C (wt%) + 30N (wt%) + 0.5
Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water, with Mn (wt%) + Ni (wt%) + Cu (wt%) − 8.5 in the range of 1.0 to 7.0.
JP6121287A 1994-06-02 1994-06-02 Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water Expired - Lifetime JP2602411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6121287A JP2602411B2 (en) 1994-06-02 1994-06-02 Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6121287A JP2602411B2 (en) 1994-06-02 1994-06-02 Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water

Publications (2)

Publication Number Publication Date
JPH07331388A JPH07331388A (en) 1995-12-19
JP2602411B2 true JP2602411B2 (en) 1997-04-23

Family

ID=14807528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6121287A Expired - Lifetime JP2602411B2 (en) 1994-06-02 1994-06-02 Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water

Country Status (1)

Country Link
JP (1) JP2602411B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756545B2 (en) * 1987-09-02 1998-05-25 日新製鋼株式会社 Austenitic stainless steel with excellent corrosion resistance in hot water
JP2530231B2 (en) * 1989-12-20 1996-09-04 日新製鋼株式会社 Heat-resistant austenitic stainless steel

Also Published As

Publication number Publication date
JPH07331388A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
KR101632516B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
CA2875644C (en) Duplex stainless steel
JP4173609B2 (en) Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability
JP2602411B2 (en) Austenitic stainless steel with excellent hot workability and corrosion resistance in hot water
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
KR101673218B1 (en) Ferritic stainless steel
JP3779043B2 (en) Duplex stainless steel
JPH07157852A (en) Ferritic stainless steel excellent in high temp erature salt damage property
JP3210255B2 (en) Ferritic stainless steel with excellent corrosion resistance and manufacturability
JP2716937B2 (en) High corrosion resistant austenitic stainless steel with excellent hot workability
JP2004143576A (en) Low nickel austenitic stainless steel
JP3890223B2 (en) Austenitic stainless steel
JPH0717988B2 (en) Ferritic stainless steel with excellent toughness and corrosion resistance
JPS6059981B2 (en) High-strength stainless steel with excellent intergranular corrosion cracking properties and workability
JPS5928622B2 (en) Austenitic stainless steel for high temperature and low chlorine concentration environments
JPH0578791A (en) High toughness ferritic stainless steel for use at high temperature
JP2953303B2 (en) Martensite stainless steel
JPS61174350A (en) Heat-resistant high-chromiun alloy
JPH0649600A (en) Austenitic stainless steel excellent in acid corrosion resistance
JP2759222B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment
JP2759678B2 (en) Stainless steel with excellent hot workability
JPS5945751B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance
JP3525014B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance
JP3213234B2 (en) High ductility chromium steel sheet
JP4565758B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent formability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term