JP2602360B2 - Field effect type semiconductor device - Google Patents

Field effect type semiconductor device

Info

Publication number
JP2602360B2
JP2602360B2 JP2311104A JP31110490A JP2602360B2 JP 2602360 B2 JP2602360 B2 JP 2602360B2 JP 2311104 A JP2311104 A JP 2311104A JP 31110490 A JP31110490 A JP 31110490A JP 2602360 B2 JP2602360 B2 JP 2602360B2
Authority
JP
Japan
Prior art keywords
drain
source
wiring
semiconductor device
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2311104A
Other languages
Japanese (ja)
Other versions
JPH04181778A (en
Inventor
進 小崎
勝哉 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2311104A priority Critical patent/JP2602360B2/en
Publication of JPH04181778A publication Critical patent/JPH04181778A/en
Application granted granted Critical
Publication of JP2602360B2 publication Critical patent/JP2602360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Description

【発明の詳細な説明】 〔概要〕 チップ上で素子面積を大きくせずに形成できる複数の
電界効果型半導体装置に関し、 電界効果型半導体素子のゲート上にドレイン・ソース
の配線を通すことなく、且つ集積密度を低下させずに大
電流を流すことのできる電界効果型半導体装置を提供す
ることを目的とし、 複数のドレイン配線と複数のソース配線とが列状に交
互に配置されてなる電界効果型半導体装置において、そ
れぞれのドレイン配線及びソース配線が同一の台形形状
を有し、隣合うドレイン配線とソース配線との斜辺同士
が平行になるように配置され、台形形状のドレイン配線
の底辺側またはソース配線の底辺側のいずれか一方に存
する共通部分からドレイン配線の斜辺とソース配線の斜
辺との間へ櫛の歯状に延在するゲート電極を有し、ドレ
イン配線とソース配線の各斜辺、及びゲート電極の側辺
が、ステップ状に変化することによって斜め方向へ延在
するように配置されることで構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A plurality of field effect semiconductor devices which can be formed on a chip without increasing the element area, without passing drain / source wiring over the gate of the field effect semiconductor element, Another object of the present invention is to provide a field-effect semiconductor device capable of flowing a large current without lowering the integration density. The field-effect semiconductor device includes a plurality of drain wirings and a plurality of source wirings arranged alternately in a column. In the type semiconductor device, each drain wiring and source wiring have the same trapezoidal shape, and are disposed such that the oblique sides of adjacent drain wirings and source wirings are parallel to each other, and the bottom side of the trapezoidal drain wiring or A gate electrode extending in a comb-like shape from a common portion present on one of the bottom sides of the source wiring to a portion between the hypotenuse of the drain wiring and the hypotenuse of the source wiring, Each of the oblique sides of the drain wiring and the source wiring and the side of the gate electrode are arranged so as to extend in an oblique direction by changing stepwise.

〔産業上の利用分野〕[Industrial applications]

本発明はチップ上で素子面積を大きくせずに形成でき
る複数の電界効果型半導体装置、例えばMIS(Metal Ins
ulator Semiconductor)に関する。
The present invention provides a plurality of field-effect semiconductor devices that can be formed on a chip without increasing the element area, for example, MIS (Metal Ins.
ulator Semiconductor).

近年、駆動電流を低減させた半導体出力素子として電
界効果型トランジスタが用いられている。大電流を流す
ためオン抵抗を低くし、配線が太くなると、チップ上で
素子面積が大きくなり、動作スピードがどうしても遅く
なる。それらを解決した半導体装置を開発することが要
望された。
In recent years, field-effect transistors have been used as semiconductor output elements with reduced drive current. If the on-resistance is reduced to allow a large current to flow, and the wiring becomes thicker, the element area on the chip becomes larger, and the operation speed is inevitably reduced. It has been desired to develop a semiconductor device that has solved these problems.

〔従来の技術〕[Conventional technology]

MIS型トランジスタのうち代表的な構造のMOS型トラン
ジスタについて、以下に説明を行う。複数のMOS型トラ
ンジスタを並列接続し増幅器などの出力段で使用する半
導体装置は、第3図乃至第5図に示す構成となってい
た。第3図はトランジスタの絶縁膜を一部取り除いて示
す上面図であって、1はゲート電極、2はドレイン電極
と直接接続したアルミニウムの配線、3はソース電極と
直接接続したアルミニウムの配線を示す。第4図は第3
図中のIV−IV線により切断し矢印の方向に見た一部断面
図を示す。符号1〜3は第3図と同一である。4は絶縁
膜、20はドレイン領域、30はソース領域を示す。第3図
・第4図に示すようにドレイン・ソースの配線はそれぞ
れ各電極と接続され、且つそれぞれは太い目のアルミニ
ウムの配線である。各配線はゲートを挟んで互い違いに
入り込み、且つ太さが隣接同種の電極の接続位置から先
端へ行くに従って細く形成されている。これはソース・
ドレイン電極の全長にわたって均一な電流密度を実現す
るためである。第3図において電流は図の上方から下方
に流れ、ゲートは櫛の歯状に同じ幅で並んでいる。した
がってゲート・ドレイン・ソースで形成される各トラン
ジスタ素子が並列接続されていて、全体として大電流を
取り扱えるようになっている。
Hereinafter, a MOS transistor having a typical structure among MIS transistors will be described. A semiconductor device in which a plurality of MOS transistors are connected in parallel and used in an output stage such as an amplifier has the configuration shown in FIGS. FIG. 3 is a top view showing the transistor with part of the insulating film removed, wherein 1 is a gate electrode, 2 is an aluminum wiring directly connected to a drain electrode, and 3 is an aluminum wiring directly connected to a source electrode. . FIG. 4 shows the third
FIG. 4 is a partial cross-sectional view taken along the line IV-IV in the figure and viewed in the direction of the arrow. Reference numerals 1 to 3 are the same as those in FIG. 4 denotes an insulating film, 20 denotes a drain region, and 30 denotes a source region. As shown in FIGS. 3 and 4, the drain and source wirings are connected to the respective electrodes, and each is a thick aluminum wiring. Each of the wirings enters alternately with the gate interposed therebetween, and has a smaller thickness from the connection position of the same type of adjacent electrode to the tip. This is the source
This is for realizing a uniform current density over the entire length of the drain electrode. In FIG. 3, the current flows from the top to the bottom of the figure, and the gates are arranged in the same width in the form of teeth of a comb. Therefore, the transistor elements formed by the gate, the drain and the source are connected in parallel, so that a large current can be handled as a whole.

第3図ではゲート電極1の上を覆う形でドレインの配
線2が通っているため寄生容量が増大する。そのため第
5図に示す改良型が研究された。第5図ではゲート電極
1上でドレイン及びソースの配線2と3が交差しないよ
うに、ゲートを構成する櫛の歯の間隔を広げている。
In FIG. 3, the parasitic capacitance increases because the drain wiring 2 passes over the gate electrode 1. Therefore, an improved type shown in FIG. 5 was studied. In FIG. 5, the interval between the comb teeth forming the gate is increased so that the drain and source wirings 2 and 3 do not intersect on the gate electrode 1.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第3図に示す構成では、ゲートとドレイン又はゲート
とソースが重なる領域で寄生容量が形成されるため、ゲ
ート・ドレイン間及びゲート・ソース間の容量が増大し
て、動作スピードを上げることが出来ない欠点が生じて
いた。第5図では動作スピードの点はクリア出来たけれ
ど、ゲートの櫛の歯は広い間隔を必要とするため、チッ
プ上の素子面積が大きくなる欠点が起こった。
In the configuration shown in FIG. 3, since the parasitic capacitance is formed in the region where the gate and the drain or the gate and the source overlap, the capacitance between the gate and the drain and between the gate and the source are increased, and the operation speed can be increased. There were no drawbacks. In FIG. 5, the operation speed was cleared, but the comb teeth of the gate required a wide interval, which caused a disadvantage that the element area on the chip became large.

本発明の目的は前述の欠点を改善し、電界効果型半導
体素子のゲート上にドレイン・ソースの配線を通すこと
なく、且つ集積密度を低下させずに大電流を流すことの
できる半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device which can solve the above-mentioned drawbacks and can flow a large current without passing a drain-source wiring over a gate of a field-effect type semiconductor element and without reducing the integration density. Is to do.

〔課題を解決するための手段〕[Means for solving the problem]

第1図は本発明の原理構成を示す図である。第1図に
おいて、1−1,1−2はゲート電極、2はドレインの電
極配線、3はソースの電極配線、5は電流の向きを示
す。
FIG. 1 is a diagram showing the principle configuration of the present invention. In FIG. 1, 1-1 and 1-2 indicate gate electrodes, 2 indicates a drain electrode wiring, 3 indicates a source electrode wiring, and 5 indicates the direction of current.

複数のドレイン配線2と複数のソース配線3とが列状
に交互に配置されてなる電界効果型半導体装置におい
て、それぞれのドレイン配線2及びソース配線3が同一
の台形形状を有し、隣り合うドレイン配線2とソース配
線3との斜辺同士が平行になるように配置され、台形形
状のドレイン配線2の底辺側またはソース配線3の底辺
側のいずれか一方に存する共通部分からドレイン配線の
斜辺とソース配線の斜辺との間へ櫛の歯状に延在するゲ
ート電極1−1,1−2を有し、ドレイン配線2とソース
配線3の各斜辺、及びゲート電極1−1,1−2の側辺
が、ステップ状に変化することによって斜め方向へ延在
するように配置されることで構成する。
In a field-effect semiconductor device in which a plurality of drain wirings 2 and a plurality of source wirings 3 are alternately arranged in a column, each drain wiring 2 and source wiring 3 have the same trapezoidal shape, and the adjacent drain wirings have the same trapezoidal shape. The oblique sides of the wiring 2 and the source wiring 3 are arranged so as to be parallel to each other, and the oblique side of the drain wiring and the source It has gate electrodes 1-1 and 1-2 extending in a comb-like shape between the oblique sides of the wiring, and the oblique sides of the drain wiring 2 and the source wiring 3 and the gate electrodes 1-1 and 1-2. The sides are arranged so as to extend in an oblique direction by changing stepwise.

〔作用〕[Action]

本発明では第1図に示すように、並列接続された各半
導体素子のソース・ドレイン及びゲートが平行に、且つ
他のトランジスタに対しては非平行に形成さているた
め、単一のトランジスタで見るときゲート電極とドレイ
ン・ソースの電極配線との間隔を狭く保持できる。その
ためチップ上で素子面積を増大させる事なく大電流用の
半導体装置が得られる。
In the present invention, as shown in FIG. 1, since the source / drain and gate of each semiconductor element connected in parallel are formed in parallel and non-parallel to other transistors, the semiconductor element is viewed as a single transistor. In this case, the distance between the gate electrode and the drain / source electrode wiring can be kept small. Therefore, a semiconductor device for a large current can be obtained without increasing the element area on the chip.

〔実施例〕〔Example〕

第2図(a),(b)は本発明の実施例としてMOS型
トランジスタについての構成を示す図である。第2図
(a)において、ゲート電極1−1,1−2はソース及び
ドレイン電極の配線2,3と平行となっていて、且つ隣接
する素子のゲート電極などは互いに非平行に形成されて
いる。そしてゲート電極とソース・ドレイン電極の・配
線は縦方向の長さに対し横方向が0.5%程度の微小な傾
きを形成するような幅変化を有している。
FIGS. 2 (a) and 2 (b) are diagrams showing the configuration of a MOS transistor as an embodiment of the present invention. In FIG. 2A, the gate electrodes 1-1 and 1-2 are parallel to the wirings 2 and 3 of the source and drain electrodes, and the gate electrodes and the like of adjacent elements are formed non-parallel to each other. I have. The width of the wiring between the gate electrode and the source / drain electrode has a width change that forms a small inclination of about 0.5% in the horizontal direction with respect to the length in the vertical direction.

第2図(b)は第2図(a)に示す実施例の断面構造
を示す図である。第2図(b)において、n型シリコン
基板6上にP型のソース領域30−1,30−2…及びドレイ
ン領域20−1,20−2…ガ交互に形成された構造を有して
おり、ソース領域30とドレイン領域20との間の領域(チ
ャネル領域)上にはゲート酸化膜(SiO2)4−1,4−2
…を介してゲート電極1−1,1−2…が形成されてい
る。またドレイン領域20及びソース領域30上には、各々
と接触するドレイン電極2−1,2−2…及びソース電極
3−1,3−2…が形成されている。
FIG. 2 (b) is a view showing a sectional structure of the embodiment shown in FIG. 2 (a). In FIG. 2 (b), a P-type source region 30-1, 30-2... And drain regions 20-1, 20-2. A gate oxide film (SiO 2 ) 4-1, 4-2 is formed on a region (channel region) between the source region 30 and the drain region 20.
Are formed via the gate electrodes 1-1, 1-2,. Also, on the drain region 20 and the source region 30, a drain electrode 2-1, 2-2,... And source electrodes 3-1, 3-2,.

そして、一つのトランジスタを構成する領域20−1,ソ
ース領域30−1及びドレイン電極2−1,ソース電極3−
1,ゲート電極1−1は、第2図(a)に示すように他の
トランジスタのそれとは非平行にレイアウトされてい
る。
Then, the region 20-1, the source region 30-1, the drain electrode 2-1 and the source electrode 3-1, which constitute one transistor, are formed.
1. The gate electrode 1-1 is laid out non-parallel to that of the other transistors as shown in FIG. 2 (a).

また第2図(a)に示す各電極配線の形状の設計を容
易にするため、各領域及び電極には斜辺を設けず、平行
な各辺の幅がステップ状に変化するように構成してい
る。
In order to facilitate the design of the shape of each electrode wiring shown in FIG. 2 (a), no oblique side is provided in each region and each electrode, and the width of each parallel side is changed stepwise. I have.

以上のように構成された本実施例のMOS型トランジス
タでは、ゲート電極1−1,1−2…とソース電極3及び
ドレイン電極2とが重なることがなくなり、寄生容量が
形成されず、また素子サイズを大型化することもない。
In the MOS transistor of this embodiment configured as described above, the gate electrodes 1-1, 1-2,..., The source electrode 3 and the drain electrode 2 do not overlap, no parasitic capacitance is formed, and There is no increase in size.

また、各電極幅の変化をステップ状にしているため、
製造の容易化が図られている。
In addition, since the change of each electrode width is stepped,
Manufacturing is facilitated.

以上は本発明の実施例としてMOS(Metal Oxide Semic
onductor)型トランジスタについて説明したが、その他
のMIS(Metal Insulator Semiconductor)型トランジス
タや、ゲート電極部にショットキ接合部を有するMES(M
etal Semiconductor)型トランジスタなどの電界効果型
トランジスタ(FET)であっても、同様の構成を採用す
れば同様に優れた効果を奏することが出来る。
The MOS (Metal Oxide Semiconductor) has been described as an embodiment of the present invention.
onductor) type transistor, but other MIS (Metal Insulator Semiconductor) type transistors and MES (M
Even in the case of a field effect transistor (FET) such as an etal semiconductor type transistor, a similar excellent effect can be obtained by adopting a similar configuration.

〔発明の効果〕〔The invention's effect〕

このようにして本発明によると、ゲート電極がドレイ
ン・ソース電極上を通らず、素子面積を格別広げること
なく大電流を流せるMIS型半導体装置を得ることが出来
る。ドレイン配線とゲート領域間の容量が増大しないた
め、より高周波の信号に対しも有効である。
As described above, according to the present invention, it is possible to obtain an MIS type semiconductor device in which the gate electrode does not pass over the drain / source electrode and a large current can flow without significantly increasing the element area. Since the capacitance between the drain wiring and the gate region does not increase, it is effective for higher frequency signals.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理構成を示す図、 第2図(a)(b)は本発明の実施例の構成を示す図、 第3図は従来の装置の構成を示す図、 第4図は第3図の部分断面図、 第5図は他の従来の装置の構成を示す図である。 1−1,1−2……ゲート電極 2……ドレイン電極 3……ソース電極 5……電流の向き FIG. 1 is a diagram showing a principle configuration of the present invention, FIGS. 2 (a) and 2 (b) are diagrams showing a configuration of an embodiment of the present invention, FIG. 3 is a diagram showing a configuration of a conventional apparatus, FIG. FIG. 3 is a partial sectional view of FIG. 3, and FIG. 5 is a view showing a configuration of another conventional apparatus. 1-1, 1-2 ... gate electrode 2 ... drain electrode 3 ... source electrode 5 ... direction of current

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数のドレイン配線と複数のソース配線と
が列状に交互に配置されてなる電界効果型半導体装置に
おいて、 それぞれのドレイン配線及びソース配線が同一の台形形
状を有し、隣り合うドレイン配線とソース配線の斜辺同
士が平行になるように配置され、 前記台形形状のドレイン配線の底辺側またはソース配線
の底辺側のいずれか一方に存する共通部分から前記ドレ
イン配線の斜辺とソース配線の斜辺との間へ櫛の歯状に
延在するゲート電極を有し、 前記ドレイン配線とソース配線の各斜辺、及びゲート電
極の側辺が、ステップ状に変化することによって斜め方
向へ延在するように配置されてなることを特徴とする電
界効果型半導体装置。
In a field effect type semiconductor device in which a plurality of drain wirings and a plurality of source wirings are alternately arranged in a column, each drain wiring and a source wiring have the same trapezoidal shape and are adjacent to each other. The oblique sides of the drain line and the source line are arranged so that the oblique sides of the drain line and the source line are parallel to each other, and the oblique side of the drain line and the source line A gate electrode extending in a comb-like shape between the hypotenuse and each of the hypotenuses of the drain wiring and the source wiring and a side of the gate electrode extending in an oblique direction by changing in a step shape; The field effect type semiconductor device characterized by being arranged as follows.
JP2311104A 1990-11-16 1990-11-16 Field effect type semiconductor device Expired - Fee Related JP2602360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311104A JP2602360B2 (en) 1990-11-16 1990-11-16 Field effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311104A JP2602360B2 (en) 1990-11-16 1990-11-16 Field effect type semiconductor device

Publications (2)

Publication Number Publication Date
JPH04181778A JPH04181778A (en) 1992-06-29
JP2602360B2 true JP2602360B2 (en) 1997-04-23

Family

ID=18013193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311104A Expired - Fee Related JP2602360B2 (en) 1990-11-16 1990-11-16 Field effect type semiconductor device

Country Status (1)

Country Link
JP (1) JP2602360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113467A1 (en) * 2014-09-18 2016-03-24 Infineon Technologies Austria Ag Metallization of a field effect power transistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014125B2 (en) * 2007-11-26 2011-09-06 Ati Technologies Ulc Chip capacitor
JP2012023212A (en) * 2010-07-14 2012-02-02 Sumitomo Electric Ind Ltd Semiconductor device
WO2023084927A1 (en) * 2021-11-09 2023-05-19 ローム株式会社 Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175565A (en) * 1984-09-20 1986-04-17 Sanyo Electric Co Ltd Fet integrated circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113467A1 (en) * 2014-09-18 2016-03-24 Infineon Technologies Austria Ag Metallization of a field effect power transistor
CN105448966A (en) * 2014-09-18 2016-03-30 英飞凌科技奥地利有限公司 Metalization structure of field effect power transistor
US9356118B2 (en) 2014-09-18 2016-05-31 Infineon Technologies Austria Ag Metalization of a field effect power transistor
US9570565B2 (en) 2014-09-18 2017-02-14 Infineon Technologies Austria Ag Field effect power transistor metalization having a comb structure with contact fingers
CN105448966B (en) * 2014-09-18 2019-09-13 英飞凌科技奥地利有限公司 The metallization structure of fet power transistor
DE102014113467B4 (en) 2014-09-18 2022-12-15 Infineon Technologies Austria Ag Metallization of a field effect power transistor

Also Published As

Publication number Publication date
JPH04181778A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JP4879444B2 (en) Lateral power MOSFET for high switching speed
JPS59138364A (en) Semiconductor device
JP2987884B2 (en) Semiconductor device
US5633525A (en) Lateral field effect transistor
JP3016298B2 (en) Semiconductor device
JP2602360B2 (en) Field effect type semiconductor device
JPH079981B2 (en) Charge transfer device
JPH0237114B2 (en)
JPH04165678A (en) Mesh gate type mos transistor
JP2002305300A (en) Power mos transistor
KR100225944B1 (en) Semiconductor device having variable drain current type transistor
JPH0469435B2 (en)
JP2723868B2 (en) Semiconductor device
US3987475A (en) Nondestructive charge sensing in a charge coupled device
JP2661296B2 (en) Semiconductor device
JP2978504B2 (en) MOS transistor
KR100611743B1 (en) TFT with Multiple Gate
JP2720624B2 (en) MOS integrated circuit
JP3156595B2 (en) Semiconductor device
JP3364541B2 (en) Insulated gate field effect transistor
JP2022046240A (en) Semiconductor device
KR0170287B1 (en) Lay out method of buffer transistor
JPH0353512Y2 (en)
JPS6255303B2 (en)
JP2000022138A (en) Semiconductor device and fabrication thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees