JPH0237114B2 - - Google Patents

Info

Publication number
JPH0237114B2
JPH0237114B2 JP54165953A JP16595379A JPH0237114B2 JP H0237114 B2 JPH0237114 B2 JP H0237114B2 JP 54165953 A JP54165953 A JP 54165953A JP 16595379 A JP16595379 A JP 16595379A JP H0237114 B2 JPH0237114 B2 JP H0237114B2
Authority
JP
Japan
Prior art keywords
conductivity type
source
electrode
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54165953A
Other languages
Japanese (ja)
Other versions
JPS5688363A (en
Inventor
Yoshizo Hagimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16595379A priority Critical patent/JPS5688363A/en
Publication of JPS5688363A publication Critical patent/JPS5688363A/en
Publication of JPH0237114B2 publication Critical patent/JPH0237114B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果トランジスタに
かかり、特に高集積化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to insulated gate field effect transistors, and particularly relates to high integration.

従来の絶縁ゲート型電界効果トランジスタの断
面構造を第1図aに示す。1はP導電型基板であ
り、ベースと呼ばれる領域である。2および3は
各々N+導電型ソースおよびドレーンである。4,
5および各々ゲート電極、ソース電極およびドレ
ーン電極である。絶縁ゲート型電界効果トランジ
スタは、通常、ベース領域1とソース領域2は短
絡される。P+導電型領域7は、ベース領域1と
電極5とのコンタクトを取るために設けられてい
る。8は絶縁膜である。11および12は絶縁膜
ゲート型電界効果トランジスタの一部分を示しソ
ース、ドレーンおよびゲートを有する素子単位で
あり、それぞれを素子部1および素子部2と呼
ぶ。絶縁ゲート型電界効果トランジスタは、高入
力インピーダンスである為、高利得を得ることが
できるが、大電力用素子として使われる場合さら
に高利得を得る必要があり、すなわち相互コンダ
クタンス(gm)を大きくする必要がある。絶縁
ゲート型電界効果トランジスタの直線領域におけ
る相互コンダクタンスは次式で示される。
A cross-sectional structure of a conventional insulated gate field effect transistor is shown in FIG. 1a. 1 is a P-conductivity type substrate, and is a region called a base. 2 and 3 are N + conductivity type source and drain, respectively. 4,
5 and a gate electrode, a source electrode, and a drain electrode, respectively. In an insulated gate field effect transistor, base region 1 and source region 2 are usually short-circuited. P+ conductivity type region 7 is provided to make contact between base region 1 and electrode 5. 8 is an insulating film. Reference numerals 11 and 12 indicate parts of an insulating film gate type field effect transistor, which are element units having a source, a drain, and a gate, and are referred to as an element part 1 and an element part 2, respectively. Insulated gate field effect transistors have high input impedance, so they can obtain high gain, but when used as high power devices, it is necessary to obtain even higher gain, which means that the transconductance (gm) must be increased. There is a need. The mutual conductance in the linear region of an insulated gate field effect transistor is expressed by the following equation.

gm=W/L・μ・ε/tox・VD ………(1) ここで L:ゲート長、 W:ゲート幅、 μ:キヤリアの易動度、 σ:酸化膜の誘電率 tpx:ゲート酸化膜厚、 VD:ドレイン電圧 前記(1)式で大きな相互コンダクタンスを得るた
めには、ゲート酸化膜厚を一定とした場合W/L
を大きくすることである。チツプサイズを大きく
することは、コスト上昇、歩留低下につながるた
め、チツプサイズを大きくせず、高集積化をはか
り大きなW/Lを得ることが必要となる。高集積
化の手段のひとつとして、ソースおよびドレーン
が微細に入り組んだくし形構造があり、従来の、
くし形構造で第1図aに対応する絶縁ゲート型電
界効果トランジスタの平面図を第1図bに示す。
2および3は、N+導電型ソースおよびドレーン
である。4はゲート電極である。7はP+導電型
領域である。9はソース電極およびベース電極を
取り出し、さらにソースおよびベースを電気的に
短絡するためのコンタクト窓であり、また、10
はドレーン電極を取り出すためのコンタクト窓で
ある。11および12は、絶縁ゲート型電界効果
トランジスタの一部分でありそれぞれ第1素子部
および第2素子部を示す。
gm=W/L・μ・ε/tox・V D ………(1) where L: gate length, W: gate width, μ: carrier mobility, σ: dielectric constant of oxide film t px : Gate oxide film thickness, V D : Drain voltage In order to obtain a large mutual conductance using the above equation (1), W/L is required when the gate oxide film thickness is constant.
The goal is to increase the Increasing the chip size leads to an increase in cost and a decrease in yield, so it is necessary to achieve high integration and obtain a large W/L without increasing the chip size. One of the means of achieving high integration is a comb-shaped structure in which sources and drains are minutely intricate.
A plan view of an insulated gate field effect transistor corresponding to FIG. 1a with a comb-shaped structure is shown in FIG. 1b.
2 and 3 are N + conductivity type source and drain. 4 is a gate electrode. 7 is a P+ conductivity type region. 9 is a contact window for taking out the source electrode and the base electrode and further electrically short-circuiting the source and the base;
is a contact window for taking out the drain electrode. Reference numerals 11 and 12 are parts of an insulated gate field effect transistor, and indicate a first element part and a second element part, respectively.

第1図aおよび第1図bに示した従来のくし型
構造絶縁ゲート型電界効果トランジスタでは第1
素子部11と第2素子部12のソース2がP+導
電型領域7によつて分離されていたため、ソース
電極およびベース電極5のコンタクト窓9は、P
+導電型領域7以上の巾を必要とし、具体的に
は、第1素子部11および第2素子部12のソー
ス2の巾およびP+導電型領域7の巾をそれぞれ
6μmとしたとき、第1素子部11におけるソー
ス2の左端から第2素子部12におけるソース2
の右端までの距離は18μm必要であり、またソー
ス電極およびベース電極5のコンタクト窓9の巾
は12μm程度必要であつた。このようにソース電
極およびドレーン電極5のコンタクト窓9が、P
+導電型領域7以上の巾を必要としていたこと
が、絶縁ゲート型電界効果トランジスタの高集積
化を阻害していた大きな要因であつた。
In the conventional comb-structure insulated gate field effect transistor shown in FIGS. 1a and 1b, the first
Since the sources 2 of the element section 11 and the second element section 12 were separated by the P+ conductivity type region 7, the contact window 9 of the source electrode and the base electrode 5 was
The width of the + conductivity type region 7 or more is required, and specifically, the width of the source 2 and the width of the P+ conductivity type region 7 of the first element part 11 and the second element part 12 are required respectively.
6 μm, from the left end of the source 2 in the first element section 11 to the source 2 in the second element section 12
The distance to the right end of the contact window 9 was required to be 18 μm, and the width of the contact window 9 of the source electrode and base electrode 5 was approximately 12 μm. In this way, the contact windows 9 of the source and drain electrodes 5 are
The fact that the width of the + conductivity type region was required to be 7 or more was a major factor that hindered the high integration of insulated gate field effect transistors.

本発明の目的は、ソース電極およびベース電極
5のコンタクト窓9の巾を従来より狭くしても第
1素子部11および第2素子部12のソース電極
およびベース電極5を取り出すことが出き、かつ
第1素子部11および第2素子部12のソース2
間の巾を狭くすることが可能な絶縁ゲート型電界
効果トランジスタを提供することにある。
An object of the present invention is to make it possible to take out the source electrode and base electrode 5 of the first element part 11 and the second element part 12 even if the width of the contact window 9 of the source electrode and base electrode 5 is narrower than before. and the source 2 of the first element section 11 and the second element section 12
An object of the present invention is to provide an insulated gate field effect transistor that can reduce the width between the gates.

本発明の特徴は例えば、絶縁ゲート型電界効果
トランジスタの高集積化を阻害していた第1の素
子部11および第2の素子部12のそれぞれのソ
ース2を分離していたP+導電型領域7をソース
2に沿つて連続には設けず、P+導電型領域7を
ソース2に沿つて点状に設け、第1素子部11お
よび第2素子部12のソース2を分断しないこと
にあり、本発明によりP+導電型領域7よりも、
ソース電極およびドレーン電極5のコンタクト窓
9の巾が、たとえ狭くなつても、第1素子部11
および第2素子部12のソース2およびベース1
の電極を取り出すことができ、さらにソース電極
およびベース電極5のコンタクト窓9巾および、
第1素子部11および第2素子部12のソース2
間の巾を狭くすることができ、もつて絶縁ゲート
型電界効果トランジスタの高集積化が可能とな
る。
A feature of the present invention is, for example, the P+ conductivity type region 7 that separates the sources 2 of the first element part 11 and the second element part 12, which has hindered the high integration of insulated gate field effect transistors. The P+ conductivity type region 7 is not provided continuously along the source 2, but is provided in a dotted manner along the source 2, and the source 2 of the first element part 11 and the second element part 12 is not separated. According to the invention, from the P+ conductivity type region 7,
Even if the width of the contact window 9 of the source electrode and drain electrode 5 becomes narrower, the first element part 11
and source 2 and base 1 of second element section 12
electrodes can be taken out, and the contact window 9 width of the source electrode and base electrode 5 and
Source 2 of the first element section 11 and the second element section 12
The width between them can be narrowed, thereby making it possible to highly integrate insulated gate field effect transistors.

次に、本発明を実施例を参照して説明する。 Next, the present invention will be explained with reference to examples.

第2図aおよび第2図bは、本発明の第1の実
施例における断面図および平面図である。11は
P導電型基板であり、ベースと呼ばれる領域であ
る。12および13は各々N導電型ソースおよび
ドレーンである。14,15および16は各々ゲ
ート電極、ソース電極およびドレーン電極であ
る。17はソース12に沿つて点状に(平面的に
数ブロツクに分けて)設けられたP+導電型領域
である。18は絶縁膜である。19はソース電極
およびベース電極15のコンタクト窓であり、2
0はドレーン電極16のコンタクト窓である。2
1および22は各々第1素子部および第2素子部
と呼ぶ。
FIGS. 2a and 2b are a sectional view and a plan view of the first embodiment of the present invention. Reference numeral 11 is a P conductivity type substrate, which is a region called a base. 12 and 13 are an N conductivity type source and drain, respectively. 14, 15 and 16 are a gate electrode, a source electrode and a drain electrode, respectively. Reference numeral 17 denotes a P+ conductivity type region provided dotted (divided into several blocks in a plane) along the source 12. 18 is an insulating film. 19 is a contact window for the source electrode and base electrode 15;
0 is the contact window of the drain electrode 16. 2
1 and 22 are referred to as a first element section and a second element section, respectively.

第2図aおよび第2図bによれば、P+導電型
領域17がソース12に沿つて電気的特性を劣化
させない程度の間隔で点状に設けられ、またP+
導電型領域17が第1素子部21および第2素子
部22のソース12を分断していないため、ソー
ス電極およびドレーン電極15のコンタクト窓1
9がたとえP+導電型領域17の巾より狭くても
ソース電極およびベース電極の取り出しが可能で
あり、その結果素子部1,21および素子部2,
22のソース12間の巾を狭くすることができ高
集積化が可能となる。前記したように、従来の構
造では、第1図aおよび第1図bの第1素子部1
1および第2素子部12のソース2の巾およびP
+導電型領域7の巾をそれぞれ6μmとしたとき、
第1素子部11におけるソース2の左端から、第
2素子部12におけるソース2の右端までの距離
は18μm必要であり、またソース電極およびベー
ス電極5のコンタクト窓9の巾は12μm程度必要
であつたが、本発明の第2図aおよび第2図bに
よれば、ソース電極およびベース電極15のコン
タクト窓19の巾は6μm程度と従来構造に比べ
狭くすることができ、よつて第1素子部21のソ
ース12の左端から第2素子部22のソース12
の右端までの距離は12μmとなり、高集積化が達
成され、同一面積チツプでの比較で従来構造に比
べ相互にコンダクタンス(gm)が約20%向上し
た。
According to FIGS. 2a and 2b, P+ conductivity type regions 17 are provided along the source 12 at intervals that do not deteriorate the electrical characteristics, and P+
Since the conductivity type region 17 does not separate the source 12 of the first element part 21 and the second element part 22, the contact window 1 of the source electrode and drain electrode 15
Even if 9 is narrower than the width of the P+ conductivity type region 17, the source electrode and the base electrode can be taken out, and as a result, the element parts 1, 21 and the element parts 2,
The width between the 22 sources 12 can be narrowed, and high integration becomes possible. As described above, in the conventional structure, the first element section 1 of FIGS. 1a and 1b
1 and the width of the source 2 of the second element section 12 and P
+ When the width of the conductivity type region 7 is each 6 μm,
The distance from the left end of the source 2 in the first element section 11 to the right end of the source 2 in the second element section 12 needs to be 18 μm, and the width of the contact window 9 of the source electrode and base electrode 5 needs to be about 12 μm. However, according to FIGS. 2a and 2b of the present invention, the width of the contact window 19 of the source electrode and base electrode 15 can be narrowed to about 6 μm compared to the conventional structure, and therefore the first element From the left end of the source 12 of the section 21 to the source 12 of the second element section 22
The distance to the right edge of the chip is 12 μm, achieving high integration, and the mutual conductance (gm) has improved by about 20% compared to the conventional structure when comparing chips with the same area.

第2図aおよび第2図bでは、P+導電型領域
17の巾が、第1素子部21および第2素子部2
2のソース12の巾よりも狭く、P+導電型領域
17が、半導体表面上から見て、ソース12に囲
まれた場合を示したが、P+導電型領域17が第
1素子部21および第2素子部22のソース12
の巾より広くてもかまわない。
In FIGS. 2a and 2b, the width of the P+ conductivity type region 17 is the same as that of the first element part 21 and the second element part 2.
2, and the P+ conductivity type region 17 is surrounded by the source 12 when viewed from above the semiconductor surface. Source 12 of element section 22
It doesn't matter if it's wider than the width.

第3図a乃至第7図bは、本発明を他の構造の
絶縁ゲート型電界効果トランジスタに実施した第
2乃至第6の実施例である。
3a to 7b show second to sixth embodiments in which the present invention is applied to insulated gate field effect transistors having other structures.

これらの図において、第2図a、第2図bと同
一所は同一番号を記す。
In these figures, the same parts as in FIGS. 2a and 2b are designated by the same numbers.

第3図aおよび第3図bは高耐圧化の為に有効
な、N-導電型層23を設けたオフセツトゲート
型電界効果型トランジスタにおいて本発明を実施
した第2の実施例である。
3a and 3b show a second embodiment of the present invention in an offset gate field effect transistor provided with an N - conductivity type layer 23, which is effective for increasing the withstand voltage.

第4図aおよび第4図bは、短チヤネル化の可
能な二重拡散型電界効果トランジスタにおいて本
発明を実施した第3の実施例である。第3の実施
例は前記絶縁ゲート型電界効果型トランジスタと
は異なり、P導電型拡散領域がベースとなつてい
る。24はN-導電型基板である。
FIGS. 4a and 4b show a third embodiment in which the present invention is implemented in a double-diffused field effect transistor that can have a short channel. The third embodiment differs from the insulated gate field effect transistor in that it is based on a P-conductivity type diffusion region. 24 is an N conductivity type substrate.

第5図aおよび第5図bは、V溝が形成され電
流を縦方向に流すことにより集積度の向上を図つ
たV溝型電界効果トランジスタにおいて本発明を
実施した第4の実施例である。縦型構造の為、V
溝形成面の反対面にN+導電型ドレーン13およ
びドレーン電極16が設けられている。
Figures 5a and 5b show a fourth embodiment of the present invention in a V-groove field effect transistor in which a V-groove is formed and the degree of integration is improved by allowing current to flow vertically. . Due to the vertical structure, V
An N + conductivity type drain 13 and a drain electrode 16 are provided on the surface opposite to the groove forming surface.

第6図aおよび第6図bは、二重拡散型構造で
縦型構造電界効果トランジスタにおいて本発明を
実施した第5の実施例である。
FIGS. 6a and 6b show a fifth embodiment of the invention in a vertically structured field effect transistor with a double diffused structure.

第7図aおよび第7図bは、高耐圧化の為にN
導電型層26が設けられ第6図a及び第6図bの
構造とは異なり、ゲート電極14がチヤネル上に
のみ形成されているため帰還容量が小さくできる
縦型電界効果トランジスタにおいて、本発明を実
施した第6の実施例である。
Figures 7a and 7b show N
The present invention is applied to a vertical field effect transistor in which the conductivity type layer 26 is provided and the gate electrode 14 is formed only on the channel, so that the feedback capacitance can be reduced. This is the sixth example carried out.

以上述べたように、本発明によれば、多くの構
造の絶縁ゲート型電界効果トランジスタの高集積
化が可能となる。
As described above, according to the present invention, it is possible to highly integrate insulated gate field effect transistors having many structures.

なお、本発明の第1乃至第6の実施例では、N
チヤネル型電界効果トランジスタについて述べた
が、Pチヤネル型でも勿論かまわない。
Note that in the first to sixth embodiments of the present invention, N
Although a channel type field effect transistor has been described, a P channel type may of course be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよび第1図bは、従来の絶縁ゲート
型電界効果トランジスタ断面図および平面図を示
す。第2図aおよび第2図bは本発明の第1の実
施例を示す絶縁ゲート型電界効果トランジスタの
断面図および平面図、第3図aおよび第3図bは
本発明を他の構造の第1の絶縁ゲート型電界効果
トランジスタに実施した場合の断面図および平面
図を示す。第4図aおよび第4図bはさらに第2
の絶縁ゲート型電界効果トランジスタに実施した
場合の断面図および平面図を示す。第5図aおよ
び第5図b、第6図aおよび第6図b、第7図a
および第7図bはいずれもさらに異なつた絶縁ゲ
ート型電界効果トランジスタに実施した場合の断
面図および平面図を示す。尚、図において、 1,11……P導電型基板、2,12……N+
導電型ソース、3,13……N+導電型ドレーン、
4,14……ゲート電極、5,15……ソース電
極およびベース電極、6,16……ドレーン電
極、7,17……P+導電型領域、8,18……
絶縁膜、9,19……ソース電極およびベース電
極のコンタクト窓、10,20……ドレーン電極
のコンタクト窓、11,21……素子部1、1
2,22……素子部2、23……N-導電型層、
24……N-導電型基板、25……P導電型ベー
ス、26……N導電型領域。
FIGS. 1a and 1b show a cross-sectional view and a plan view of a conventional insulated gate field effect transistor. 2a and 2b are cross-sectional views and plan views of an insulated gate field effect transistor according to a first embodiment of the present invention, and FIGS. 3a and 3b are sectional views and FIGS. A cross-sectional view and a plan view when implemented in a first insulated gate field effect transistor are shown. Figures 4a and 4b are further illustrated in the second diagram.
A cross-sectional view and a plan view are shown when the invention is implemented in an insulated gate field effect transistor. Figures 5a and 5b, Figures 6a and 6b, Figure 7a
and FIG. 7b each show a cross-sectional view and a plan view when implemented in further different insulated gate field effect transistors. In the figure, 1, 11...P conductivity type substrate, 2, 12...N +
conductive type source, 3,13...N + conductive type drain,
4,14...gate electrode, 5,15...source electrode and base electrode, 6,16...drain electrode, 7,17...P + conductivity type region, 8,18...
Insulating film, 9, 19... Contact window for source electrode and base electrode, 10, 20... Contact window for drain electrode, 11, 21... Element section 1, 1
2, 22...Element portion 2, 23...N - conductivity type layer,
24...N - conductivity type substrate, 25...P conductivity type base, 26...N conductivity type region.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体層と、該半導体層の一主面
に一方向に延在して設けられた他の導電型の複数
条の第1の半導体領域と、該複数条の第1の半導
体領域のうち相隣接するものの間の前記一主面に
前記一方向に延在してそれぞれ設けられた1条以
上の第2の半導体領域と、前記第1の半導体領域
と前記第2の半導体領域との間の前記一主面上に
それぞれ前記一方向に延在して設けられた複数条
のゲート電極と、前記複数条の第1の半導体領域
に共通して接続された第1の電極と、前記第2の
半導体領域に接続された第2の電極とを有する電
界効果トランジスタにおいて、前記第2の半導体
領域は前記半導体層に少なくともその底部が接し
て設けられた前記一導電型の複数の第3の半導体
領域と前記他の導電型の複数の第4の半導体領域
とを前記一方向に交互に有し、前記第2の電極は
前記第3の半導体領域の前記一方向とは垂直な他
の方向における幅よりも狭い幅を該他の方向にお
いて有し、前記一方向に延在して前記第3の半導
体領域及び前記第4の半導体領域に共通に接続し
て設けられていることを特徴とする電界効果トラ
ンジスタ。
1. A semiconductor layer of one conductivity type, a plurality of first semiconductor regions of another conductivity type extending in one direction on one main surface of the semiconductor layer, and the plurality of first semiconductor regions of the other conductivity type. one or more second semiconductor regions extending in the one direction and provided on the one main surface between adjacent regions; and the first semiconductor region and the second semiconductor region. a plurality of gate electrodes each extending in the one direction on the one main surface between the gate electrodes; and a first electrode commonly connected to the plurality of first semiconductor regions. , a field effect transistor having a second electrode connected to the second semiconductor region; The third semiconductor region and the plurality of fourth semiconductor regions of the other conductivity type are alternately arranged in the one direction, and the second electrode is perpendicular to the one direction of the third semiconductor region. It has a narrower width in the other direction than the width in the other direction, extends in the one direction, and is commonly connected to the third semiconductor region and the fourth semiconductor region. A field effect transistor featuring:
JP16595379A 1979-12-20 1979-12-20 Field effect transistor Granted JPS5688363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16595379A JPS5688363A (en) 1979-12-20 1979-12-20 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16595379A JPS5688363A (en) 1979-12-20 1979-12-20 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS5688363A JPS5688363A (en) 1981-07-17
JPH0237114B2 true JPH0237114B2 (en) 1990-08-22

Family

ID=15822147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16595379A Granted JPS5688363A (en) 1979-12-20 1979-12-20 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS5688363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564693U (en) * 1992-02-03 1993-08-27 碧南特殊機械株式会社 Drying cart for ceramic products

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111373A (en) * 1981-12-21 1983-07-02 テキサス・インスツルメンツ・インコ−ポレイテツド D-mos semiconductor device and method of producing same
JPS6076160A (en) * 1983-10-03 1985-04-30 Seiko Epson Corp Mos type semiconductor integrated circuit
JPS60229368A (en) * 1984-04-27 1985-11-14 Olympus Optical Co Ltd Solid-state image pickup device
US4809045A (en) * 1985-09-30 1989-02-28 General Electric Company Insulated gate device
US4857977A (en) * 1987-08-24 1989-08-15 General Electric Comapny Lateral metal-oxide-semiconductor controlled triacs
JPH01140773A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Insulated-gate transistor
JP3307481B2 (en) * 1993-11-05 2002-07-24 三菱電機株式会社 Semiconductor device
JP3120389B2 (en) 1998-04-16 2000-12-25 日本電気株式会社 Semiconductor device
DE19828494B4 (en) 1998-06-26 2005-07-07 Robert Bosch Gmbh MOSFET device with protective device against switching through a parasitic transistor
EP1538678B1 (en) * 2003-12-05 2008-07-16 STMicroelectronics S.r.l. DMOS structure and method of making the same
EP1538677A1 (en) 2003-12-05 2005-06-08 STMicroelectronics S.r.l. LDMOS structure and method of making the same
JP5078273B2 (en) * 2006-03-31 2012-11-21 株式会社リコー Semiconductor device
JP5700649B2 (en) * 2011-01-24 2015-04-15 旭化成エレクトロニクス株式会社 Manufacturing method of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045574A (en) * 1973-08-24 1975-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045574A (en) * 1973-08-24 1975-04-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564693U (en) * 1992-02-03 1993-08-27 碧南特殊機械株式会社 Drying cart for ceramic products

Also Published As

Publication number Publication date
JPS5688363A (en) 1981-07-17

Similar Documents

Publication Publication Date Title
US3855610A (en) Semiconductor device
US4996574A (en) MIS transistor structure for increasing conductance between source and drain regions
JP4879444B2 (en) Lateral power MOSFET for high switching speed
US5789791A (en) Multi-finger MOS transistor with reduced gate resistance
JPH0237114B2 (en)
JPH05259454A (en) Semiconductor device with improved breakdown-voltage characteristic
US3786319A (en) Insulated-gate field-effect transistor
US4163988A (en) Split gate V groove FET
US4178605A (en) Complementary MOS inverter structure
KR100398164B1 (en) Insulated Gate Semiconductor Device
US6069386A (en) Semiconductor device
JPS6134262B2 (en)
US6020617A (en) Lateral MOS transistor with weakly doped drain extension
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JPH0213830B2 (en)
US5420450A (en) Semiconductor device having stable breakdown voltage in wiring area
US3704384A (en) Monolithic capacitor structure
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
JPS5846874B2 (en) Junction field effect transistor
US3344322A (en) Metal-oxide-semiconductor field effect transistor
JPS6152592B2 (en)
JP3137840B2 (en) Semiconductor device
JPH02231771A (en) Vertical field effect transistor
JPS586170A (en) Field effect transistor
JP2978504B2 (en) MOS transistor