JP2602087Y2 - UV irradiation device - Google Patents

UV irradiation device

Info

Publication number
JP2602087Y2
JP2602087Y2 JP1992081041U JP8104192U JP2602087Y2 JP 2602087 Y2 JP2602087 Y2 JP 2602087Y2 JP 1992081041 U JP1992081041 U JP 1992081041U JP 8104192 U JP8104192 U JP 8104192U JP 2602087 Y2 JP2602087 Y2 JP 2602087Y2
Authority
JP
Japan
Prior art keywords
ultraviolet
light
tube
wavelength
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1992081041U
Other languages
Japanese (ja)
Other versions
JPH0639129U (en
Inventor
柾弘 高橋
洋之 小林
Original Assignee
柾弘 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 柾弘 高橋 filed Critical 柾弘 高橋
Priority to JP1992081041U priority Critical patent/JP2602087Y2/en
Publication of JPH0639129U publication Critical patent/JPH0639129U/en
Application granted granted Critical
Publication of JP2602087Y2 publication Critical patent/JP2602087Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は光フアイバ、ワイヤ、電
線等の線条体に紫外線硬化樹脂(コーテイング材)を塗
布し、次いでこの塗布面に紫外線を照射して硬化するこ
とにより、前記線条体表面に樹脂膜を形成し、これによ
り前記線条体の補強、衝撃緩衝、保護、マーキング、色
付塗装等を行う際に用いられる紫外線照射装置に係り、
特に、紫外線光源から発生する光のうち、波長 900〜11
00nmの赤色光線を排除し、波長200 〜 450nmの紫外光線
のみを選択的に集光して線条体に照射し、赤外光線によ
る温度上昇を阻止してコーテイング材の蒸発を未然に防
止し得る紫外線照射装置に関する。
BACKGROUND OF THE INVENTION The present invention is to apply an ultraviolet curing resin (coating material) to a striated body such as an optical fiber, a wire or an electric wire, and then irradiate the applied surface with ultraviolet rays to cure the wire. Form a resin film on the surface of the striated body, thereby reinforcing the striated body, shock buffering, protection, marking, relates to an ultraviolet irradiation device used when performing colored coating, etc.
In particular, wavelengths of 900 to 11
Eliminates the red light of 00nm, selectively focuses only the ultraviolet light of wavelength 200-450nm and irradiates it to the striatum, prevents the temperature rise by infrared light and prevents the coating material from evaporating. It relates to an ultraviolet irradiation device to be obtained.

【0002】[0002]

【従来の技術】光フアイバ、ワイヤ、電線等の線条体は
通常、補強、衝撃緩衝、保護、マーキング、色付塗装等
の目的のために、表面に樹脂膜が形成される。この種の
樹脂膜の形成に際して、まず、前記線条体の表面に紫外
線硬化樹脂(コーテイング材)を塗布し、次いで、この
塗布面に紫外線を照射して前記コーテイング材を硬化す
ることにより形成される。
2. Description of the Related Art Generally, a resin film is formed on a surface of a striated body such as an optical fiber, a wire, and an electric wire for the purpose of reinforcing, shock-absorbing, protecting, marking, coloring and the like. When forming this kind of resin film, first, an ultraviolet curable resin (coating material) is applied to the surface of the striated body, and then the coated surface is irradiated with ultraviolet light to cure the coating material. You.

【0003】前述の照射に使用される紫外線照射装置と
して、従来、紫外線光源と、この光源の近傍に配置され
た、内部に線条体が走行する管材と、これら光源および
管材の両方に対向して配置され、前記光源からの光を鏡
面で反射して前記線条体に集光する紫外線反射鏡とを備
え、前記管材が石英からなり、かつ前記反射鏡がアルミ
ニウム等の金属からなるものが知られている。
Conventionally, as an ultraviolet irradiation apparatus used for the above-mentioned irradiation, an ultraviolet light source, a tube member arranged near the light source and having a striatum running inside, and both of the light source and the tube member are opposed to each other. An ultraviolet reflecting mirror that reflects light from the light source on a mirror surface and condenses the light on the striatum, wherein the tube is made of quartz, and the reflecting mirror is made of a metal such as aluminum. Are known.

【0004】[0004]

【発明が解決しようとする問題点】ところで、紫外線光
源から発生する紫外線には通常、赤外線等、紫外線以外
の波長域の光線も含まれる。これら紫外線以外の光が線
条体に照射されると、特に、波長 900〜1100nmの赤外線
の場合には、線条体の温度上昇を引き起し、このため線
条体に塗布されたコーテイング材は蒸発して管材内壁に
付着してしまい、この結果、管材壁面には曇りが生じて
紫外線の透過を著しく防げ、安定した線条体の生産が困
難となる。
The ultraviolet rays generated from the ultraviolet light source usually include light rays in a wavelength range other than the ultraviolet rays, such as infrared rays. When the striatum is irradiated with light other than these ultraviolet rays, especially in the case of infrared rays having a wavelength of 900 to 1100 nm, the temperature of the striatum increases, and therefore, the coating material applied to the striatum Evaporates and adheres to the inner wall of the tube material. As a result, the wall surface of the tube material is fogged and the transmission of ultraviolet rays is remarkably prevented, so that it is difficult to produce a stable filament.

【0005】上述の公知の紫外線照射装置では、紫外線
光源から発生した紫外光線はそのまま紫外線反射鏡の鏡
面で反射されて、管材内部に走行する線条体に集光さ
れ、該線条体の表面を照射するため、この光線に含まれ
る赤外線によって線条体表面が温度上昇し、この結果、
線条体表面に塗布されたコーテング材は蒸発してしま
う。
In the above-mentioned known ultraviolet irradiating apparatus, the ultraviolet ray generated from the ultraviolet light source is reflected by the mirror surface of the ultraviolet reflecting mirror as it is, and is condensed on the striated body running inside the tube, and the surface of the striated body is exposed. Irradiates the surface of the striatum due to the infrared rays contained in the light, and as a result,
The coating material applied to the surface of the striatum evaporates.

【0006】この欠点を解決するために、従来、上述の
紫外線照射装置において、紫外線反射鏡を紫外線のみを
反射して赤外線を透過もしくは吸収するフイルタとした
り、あるいは前記管材を紫外線のみ透過し、赤外線を反
射するフイルタとする装置が開発されている。
In order to solve this drawback, conventionally, in the above-described ultraviolet irradiation apparatus, an ultraviolet reflecting mirror is a filter that reflects or transmits only ultraviolet rays and transmits or absorbs infrared rays, or an infrared ray that transmits only the ultraviolet rays through the tube material and emits infrared rays. An apparatus has been developed as a filter that reflects light.

【0007】前者の装置では、紫外線光源から発生する
光のうち、紫外線反射鏡に到達したものについては、こ
の中に含まれる赤外線は外へ放出され、あるいは前記反
射鏡に吸収される。しかし、直接、管材を通して線条体
に到達するものもあり、この場合には、線条体は赤外線
によって温度上昇を引き起こしてしまう。
[0007] In the former device, of the light emitted from the ultraviolet light source that reaches the ultraviolet reflecting mirror, the infrared light contained therein is emitted to the outside or absorbed by the reflecting mirror. However, some reach the striatum directly through the tubing, in which case the striatum causes a temperature rise by infrared radiation.

【0008】また、後者の装置では、光が管材に垂直に
近い角度で入射するので、赤外線のみを反射せしめるこ
とは難しく、すべての光が透過するため、線条体の温度
上昇をきたす。
Further, in the latter device, since light is incident on the tube at an angle close to the vertical, it is difficult to reflect only infrared rays, and all the light is transmitted, so that the temperature of the striatum increases.

【0009】そこで、本考案の目的は紫外線光源から発
生する光のうち、波長 900〜1100nmの赤色光線を排除
し、波長 200〜450nm の紫外光線のみを選択的に集光し
て線条体に照射し、赤外光線による温度上昇を阻止して
コーテイング材の蒸発を未然に防止し得、上述の公知技
術に存する欠点を改良した紫外線照射装置を提供するこ
とにある。
Accordingly, an object of the present invention is to eliminate red light having a wavelength of 900 to 1100 nm from light emitted from an ultraviolet light source, and selectively focus only ultraviolet light having a wavelength of 200 to 450 nm on the striatum. It is an object of the present invention to provide an ultraviolet irradiation apparatus which can prevent the coating material from evaporating by irradiating and preventing the temperature rise due to the infrared light, thereby improving the disadvantages of the above-mentioned known technique.

【0010】[0010]

【問題点を解決するための手段】上述の目的を達成する
ため、本考案によれば、紫外線光源と、この光源の近傍
に配置された、内部に線条体が走行する管材と、鏡面が
これら光源および管材の両方と対向するように配置さ
れ、前記光源からの光をこの鏡面で反射して前記線条体
に集光する楕円形筒体からなる紫外線反射鏡とを備え
紫外線照射装置において、前記管材は光透過性管体を基
材とし、この内部に不活性ガスが導入され、かつこの基
材の外表面上に酸化ジルコニウムの第一層を蒸着し、さ
らにその上に酸化シリコンの第二層を蒸着し、これら蒸
着を繰り返して10〜20層で厚さ1.0〜1.8ミク
ロンまたは25〜40層で厚さ2.3〜3.0ミクロン
の多層膜を形成してなり、前記紫外線反射鏡は光透過性
板体を基材とし、この基材の鏡面側に前述と同様の蒸着
を繰り返して50〜70層で厚さ2.0〜2.2ミクロ
ンの多層膜を形成してなり、これにより前記紫外線反射
鏡の多層膜は前記紫外線光源からの波長200〜450
nmの光を反射するとともに、波長900〜1100n
mの光を透過もしくは吸収し、かつ前記管材の多層膜は
波長200〜450nmの光を透過するとともに、波長
900〜1100nmの光を反射し、この結果、前記線
条体の表面に紫外線のみを前記管材を通して選択的に照
射することを特徴とする。
According to the present invention, in order to achieve the above-mentioned object, an ultraviolet light source, a tube member disposed near the light source and having a striated body running therein, and a mirror surface are provided. An ultraviolet reflecting mirror composed of an elliptical cylindrical body that is arranged to face both the light source and the tube member , reflects light from the light source on the mirror surface, and condenses the light on the striatum .
In the ultraviolet irradiation device, the tube material is based on a light-transmitting tube , an inert gas is introduced into the tube , and a first layer of zirconium oxide is vapor-deposited on the outer surface of the substrate. And depositing a second layer of silicon oxide thereon , and repeating these depositions to form a multilayer film having a thickness of 10 to 20 layers and a thickness of 1.0 to 1.8 microns or a thickness of 25 to 40 layers of 2.3 to 3.0 microns. forming a result in the ultraviolet reflector a light transmitting plate member as a base material, the mirror side of the substrate by repeating the same deposition as described above the thickness at 50 to 70 layers of 2.0 to 2.2 it forms a micron multilayer film, thereby the multilayer film of the ultraviolet reflector wavelength from the ultraviolet light source 200 to 450
nm light and a wavelength of 900 to 1100 n
m and transmits or absorbs light, and the multilayer film of the tube material transmits light having a wavelength of 200 to 450 nm and reflects light having a wavelength of 900 to 1100 nm. As a result, only ultraviolet rays are emitted to the surface of the striatum. The irradiation is selectively performed through the tube.

【0011】[0011]

【考案の具体的説明】以下、本考案を添付図面を用いて
詳述する。図1は本考案にかかる紫外線照射装置の一具
体例の模型的斜視図であり、図2は図1の装置の部分断
面図であり、図3は本考案にかかる装置の紫外線の反
射、透過状態を表した説明図であり、図4は線条体の温
度測定装置の概略図であり、図5は線条体表面の温度測
定結果を表したグラフである。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic perspective view of a specific example of the ultraviolet irradiation apparatus according to the present invention, FIG. 2 is a partial cross-sectional view of the apparatus of FIG. 1, and FIG. FIG. 4 is a schematic diagram of a device for measuring the temperature of the striatum, and FIG. 5 is a graph showing the result of temperature measurement on the surface of the striatum.

【0012】本考案装置Aは基本的には図1および図2
に示されるように、UVランプ等の紫外線光源1と、内
部に線条体2が走行する管材3と、鏡面4を有する紫外
線反射鏡5とを備えて構成される。
The device A of the present invention is basically similar to that of FIGS.
As shown in FIG. 1, an ultraviolet light source 1 such as a UV lamp, a tube member 3 in which a striated body 2 travels, and an ultraviolet reflecting mirror 5 having a mirror surface 4 are provided.

【0013】管材3は紫外線光源1の近傍に配置される
とともに、紫外線反射鏡5は鏡面4がこれら光源1およ
び管材3の両方に対向するように配置される。例えば、
紫外線反射鏡5が図2に示されように、内側に鏡面4を
有する楕円形筒体から構成され、この楕円形の一方の焦
点付近に紫外線光源1が、他方の焦点付近に管体3の内
部の線条体2が位置するように配置され、これにより管
材3は紫外線光源1の近傍に配置されるとともに、紫外
線反射鏡5は鏡面4がこれら光源1および管材3の両方
に対向するように配置される。
The tube 3 is arranged near the ultraviolet light source 1, and the ultraviolet reflecting mirror 5 is arranged so that the mirror surface 4 faces both the light source 1 and the tube 3. For example,
As shown in FIG. 2, the ultraviolet reflecting mirror 5 is composed of an elliptical cylindrical body having a mirror surface 4 inside, and the ultraviolet light source 1 is located near one focal point of the ellipse and the tube 3 is located near the other focal point. The tube 3 is arranged near the ultraviolet light source 1, and the ultraviolet reflecting mirror 5 is arranged such that the mirror surface 4 faces both the light source 1 and the tube 3. Placed in

【0014】管材3は石英ガラス、サフアイア等からな
る光透過性管体6を基材とし、この外表面上に多層膜7
を形成して構成される。この多層膜7は前記外表面上に
酸化ジルコニウムの第1層を蒸着し、さらにその上に酸
化シリコンの第2層を蒸着し、これら蒸着を繰り返して
10〜20層の厚さ 1.0〜1.8 ミクロン、好ましくは15層の
厚さ 1.2ミクロン、または25〜40層の厚さ 2.3〜3.0 ミ
クロン、好ましくは30層の厚さ 2.4ミクロンの多層膜を
形成することにより得られる。
The tube material 3 is based on a light-transmitting tube 6 made of quartz glass, sapphire or the like, and has a multilayer film 7 on its outer surface.
Is formed. The multilayer film 7 is formed by depositing a first layer of zirconium oxide on the outer surface, further depositing a second layer of silicon oxide thereon, and repeating these depositions.
Form a multilayer film with a thickness of 10-20 layers 1.0-1.8 microns, preferably 15 layers 1.2 microns, or 25-40 layers 2.3-3.0 microns, preferably 30 layers 2.4 microns thick It can be obtained by:

【0015】さらに、紫外線反射鏡5は石英ガラス、パ
イレックスガラス等からなる光透過性板体8を基材と
し、この板体8の鏡面4側に多層膜9を形成して構成さ
れる。この多層膜9もまた、鏡面4側に前述と同様の蒸
着を繰り返して50〜70層の厚さ2.0 〜 2.2ミクロン、好
ましくは50〜60層の厚さ 2.0〜2.2 ミクロンの多層膜を
形成することにより得られる。
Further, the ultraviolet reflecting mirror 5 is constituted by using a light transmitting plate 8 made of quartz glass, Pyrex glass or the like as a base material, and forming a multilayer film 9 on the mirror surface 4 side of the plate 8. This multilayer film 9 is also formed on the mirror surface 4 side by repeating the same vapor deposition as described above to form a multilayer film having a thickness of 50 to 70 layers of 2.0 to 2.2 microns, preferably 50 to 60 layers of 2.0 to 2.2 microns. It can be obtained by:

【0016】上述の紫外線反射鏡5の多層膜9は紫外線
光源1からの波長 200〜450nm 、特に 300〜400nm の光
を反射するとともに、波長 900〜1100nmの光を透過もし
くは吸収し、また、管材3の多層膜7は波長 200〜450n
m 、特に 300〜400nm の光を透過もしくは吸収するとと
もに、波長 900〜1100nmの光を反射するものである。
The multilayer film 9 of the above-mentioned ultraviolet reflecting mirror 5 reflects light having a wavelength of 200 to 450 nm, particularly 300 to 400 nm from the ultraviolet light source 1, and transmits or absorbs light having a wavelength of 900 to 1100 nm. The multilayer film 7 has a wavelength of 200 to 450 n.
m, in particular, transmits or absorbs light having a wavelength of 300 to 400 nm, and reflects light having a wavelength of 900 to 1100 nm.

【0017】なお、前述の管材3には、線条体2の走行
方向とは逆の方向に窒素ガス等の不活性ガスを、例えば
30l/分の流速で導入してもよく、この場合、線条体2
の温度は数℃ほど低下せしめることができる。
In addition, an inert gas such as nitrogen gas is applied to the above-mentioned pipe member 3 in a direction opposite to the running direction of the filament 2, for example.
It may be introduced at a flow rate of 30 l / min.
Can be lowered by several degrees Celsius.

【0018】[0018]

【作用】上述の構成からなる本考案装置Aでは、図3に
示されるように、まず、紫外線光源1から発生する光線
aは紫外線反射鏡5の多層膜9で反射されて、あるいは
直接、管材3の多層膜7に到達する。多層膜9では、光
線aに含まれる波長 200〜450nm の紫外線bのみを反射
して管材3の多層膜7に集光するとともに、波長900〜1
100nmの赤外線を透過もしくは吸収する。
In the apparatus A of the present invention having the above-described structure, as shown in FIG. 3, first, the light beam a generated from the ultraviolet light source 1 is reflected by the multilayer film 9 of the ultraviolet reflecting mirror 5 or directly into the tube material. 3 reach the multilayer film 7. The multilayer film 9 reflects only the ultraviolet light b having a wavelength of 200 to 450 nm contained in the light ray a and converges it on the multilayer film 7 of the tube material 3.
Transmits or absorbs 100 nm infrared light.

【0019】多層膜7では、紫外線光源1から直接到達
した光線aのうち波長 200〜 450nmの紫外線bを透過し
て線条体2に集光するとともに、波長 900〜1100nmの赤
外線を反射して排除し、かつ多層膜9で反射された波長
200〜450nm の紫外線bを透過して線条体2に集光する
とともに、残余の波長 900〜1100nmの赤外線を反射して
排除する。この結果、線条体2の表面に紫外線bのみを
管材3を通して選択的に照射し、線条体2の表面に塗布
された紫外線硬化樹脂(コーテイング材)を硬化して前
記線条体2の表面に樹脂膜を形成する。この際、線条体
2に照射される光線は紫外線bのみであり、赤外線が排
除されるので、線条体2の温度上昇を来たすことがな
く、コーテイング材の蒸発を未然に防止し得る。
The multilayer film 7 transmits the ultraviolet rays b having a wavelength of 200 to 450 nm out of the light rays a directly arriving from the ultraviolet light source 1 and condenses them on the striatum 2, and reflects the infrared rays having a wavelength of 900 to 1100 nm. Excluded and wavelength reflected by the multilayer film 9
While transmitting ultraviolet rays b having a wavelength of 200 to 450 nm and condensing it on the striatum 2, the remaining infrared rays having a wavelength of 900 to 1100 nm are reflected and eliminated. As a result, only the ultraviolet rays b are selectively irradiated to the surface of the striated body 2 through the tube material 3, and the ultraviolet curable resin (coating material) applied to the surface of the striated body 2 is cured to cure the striated body 2. A resin film is formed on the surface. At this time, the rays irradiated to the striated body 2 are only the ultraviolet rays b, and the infrared rays are excluded, so that the temperature of the striated body 2 does not rise and the coating material can be prevented from evaporating.

【0020】[0020]

【考案の実施例】図4に示されるように、通信用の光ケ
ーブルに用いられる光フアイバ(線条体)2を図1の構
成からなる本考案装置Aの管材3に挿通、走行させ、装
置Aの下方1mの個所で赤外線放射温度測定器10により
光フアイバ2の温度を測定した。光フアイバ2は 125μ
mφのガラスフアイバにウレタンアクリレート系の樹脂
で400 μmφの厚さに被覆したものを用いた。
As shown in FIG. 4, an optical fiber (striated body) 2 used for an optical cable for communication is inserted into a tube 3 of a device A of the present invention having the structure shown in FIG. The temperature of the optical fiber 2 was measured by an infrared radiation thermometer 10 at a point 1 m below A. Optical fiber 2 is 125μ
A glass fiber of mφ coated with a urethane acrylate resin to a thickness of 400 μmφ was used.

【0021】さらに、上述図4の本考案装置において、
管材3内に光フアイバ2の走行方向(矢印)とは逆の方
向に窒素ガス(N2 ガス)を30l/分の流速で導入し、
上述と同様の温度測定を行った。
Further, in the device of the present invention shown in FIG.
Nitrogen gas (N 2 gas) is introduced into the pipe member 3 at a flow rate of 30 l / min in a direction opposite to the traveling direction (arrow) of the optical fiber 2,
The same temperature measurement as described above was performed.

【0022】一方、図4に示されるレイアウトにおい
て、本考案装置Aの代わりに、図示しないが、アルミニ
ウム製紫外線反射鏡と石英製管材からなる装置(従来装
置A)、管材として紫外線を透過し、赤外線を反射する
フイルタを用い、紫外線反射鏡は上述装置Aと同様のも
のを用いた装置(従来装置B)、および紫外線反射鏡と
して紫外線を反射し、赤外線を透過吸収するフイルタを
用い、管材は上述装置Aと同様のものを用いた装置(従
来装置C)を用いて上述と同様の温度測定を行った。
On the other hand, in the layout shown in FIG. 4, instead of the device A of the present invention, a device (conventional device A) composed of an aluminum ultraviolet reflecting mirror and a quartz tube (not shown) instead of the device A, transmits ultraviolet rays as the tube, Using a filter that reflects infrared light, an ultraviolet reflecting mirror using a device similar to the above-described device A (conventional device B), and a filter that reflects ultraviolet light as an ultraviolet reflecting mirror and transmits and absorbs infrared light. The same temperature measurement as described above was performed using a device using the same device as the device A (conventional device C).

【0023】上述の各温度測定は上述各装置において、
光フアイバ2の走行速度を2〜8m/秒の間で変化させ
て光フアイバ2の表面温度を測定することにより行な
い、結果を図5に示した。
Each of the above temperature measurements is performed by
The measurement was performed by changing the traveling speed of the optical fiber 2 between 2 and 8 m / sec and measuring the surface temperature of the optical fiber 2, and the results are shown in FIG.

【0024】図5における記号は以下に示す装置の測定
結果である。 ▲:従来装置A ■:従来装置B ×:従来装置C ○:図4に示される本考案装置 ●:管材にN2 ガスを導入したときの図4に示される本考案装置
The symbols in FIG. 5 are the measurement results of the following apparatus. ▲: Conventional device A ■: Conventional device B ×: Conventional device C ○: Device of the present invention shown in FIG. 4 ●: Device of the present invention shown in FIG. 4 when N 2 gas is introduced into the pipe material

【0025】図5から、従来装置BおよびCでは、従来
装置Aに比べてそれぞれ、数℃〜20℃の温度低下を起こ
させるが、本考案装置では、50℃程度の温度低下を起こ
し、さらにN2 ガスを用いた本考案装置では、これを用
いないものよりもさらに、数℃の温度低下を来たすこと
がわかる。
FIG. 5 shows that the conventional apparatuses B and C cause a temperature drop of several degrees to 20 ° C. respectively in comparison with the conventional apparatus A, but the apparatus of the present invention causes a temperature drop of about 50 ° C. It can be seen that the temperature of the device of the present invention using N 2 gas is several degrees lower than that of the device without using N 2 gas.

【0026】なお、図5において、光フアイバ2の走行
速度が速くなるにつれて温度の減少度合いが小さくなっ
ている。この理由は光フアイバ2が上述各装置を出て測
定点に到達するまでの冷却時間が短くなるためである。
In FIG. 5, as the running speed of the optical fiber 2 increases, the degree of decrease in temperature decreases. The reason for this is that the cooling time required for the optical fiber 2 to leave the above-described devices and reach the measurement point is shortened.

【0027】[0027]

【考案の効果】以上のとおり、本考案装置は光フアイ
バ、ワイヤ、電線等の線条体に紫外線硬化樹脂(コーテ
イング材)を塗布し、次いでこの塗布面に紫外線を照射
して硬化することにより、前記線条体表面に樹脂膜を形
成し、これにより、前記線条体の補強、衝撃緩衝、保
護、マーキング、色付塗装等を行うに際して、紫外線光
源から発生する光のうち、波長 900〜1100nm赤色光線を
排除し、波長 200〜450nm の紫外光線のみを選択的に集
光して線条体に照射し、赤外光線による温度上昇を阻止
してコーテイング材の蒸発を未然に防止し得、実用上有
用な考案である。
[Effects of the Invention] As described above, the device of the present invention applies an ultraviolet curable resin (coating material) to a striated body such as an optical fiber, a wire, or an electric wire, and then irradiates the applied surface with ultraviolet light to cure. Forming a resin film on the surface of the striatum, thereby reinforcing, impact-buffering, protecting, marking, coloring, etc. the striatum; Eliminates red light at 1100 nm, selectively focuses only ultraviolet light with a wavelength of 200 to 450 nm and irradiates it to the striatum, preventing temperature rise due to infrared light and preventing evaporation of the coating material. This is a practically useful device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案にかかる紫外線照射装置の一具体例の模
型的斜視図である。
FIG. 1 is a schematic perspective view of a specific example of an ultraviolet irradiation device according to the present invention.

【図2】図1の装置の部分断面図である。FIG. 2 is a partial cross-sectional view of the device of FIG.

【図3】本考案にかかる装置の紫外線の反射、透過状態
を表した説明図である。
FIG. 3 is an explanatory view showing the state of reflection and transmission of ultraviolet light of the device according to the present invention.

【図4】線条体の温度測定装置の概略図である。FIG. 4 is a schematic diagram of an apparatus for measuring the temperature of a striatum.

【図5】線条体表面の温度測定結果を表したグラフであ
る。
FIG. 5 is a graph showing the results of temperature measurement on the surface of the striatum.

【符号の説明】[Explanation of symbols]

1 紫外線光源 2 線条体 3 管材 4 鏡面 5 紫外線反射鏡 6 光透過性管体 7 多層膜 8 光透過性板体 9 多層膜 A 本考案装置 DESCRIPTION OF SYMBOLS 1 Ultraviolet light source 2 Striatal body 3 Tube material 4 Mirror surface 5 Ultraviolet reflecting mirror 6 Light transmissive tube 7 Multilayer film 8 Light transmissive plate body 9 Multilayer film A

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01J 19/12 Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) B01J 19/12

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 紫外線光源と、この光源の近傍に配置さ
れた、内部に線条体が走行する管材と、鏡面がこれら光
源および管材の両方と対向するように配置され、前記光
源からの光をこの鏡面で反射して前記線条体に集光する
楕円形筒体からなる紫外線反射鏡とを備えた紫外線照射
装置において、前記管材は光透過性管体を基材とし、
の内部に不活性ガスが導入され、かつこの基材の外表面
上に酸化ジルコニウムの第一層を蒸着し、さらにその上
に酸化シリコンの第二層を蒸着し、これら蒸着を繰り返
して10〜20層で厚さ1.0〜1.8ミクロンまたは
25〜40層で厚さ2.3〜3.0ミクロンの多層膜を
形成してなり、前記紫外線反射鏡は光透過性板体を基材
とし、この基材の鏡面側に前述と同様の蒸着を繰り返し
50〜70層で厚さ2.0〜2.2ミクロンの多層膜
を形成してなり、これにより前記紫外線反射鏡の多層膜
は前記紫外線光源からの波長200〜450nmの光を
反射するとともに、波長900〜1100nmの光を透
過もしくは吸収し、かつ前記管材の多層膜は波長200
〜450nmの光を透過するとともに、波長900〜1
100nmの光を反射し、この結果、前記線条体の表面
に紫外線のみを前記管材を通して選択的に照射すること
を特徴とする紫外線照射装置。
1. An ultraviolet light source, a tube member disposed in the vicinity of the light source, in which a striatum travels, and a mirror surface disposed so as to face both the light source and the tube member. Is reflected by this mirror surface and condensed on the striatum
UV irradiation with an ultraviolet reflector consisting of an elliptical cylinder
In the device, the tube material the light transmitting tube body as a base material, this
An inert gas is introduced into the inside of the substrate , and a first layer of zirconium oxide is deposited on the outer surface of the substrate , and a second layer of silicon oxide is further deposited thereon . 20 layers with a thickness of 1.0-1.8 microns or
A multilayer film having a thickness of 2.3 to 3.0 μm is formed by 25 to 40 layers, and the ultraviolet reflecting mirror is made of a light-transmitting plate as a base material. Repeat deposition becomes to form a multilayer film having a thickness of 2.0 to 2.2 microns in 50 to 70 layers, thereby the multilayer film of the ultraviolet reflector light with a wavelength 200~450nm from the ultraviolet light source It reflects, transmits or absorbs light having a wavelength of 900 to 1100 nm, and the multilayer film of the tube material has a wavelength of 200 to 1100 nm.
450450 nm and a wavelength of 900 to 1
Reflecting light 100 nm, as a result, ultraviolet irradiation apparatus, wherein only ultraviolet to the surface of the striatum selectively irradiated through the tubing.
【請求項2】 前記光透過性管体は石英ガラスまたはサ
ワァイアからなる請求項1の紫外線照射装置。
2. The ultraviolet irradiation apparatus according to claim 1, wherein said light-transmitting tube is made of quartz glass or sour.
【請求項3】 前記光透過性板体は石英ガラスまたはパ
イレックスからなる請求項1の紫外線照射装置。
3. The ultraviolet irradiation apparatus according to claim 1, wherein said light transmitting plate is made of quartz glass or Pyrex.
JP1992081041U 1992-10-30 1992-10-30 UV irradiation device Expired - Fee Related JP2602087Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992081041U JP2602087Y2 (en) 1992-10-30 1992-10-30 UV irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992081041U JP2602087Y2 (en) 1992-10-30 1992-10-30 UV irradiation device

Publications (2)

Publication Number Publication Date
JPH0639129U JPH0639129U (en) 1994-05-24
JP2602087Y2 true JP2602087Y2 (en) 1999-12-20

Family

ID=13735360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992081041U Expired - Fee Related JP2602087Y2 (en) 1992-10-30 1992-10-30 UV irradiation device

Country Status (1)

Country Link
JP (1) JP2602087Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928868B2 (en) * 2011-10-26 2016-06-01 矢崎総業株式会社 Ultraviolet irradiation device and photocurable coating material curing treatment method
CN114113208B (en) * 2021-11-18 2024-03-19 思立科(江西)新材料有限公司 Non-silicon release film detection device for epoxy resin coating and use method

Also Published As

Publication number Publication date
JPH0639129U (en) 1994-05-24

Similar Documents

Publication Publication Date Title
JP4139471B2 (en) Optical system having UV adhesive and protective layer
US4710638A (en) Apparatus for treating coatings
US5119232A (en) Infrared-transmissive optical window
TWI232338B (en) Method and system for curing ultra violet curable sealant that is shadowed by metallization
KR920006799A (en) Reflective mask and mask manufacturing method and pattern formation method using the same
JP2602087Y2 (en) UV irradiation device
JPH11142668A (en) Optical waveguide element for loss absorption and its production
US7154101B2 (en) EUV energy detection
JPH0797167B2 (en) Optical bundle fiber terminal structure
JPH1082919A (en) Formation of fiber grating and optical fiber
JP6582815B2 (en) Optical fiber manufacturing method
JPS62201639A (en) Device for irradiating ultraviolet ray
JPS62254105A (en) Reflecting mirror
JP2638914B2 (en) X-ray intensity measurement method for exposure
JPS60173551A (en) Pattern transferring method by reflecting projection of light such as x rays or the like
JP2001516888A (en) Scintillation detector, refractive coating for scintillator, and process for producing the coating
JPH01316710A (en) Novel optical device
JPH05107362A (en) Manufacture of x-ray detecting element
JP6729036B2 (en) Optical fiber manufacturing method
WO2005114283A1 (en) Grin lens with barrier layer for use in electro-optical package
JP3173925B2 (en) Curing device for coating agent applied to optical fiber
JPH0716289Y2 (en) Medical light source device
JP2023502874A (en) Low attenuation rollable optical fiber ribbon
JP2712349B2 (en) Light reflector and tube
JPS63156042A (en) Ultraviolet ray irradiation device for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees