JP2638914B2 - X-ray intensity measurement method for exposure - Google Patents

X-ray intensity measurement method for exposure

Info

Publication number
JP2638914B2
JP2638914B2 JP63100639A JP10063988A JP2638914B2 JP 2638914 B2 JP2638914 B2 JP 2638914B2 JP 63100639 A JP63100639 A JP 63100639A JP 10063988 A JP10063988 A JP 10063988A JP 2638914 B2 JP2638914 B2 JP 2638914B2
Authority
JP
Japan
Prior art keywords
substrate
ray
film
incident
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63100639A
Other languages
Japanese (ja)
Other versions
JPH01270690A (en
Inventor
俊介 笛木
隆 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63100639A priority Critical patent/JP2638914B2/en
Publication of JPH01270690A publication Critical patent/JPH01270690A/en
Application granted granted Critical
Publication of JP2638914B2 publication Critical patent/JP2638914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔概要〕 シンクロトロン放射光(SR)リソグラフィにおけるSR
強度の測定方法に関し, 入射X線強度を露光装置内で直接半導体検出器により
容易に測定できる方法を提起し,高精度露光の実現を目
的とし, シンクロトロン放射光を利用したX線露光方式におい
て,貫通孔を開口した原基板の表面に,該開口上を含ん
で該原基板上全面に順次補強膜,螢光体膜,X線の吸収体
膜を被着して形成された測定用基板の表面に入射X線を
受け,該吸収体膜を透過し減衰した該入射X線により該
螢光体膜に発生した螢光を,該補強膜と該珪素基板の開
口及び入射X線に対して斜めに設けられた光路を通して
半導体光検出器に受け,該光検出器に流れる光電流を該
入射X線の強度に換算するようにして構成する。
DETAILED DESCRIPTION OF THE INVENTION [Overview] SR in synchrotron radiation (SR) lithography
Regarding the method of measuring the intensity, we propose a method that can easily measure the incident X-ray intensity directly with a semiconductor detector in the exposure apparatus, and aim at realizing high-precision exposure. In the X-ray exposure method using synchrotron radiation, A substrate for measurement formed by sequentially applying a reinforcing film, a phosphor film, and an X-ray absorber film over the entire surface of the original substrate including the opening, on the surface of the original substrate having the through holes. The surface of the substrate receives incident X-rays, and the fluorescent light generated by the incident X-rays transmitted through the absorber film and attenuated by the incident X-rays is transmitted to the opening of the reinforcing film and the silicon substrate and the incident X-rays. The semiconductor light detector is received through a diagonally provided optical path, and the photocurrent flowing through the photodetector is converted into the intensity of the incident X-ray.

〔産業上の利用分野〕 本発明はシンクロトロン放射光(SR)リソグラフィに
おけるSR強度の測定方法に関する。
The present invention relates to a method for measuring SR intensity in synchrotron radiation (SR) lithography.

超LSI製造においては,サブマイクロン加工技術が求
められている。そのためにリソグラフィ工程において,
強度が桁違いに大きく,平行性が優れているSRが転写用
光源として検討されるようになってきた。
In VLSI manufacturing, sub-micron processing technology is required. Therefore, in the lithography process,
SR, which has extraordinarily high intensity and excellent parallelism, has been considered as a light source for transfer.

しかし,これが実用化されるためには,SR強度の測定
等の基本技術の確立が必要である。
However, for this to be practical, it is necessary to establish basic techniques such as measurement of SR intensity.

〔従来の技術〕[Conventional technology]

SR露光においては,X線から可視光にわたる連続スペク
トルの中からX線露光に必要な波長帯(4〜15Å)だけ
をバンドパスフイルタを用いて取り出している。
In SR exposure, only a wavelength band (4 to 15 °) necessary for X-ray exposure is extracted from a continuous spectrum from X-rays to visible light using a bandpass filter.

バンドパスフイルタとして,短波長成分除去には全反
射ミラーが,長波長成分除去にはベリリウム(Be)等の
窓材が一般に用いられる。
As a bandpass filter, a total reflection mirror is generally used for removing short wavelength components, and a window material such as beryllium (Be) is generally used for removing long wavelength components.

ところが,このようなバンドパスフイルタを使用した
場合,時間とともに光学系の変動を生じ,X線強度が変動
する。例えば,全反射ミラーの配置角度の変動や,ミラ
ー表面の汚染等による反射率の変化等が問題となる。
However, when such a bandpass filter is used, the optical system fluctuates with time, and the X-ray intensity fluctuates. For example, a change in the arrangement angle of the total reflection mirror, a change in reflectance due to contamination of the mirror surface, and the like cause problems.

一方,電子蓄積リングの電子ビームが時間とともに減
衰するので,これより露光室に入射されるX線強度もそ
れに従って減衰する。
On the other hand, since the electron beam in the electron storage ring attenuates with time, the intensity of X-rays incident on the exposure chamber attenuates accordingly.

以上の理由により,一定のX線照射量でX線露光を行
うためには,X線強度測定が必要となってくる。
For the above reasons, in order to perform X-ray exposure with a constant X-ray irradiation amount, X-ray intensity measurement is required.

従来,SRを用いたX線露光においては,X線強度が測定
されていないのが現状である。
Conventionally, in X-ray exposure using SR, X-ray intensity has not been measured at present.

その理由は,通常強度のX線を精度よく検出できる半
体検出器は容易に入手できるが,これのX線フォトンの
最大計数率が 104photons/sec/cm-2程度であるのに対し,2.5GeVの電子
蓄積リングから出るSRの強度は 1014photons/sec/cm-2と桁違いに大きく,半導体検出器
により直接検出することはできないからである。
The reason is that a half detector capable of accurately detecting X-rays of normal intensity is readily available, but the maximum count rate of X-ray photons is about 10 4 photons / sec / cm -2. This is because the SR intensity emitted from the 2.5 GeV electron storage ring is as large as 10 14 photons / sec / cm -2 and cannot be directly detected by a semiconductor detector.

従来のX線照射強度の測定方法としては,光電子管を
用いたシンチレーションカウンタや,ArやN2等の雰囲気
中をX線が通過した際の電離電流を測定する電離箱等が
ある。しかしながら,これらの方法は測定系自体が大き
く,X線露光装置内に組み込むことは困難であった。
As a measuring method of a conventional X-ray irradiation intensity, scintillation counters and using a photoelectron tube, the atmosphere such as Ar or N 2 is X-ray is ionization chamber or the like for measuring the ionization current when passing through. However, these methods have a large measuring system and are difficult to incorporate into an X-ray exposure apparatus.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従って,SR露光装置の場合,露光装置と測定装置を分
離しなければならず,又測定値も実際の装置の場合と条
件が異なるため精度的に問題があった。
Therefore, in the case of the SR exposure apparatus, the exposure apparatus and the measuring apparatus have to be separated, and the measurement values are different from those of the actual apparatus, so that there is a problem in accuracy.

本発明は,SR露光の入射X線強度を露光装置内で直接
半導体検出器により容易に測定できる方法を提起し,高
精度露光の実現を目的とする。
SUMMARY OF THE INVENTION The present invention proposes a method for easily measuring the incident X-ray intensity of SR exposure directly in a lithographic apparatus using a semiconductor detector, and aims at realizing high-precision exposure.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点の解決は,シンクロトロン放射光を利用し
たX線露光装置の露光室内に設けられて被露光基板を装
着するチャックに,貫通孔を開口した原基板の表面に該
開口を含んで該原基板の少なくともシンクロトロン放射
光が照射される表面全面に補強膜,蛍光体膜,X線の吸収
体膜を順次被着して形成された測定用基板を装着し,該
測定用基板の表面に入射X線を受け,該吸収体膜を透過
し減衰した該入射X線により該蛍光体膜に発生した蛍光
を,該補強膜と該原基板の開口及び該チャックに該入射
X線に対して斜めに設けられた光路を通して半導体光検
出器に受け,該光検出器に流れる光電流を該入射X線の
強度に換算する露光用X線の強度測定方法により達成さ
れる。
In order to solve the above-mentioned problem, a chuck provided in an exposure chamber of an X-ray exposure apparatus using synchrotron radiation and for mounting a substrate to be exposed includes an opening on a surface of an original substrate having a through hole. A measurement substrate formed by sequentially applying a reinforcing film, a phosphor film, and an X-ray absorber film to at least the entire surface of the original substrate to which the synchrotron radiation is irradiated is attached, and the surface of the measurement substrate is mounted. Receives the incident X-rays and transmits the fluorescence generated in the phosphor film by the incident X-rays transmitted through the absorber film and attenuated to the reinforcing film and the opening of the original substrate and the chuck to the incident X-rays. This is achieved by a method of measuring the intensity of an exposure X-ray which receives a semiconductor photodetector through an obliquely provided optical path and converts a photocurrent flowing through the photodetector into the intensity of the incident X-ray.

〔作用〕[Action]

第1図は本発明の原理図である。 FIG. 1 is a diagram illustrating the principle of the present invention.

図において,1は11〜14からなる測定用基板,11は開口
を持つ原基板で珪素(Si)基板,12は基板の補強膜,13は
螢光体膜,14はX線の吸収体膜,2は基板を吸引するウエ
ハチャック,3はウエハチャック内に,入射X線に斜めに
設けられた光路,4は半導体検出器,5は入射X線である。
In the figure, 1 is a measurement substrate consisting of 11 to 14, 11 is an original substrate having an opening, a silicon (Si) substrate, 12 is a substrate reinforcing film, 13 is a phosphor film, and 14 is an X-ray absorber film. Reference numeral 2 denotes a wafer chuck for sucking a substrate, reference numeral 3 denotes an optical path provided obliquely to incident X-rays in the wafer chuck, reference numeral 4 denotes a semiconductor detector, and reference numeral 5 denotes incident X-rays.

ここで,補強膜12は螢光体膜13より出る螢光を透過す
る物質からなり,原基板の開口上にも螢光体膜13,X線の
吸収体膜14を形成できるようにするための膜である。
Here, the reinforcing film 12 is made of a substance that transmits the fluorescent light emitted from the phosphor film 13 so that the phosphor film 13 and the X-ray absorber film 14 can be formed on the opening of the original substrate. Film.

又,原基板として用いたSi基板は開口以外で螢光体を
遮蔽する役目を持つ。同等の性質を持つ他の基板を用い
てもよい。
Also, the Si substrate used as the original substrate has a function of shielding the phosphor except at the openings. Other substrates having the same properties may be used.

SRの電子軌道面上のパワースペクトルP0(λ)は次式
で示される1)
The power spectrum P 0 (λ) on the electron orbital plane of SR is given by the following equation 1) .

P0(λ)=3.92×10-30(γ3/R2)I・ y4K2/3 (y/2) 〔W/Å・mrad2・mA〕. ここに, λ=波長(Å), R=電子蓄積リングの半径(m), I=電子蓄積リングの電流(mA), γ=1.96×103・E (Eは電子のエネルギ,GeV), y=λc/λ (λ=4πR/3γ), K2/3=第2種変形ベッセル関数. である。P 0 (λ) = 3.92 × 10 −303 / R 2 ) I · y 4 K 2/3 2 (y / 2) [W / Å · mrad 2 · mA]. Where λ = wavelength (Å), R = radius of the electron storage ring (m), I = current of the electron storage ring (mA), γ = 1.96 × 10 3 · E (E is the energy of electrons, GeV), y = λ c / λ (λ c = 4πR / 3γ 3 ), K 2/3 = Modified Bessel function of the second kind. It is.

1)小塩高文,笹沼道雄, 核研電子シンクロトロン軌道放射の特性, 応用物理,第37巻,第II号(1968). ここで,P0(λ)を0〜1000Åまでの波長について積
分すると,SRの総エネルギ量を求めることができる。
1) Takafumi Oshio, Michio Sasanuma, Characteristics of orbital radiation of the IEEJ electron synchrotron, Applied Physics, Vol. 37, No. II (1968). Here, by integrating P 0 (λ) with respect to a wavelength from 0 to 1000 °, the total energy amount of SR can be obtained.

更に,SRはヘリウム(He)雰囲気の露光室内に導かれ
る際に,Be窓等による減衰を受ける。
Furthermore, SR is attenuated by a Be window or the like when guided into an exposure chamber in a helium (He) atmosphere.

従って, P0(λ)・exp(−Σμ(λ)tj). ここに, μ(λ):Be窓の波長に対する線吸収係数, tj:Be窓の厚さ, j:SRが通過する減衰物質の数. を波長について積分すると,基板に到達するSRの総エネ
ルギ量を求めることができる。
Therefore, P 0 (λ) · exp (−Σμ j (λ) t j ). Here, μ j (λ): the linear absorption coefficient for the wavelength of the Be window, t j : the thickness of the Be window, and j: the number of attenuating substances that pass through the SR. Is integrated over wavelength, the total energy of SR reaching the substrate can be determined.

例えば,電子の加速エネルギ2.5GeV,蓄積電流300mA,
半径8.66mの電子蓄積リングからのSRは,厚さ25μmのB
e窓を透過後,発光点から軌道面上で30m離れた点におい
て50mW/mm2の強度を持つことが算出できる。
For example, the acceleration energy of electrons is 2.5 GeV, the storage current is 300 mA,
SR from the electron storage ring with a radius of 8.66 m is 25 μm thick B
After passing through the e-window, it can be calculated to have an intensity of 50 mW / mm 2 at a point 30 m away from the light emitting point on the orbital plane.

これらのパワースペクトルは,さらにマスク,Heガス
を通過後測定用基板面に到達する。
These power spectra further reach the measurement substrate surface after passing through the mask and the He gas.

このようにして基板に到達した入射X線5は測定用基
板面のTa,Au等からなるX線吸収体膜14で更に減衰され
る。例えば厚さ2μmのTa膜の場合は螢光体膜に到着す
るエネルギ量は4.23mW/mm2(波長1〜15Å)となる。
The incident X-rays 5 arriving at the substrate in this way are further attenuated by the X-ray absorber film 14 made of Ta, Au or the like on the surface of the measurement substrate. For example, in the case of a Ta film having a thickness of 2 μm, the energy amount arriving at the phosphor film is 4.23 mW / mm 2 (wavelength: 1 to 15 °).

これを受けて,螢光体膜13は発光するが,螢光体とし
て20Å以下の波長に反応し波長4000〜8000Å(ピーク波
長5800Å)の光を発光するタングステン酸カルシウム,
硫化亜鉛等を用いれば,半導体検出器4としてピーク感
度5800ÅのSi PINフォトダイオードで検出できる。
In response, the phosphor film 13 emits light, but calcium tungstate, which emits light having a wavelength of 4000 to 8000 mm (peak wavelength 5800 mm) in response to a wavelength of 20 mm or less as a phosphor,
If zinc sulfide or the like is used, the semiconductor detector 4 can be detected by a Si PIN photodiode having a peak sensitivity of 5800 °.

この際に,螢光体の発光効率が60%としても,PINフォ
トダイオードの感度が0.3A/Wのものを使った場合,0.7W
の出力が得られるのでI−V変換により電圧値として記
録することも充分可能である。
At this time, even if the luminous efficiency of the phosphor is 60%, when the sensitivity of the PIN photodiode is 0.3A / W, 0.7W
Is obtained, it is possible to record as a voltage value by IV conversion.

螢光体膜を発光させたX線はエネルギが減衰している
ものの短波長成分がまだ含まれている。この短波長成分
をPINフォトダイオードで直接受光するとこれを破壊す
る恐れがある。そこで,短波長成分は直進性があること
を利用して,入射方向に対し斜めの光路3を設けて破壊
を防止するようにする。。
The X-rays emitted from the phosphor film have attenuated energy but still contain short wavelength components. If this short wavelength component is directly received by the PIN photodiode, it may be destroyed. Therefore, utilizing the fact that the short-wavelength component has straightness, an optical path 3 oblique to the incident direction is provided to prevent destruction. .

〔実施例〕〔Example〕

以下に本発明の一実施例を,(1) ウエハッチャッ
クの作製,(2) 測定用基板の作製,(3) 測定方
法に分けて説明する。
Hereinafter, an embodiment of the present invention will be described by dividing into (1) production of a wafer chuck, (2) production of a measurement substrate, and (3) a measurement method.

(1) ウエハチャックの作製 第2図(1),(2)は本発明の一実施例に使用した
ウエハチャックの平面図と断面図である。
(1) Production of wafer chuck FIGS. 2 (1) and 2 (2) are a plan view and a sectional view of a wafer chuck used in one embodiment of the present invention.

図において,ウエハチャック2は厚さ10mm,直径125mm
のステンレス,またはアルミニウム円板で作製し,その
表面に基板を吸引する真空吸引溝21と真空吸引孔22が設
けられる。
In the figure, the wafer chuck 2 has a thickness of 10 mm and a diameter of 125 mm
A vacuum suction groove 21 and a vacuum suction hole 22 for sucking the substrate are provided on the surface of the stainless steel or aluminum disk.

表面中央に基板の垂線に対し30゜の傾きを持った直径
5mmφの光路3が形成される。
Diameter at the center of the surface with an inclination of 30 ° to the perpendicular of the substrate
An optical path 3 of 5 mmφ is formed.

ウエハチャック2の裏面に開いた光路3の開口部に合
わせて半導体検出器のホルダ4′が形成される。
A holder 4 ′ for the semiconductor detector is formed in accordance with the opening of the optical path 3 opened on the back surface of the wafer chuck 2.

使用したSRビームの断面は30mm×5mmであるので,半
導体検出器はウエハチャック表面から深さ10mmの所に,
中心より5.8mmずれた位置に固定されるので破壊される
心配はない。
Since the cross section of the SR beam used was 30 mm x 5 mm, the semiconductor detector was placed at a depth of 10 mm from the wafer chuck surface.
There is no worry about being destroyed because it is fixed at a position shifted 5.8mm from the center.

(2) 測定用基板の作製 第3図(1)〜(4)は本発明の一実施例に使用した
測定用基板の形成方法を説明する断面図である。
(2) Production of Measurement Substrate FIGS. 3 (1) to (4) are cross-sectional views illustrating a method of forming a measurement substrate used in one embodiment of the present invention.

第3図(1)において,Si基板11の上に補強膜12とし
て窒化硼素(BN),酸化インジウム錫(ITO),二酸化
珪素(SiO2)等の膜を被着する。
In FIG. 3A, a film such as boron nitride (BN), indium tin oxide (ITO), silicon dioxide (SiO 2 ) or the like is deposited as a reinforcing film 12 on a Si substrate 11.

第3図(2)において,通常のリソグラフィを用い
て,Si基板11の中央に裏面より100〜500μm角の貫通孔
を開口する。
In FIG. 3 (2), a through hole of 100 to 500 μm square is opened from the back surface at the center of the Si substrate 11 using ordinary lithography.

第3図(3)において,螢光物質としてタングステン
酸カルシウム又は硫化亜鉛を,補強膜12の上に厚さ100
〜500μm塗布して螢光体膜13を形成する。
In FIG. 3 (3), calcium tungstate or zinc sulfide is used as a fluorescent substance,
The phosphor film 13 is formed by applying a thickness of about 500 μm.

第3図(4)において,X線吸収物質としてTa又はAuを
0.5〜3μm厚さにスパッタして螢光膜体13上に被着し,
X線吸収体膜14を形成する。
In FIG. 3 (4), Ta or Au is used as an X-ray absorbing substance.
Sputtered to a thickness of 0.5 to 3 μm and deposited on the fluorescent film body 13,
An X-ray absorber film 14 is formed.

以上により,開口を持つSi基板11,補強膜12,螢光体膜
13,X線吸収体膜14からなる測定用基板が作製される。
As described above, the Si substrate 11 with the opening, the reinforcing film 12, the phosphor film
13, A measurement substrate including the X-ray absorber film 14 is manufactured.

(3) 測定方法 測定用基板は通常の基板と同様に基板搬送用のキャリ
アにセットする。セット後は露光装置側で位置出しを
し,微動ステージのウエハチャック上に±10μmの精度
で装着される。従って,基板中央部の開口は,ウエハチ
ャックの孔に確実に位置合わせすることができる。
(3) Measurement method The measurement substrate is set on a carrier for transporting the substrate in the same manner as a normal substrate. After the setting, the position is determined on the exposure apparatus side, and the wafer is mounted on the wafer chuck of the fine movement stage with an accuracy of ± 10 μm. Therefore, the opening at the center of the substrate can be reliably aligned with the hole of the wafer chuck.

次に,ビームシャッタを開け,例えばビーム断面が30
mm×5mmのSRを基板上に照射し,基板開口径を最小分解
能のステップとしてステージをX,Y方向に移動し,その
座標に対する強度を測定して強度分布を求めることがで
きる。
Next, open the beam shutter.
By irradiating an SR of mm × 5 mm onto the substrate, moving the stage in the X and Y directions with the substrate aperture diameter as the minimum resolution step, and measuring the intensity with respect to the coordinates, the intensity distribution can be obtained.

ここで,強度(エネルギ)Em(W/mm2)は測定された
電圧値を次式で変換して求める。
Here, the intensity (energy) Em (W / mm 2 ) is obtained by converting the measured voltage value by the following equation.

Em=(V/R)・KW・KL・KP. ここに, V:測定された電圧値, R:I−V変換時の抵抗値, KW:A→Wの単位変換係数, KL:螢光物質の変換効率係数の逆数, KP:X線吸収体の吸収効率の逆数, (測定波長帯域に対する). である。E m = (V / R) · K W · K L · K P. Here, V: measured voltage value, R: resistance value during IV conversion, K W : unit conversion coefficient of A → W , K L : reciprocal of the conversion efficiency coefficient of the fluorescent substance, K P : reciprocal of the absorption efficiency of the X-ray absorber, (for the measurement wavelength band). It is.

第4図は前記のSRに対して,X(Y)方向の強度分布を
一例を示す図である。
FIG. 4 is a diagram showing an example of an intensity distribution in the X (Y) direction with respect to the SR.

以上のような実施例によれば, 基板上の強度分布を係数変換だけで精度よく求めら
れる。
According to the embodiment as described above, the intensity distribution on the substrate can be obtained with high accuracy only by coefficient conversion.

測定用基板の螢光物質の波長感度を変えれば,任意
の波長に対する強度測定ができる。
By changing the wavelength sensitivity of the fluorescent substance on the measurement substrate, the intensity can be measured at an arbitrary wavelength.

入射方向に対し斜めの光路により,X線の短波長成分
による半導体検出器の破損を防止することができる。
The optical path oblique to the incident direction can prevent damage to the semiconductor detector due to the short wavelength component of X-rays.

測定用基板はX線吸収体膜を表面に形成しているた
め,大気中でも測定可能である。
Since the X-ray absorber film is formed on the surface of the measurement substrate, it can be measured even in the atmosphere.

ステージの移動により強度分布の測定ができる。 The intensity distribution can be measured by moving the stage.

等が可能となる。Etc. become possible.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば,SR露光の入射X
線強度を露光装置内で直接半導体検出器により容易に測
定でき,高精度露光の実現に寄与できる。
As described above, according to the present invention, the incident X
The line intensity can be easily measured by a semiconductor detector directly in the exposure apparatus, contributing to the realization of high-precision exposure.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理図, 第2図(1),(2)は本発明の一実施例に使用したウ
エハチャックの平面図と断面図, 第3図(1)〜(4)は本発明の一実施例に使用した測
定用基板の形成方法を説明する断面図, 第4図は前記のSRに対して,X(Y)方向の強度分布の一
例を示す図である。 図において, 1は11〜14からなる測定用基板, 11は開口を持つ原基板でSi基板, 12は基板の補強膜, 13は螢光体膜, 14はX線の吸収体膜, 2は基板を吸引するウエハチャック, 3は入射X線に斜めに設けられた光路, 4は半導体検出器, 5は入射X線である。 である。
1 is a principle view of the present invention, FIGS. 2 (1) and 2 (2) are a plan view and a sectional view of a wafer chuck used in one embodiment of the present invention, and FIGS. 3 (1) to (4) are FIG. 4 is a cross-sectional view for explaining a method of forming a measurement substrate used in one embodiment of the present invention. FIG. 4 is a view showing an example of an intensity distribution in the X (Y) direction with respect to the SR. In the figure, 1 is a measurement substrate consisting of 11 to 14, 11 is an original substrate having an opening, a Si substrate, 12 is a reinforcing film of the substrate, 13 is a phosphor film, 14 is an X-ray absorber film, and 2 is an X-ray absorber film. A wafer chuck for sucking the substrate, 3 is an optical path provided obliquely to the incident X-ray, 4 is a semiconductor detector, and 5 is an incident X-ray. It is.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シンクロトロン放射光を利用したX線露光
装置の露光室内に設けられて被露光基板を装着するチャ
ックに,貫通孔を開口した原基板の表面に該開口を含ん
で該原基板の少なくともシンクロトロン放射光が照射さ
れる表面全面に補強膜,蛍光体膜,X線の吸収体膜を順次
被着して形成された測定用基板を装着し,該測定用基板
の表面に入射X線を受け,該吸収体膜を透過し減衰した
該入射X線により該蛍光体膜に発生した蛍光を,該補強
膜と該原基板の開口及び該チャックに該入射X線に対し
て斜めに設けられた光路を通して半導体光検出器に受
け,該光検出器に流れる光電流を該入射X線の強度に換
算することを特徴とする露光用X線の強度測定方法。
1. A chuck provided in an exposure chamber of an X-ray exposure apparatus utilizing synchrotron radiation and for mounting a substrate to be exposed, comprising: Attach a measurement substrate formed by sequentially applying a reinforcing film, a phosphor film, and an X-ray absorber film to at least the entire surface to be irradiated with the synchrotron radiation, and irradiate the surface of the measurement substrate. X-rays are received, and the fluorescent light generated on the phosphor film by the incident X-rays transmitted through the absorber film and attenuated is obliquely incident on the reinforcing film, the opening of the original substrate and the chuck with respect to the incident X-rays. A method for measuring the intensity of X-rays for exposure, wherein the intensity is received by a semiconductor photodetector through an optical path provided in the photodetector, and the photocurrent flowing through the photodetector is converted into the intensity of the incident X-ray.
JP63100639A 1988-04-22 1988-04-22 X-ray intensity measurement method for exposure Expired - Fee Related JP2638914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63100639A JP2638914B2 (en) 1988-04-22 1988-04-22 X-ray intensity measurement method for exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100639A JP2638914B2 (en) 1988-04-22 1988-04-22 X-ray intensity measurement method for exposure

Publications (2)

Publication Number Publication Date
JPH01270690A JPH01270690A (en) 1989-10-27
JP2638914B2 true JP2638914B2 (en) 1997-08-06

Family

ID=14279397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100639A Expired - Fee Related JP2638914B2 (en) 1988-04-22 1988-04-22 X-ray intensity measurement method for exposure

Country Status (1)

Country Link
JP (1) JP2638914B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194719B1 (en) * 1997-06-13 2001-02-27 Gatan, Inc. Methods and apparatus for improving resolution and reducing noise in an image detector for an electron microscope
US6389102B2 (en) * 1999-09-29 2002-05-14 Jordan Valley Applied Radiation Ltd. X-ray array detector
DE60131203T2 (en) * 2000-08-25 2008-08-07 Asml Netherlands B.V. Lithographic apparatus
EP1530091A1 (en) * 2003-11-07 2005-05-11 ASML Netherlands B.V. Radiation detector
SG112033A1 (en) * 2003-11-07 2005-06-29 Asml Netherlands Bv Radiation detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093372A (en) * 1983-10-27 1985-05-25 Shimadzu Corp Semiconductor x-ray detector
JPS616253U (en) * 1984-06-19 1986-01-14 日本電子株式会社 Detector in electron microscope

Also Published As

Publication number Publication date
JPH01270690A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
US6781135B2 (en) Universal EUV in-band intensity detector
JP2638914B2 (en) X-ray intensity measurement method for exposure
US6642528B2 (en) Alignment mark detection method, and alignment method, exposure method and device, and device production method, making use of the alignment mark detection method
JP4370057B2 (en) X-ray irradiation apparatus having an X source including a capillary optical system
JP2000504422A (en) X-ray analyzer having two collimator masks
Streli et al. Total reflection X-ray fluorescence analysis of light elements using synchrotron radiation
US7199369B1 (en) Low threshold level radiation detector
CA1192675A (en) Fluorescence laser exafs
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
Elton et al. X‐ray damage to optical components using a laser‐plasma source
JP2001141674A (en) Sample holder for measuring diffraction of obliquely emitted x-rays and apparatus and method for measuring diffraction of obliquely emitted x-rays using the same
Ninomiya et al. Microscopic X-ray photoelectron spectroscopy using a Wolter type X-ray mirror
JP3272788B2 (en) X-ray intensity measurement device
JP2000055839A (en) Fluorescent x-ray analysis device
JPH0843325A (en) X-ray evaluating device
TW200530570A (en) Photoelectron measuring device
JP2507484B2 (en) Polarized total reflection X-ray fluorescence structure analyzer
JPH06235706A (en) Total reflection fluorescent x-ray analyzer
Kiyokura et al. Photoelectron microspectroscopy observations of a cleaved surface of semiconductor double heterostructure
JP2514687B2 (en) Fluorescent X-ray structure analysis apparatus and fluorescent X-ray structure analysis method
RU2071085C1 (en) X-ray polarimeter
JPH08122281A (en) Fluorescent x-ray analyzer
Maldonado et al. Measurement of the effective wavelength of x-ray lithography sources
JP2001141675A (en) Apparatus and method for measuring diffraction of obliquely emitted x-rays
CN110687576A (en) Cadmium tungstate scintillation crystal radiation detector with high light extraction rate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees