JP2507484B2 - Polarized total reflection X-ray fluorescence structure analyzer - Google Patents

Polarized total reflection X-ray fluorescence structure analyzer

Info

Publication number
JP2507484B2
JP2507484B2 JP62253817A JP25381787A JP2507484B2 JP 2507484 B2 JP2507484 B2 JP 2507484B2 JP 62253817 A JP62253817 A JP 62253817A JP 25381787 A JP25381787 A JP 25381787A JP 2507484 B2 JP2507484 B2 JP 2507484B2
Authority
JP
Japan
Prior art keywords
ray
sample
incident
intensity
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62253817A
Other languages
Japanese (ja)
Other versions
JPH0197844A (en
Inventor
朝雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62253817A priority Critical patent/JP2507484B2/en
Publication of JPH0197844A publication Critical patent/JPH0197844A/en
Application granted granted Critical
Publication of JP2507484B2 publication Critical patent/JP2507484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば半導体装置など電子装置を構成する
薄膜を積層して形成される積層膜について積層状態のま
ま各薄膜と各界面の原子配列を解析する評価装置に好適
な偏光全反射蛍光X線構造解析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated film formed by laminating thin films constituting an electronic device such as a semiconductor device, and the atomic arrangement of each thin film and each interface in the laminated state. The present invention relates to a polarized total reflection fluorescent X-ray structure analysis device suitable for an evaluation device for analyzing.

〔従来の技術〕[Conventional technology]

X線の発生装置として、電子ビーム励起型か、最近そ
の利用が活発になったシンクロトロン中を電子または陽
電子を周回させたときに生ずるシンクロトロン放射光が
一般的に用いられる。これらの装置から取り出されるX
線は、電子ビーム励起型では偏光ではなく、また、シン
クロトロン放射光では強い偏光となっている。その偏光
方向は、放射光の進行方向に対して、X線の電気ベクト
ルを電子または陽電子の周回面と一致させており、シン
クロトロンの設置状態の関係から、一般には水平偏光で
ある。また、電子ビーム励起型X線発生装置を用いて
も、利用しようとするX線を結晶モノクロメータにより
取り出すと、モノクロメータ結晶回転軸方向に電気ベク
トルをもつ偏光となる。
As an X-ray generator, an electron beam excitation type or a synchrotron radiation generated when an electron or a positron is circulated in a synchrotron which has recently been actively used is generally used. X removed from these devices
The line is not polarized in the electron beam excitation type and is strongly polarized in the synchrotron radiation. The polarization direction is such that the electric vector of the X-ray is aligned with the orbiting plane of the electron or positron with respect to the traveling direction of the emitted light, and is generally horizontal polarization in view of the installation state of the synchrotron. Even when the electron beam excitation type X-ray generator is used, when the X-ray to be used is extracted by the crystal monochromator, it becomes polarized light having an electric vector in the crystal rotation axis direction of the monochromator crystal.

従来の装置はフォトン・ファクトリー・アクティビテ
ィ・レポート1982/83年,V-28頁(Photon Factory Activ
ity Report 1982/83,V-28)に記載のあるような、被測
定試料に全入射X線を吸収させ蛍光X線を発生させる
か、大気中で試料表面上の全反射を生じさせ、試料から
発生する蛍光X線と全反射X線強度を測定する装置とな
っており、特に試料を照射するX線の偏光について考慮
がなされていなかった。
The conventional device is Photon Factory Activity Report 1982/83, V-28 (Photon Factory Activ
1982/83, V-28), the sample to be measured is allowed to absorb all incident X-rays to generate fluorescent X-rays or to cause total reflection on the sample surface in the atmosphere, It is an apparatus for measuring the intensity of the fluorescent X-rays and the total reflection X-rays generated from the above, and no particular consideration has been given to the polarization of the X-rays that irradiate the sample.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は大気中で計測を行う装置であったた
め、空気によるX線の吸収や散乱の影響を受け入射X線
光子エネルギーを低く設定することによる、例えば硅素
の蛍光X線や二次電子を測定して、硅素化合物の原子配
列構造に関するデータの収得が不可能であるとともに、
半導体素子に用いられている多層の膜を表面から深さ方
向に数nmずつ削除して薄膜の深さ方向の原子配列構造の
変化や、膜界面付近の構造変化に関するデータの収得が
不可能であることには配慮がなされておらず、多層の薄
膜の全体の評価が充分に行なえないという問題点があっ
た。
Since the above-mentioned conventional technique is a device that performs measurement in the atmosphere, by setting the incident X-ray photon energy low due to the influence of absorption and scattering of X-rays by air, for example, fluorescent X-rays of silicon and secondary electrons are It is impossible to obtain data on the atomic arrangement structure of silicon compounds by measurement,
It is impossible to collect data on the changes in the atomic arrangement structure in the depth direction of the thin film and the structure changes near the film interface by deleting the multi-layered film used for semiconductor elements from the surface by several nm in the depth direction. However, there is a problem in that the entire evaluation of the multilayer thin film cannot be performed sufficiently.

本発明の目的は入射X線光子エネルギーを低く設定し
ても、例えば硅素化合物薄膜の原子配列構造をも解析可
能とし、且つ多層の薄膜の深さ方向の三次元的原子配列
構造の変化をも解析可能な偏光全反射蛍光X線構造解析
装置を提供することにある。
The object of the present invention is to make it possible to analyze, for example, the atomic arrangement structure of a silicon compound thin film even when the incident X-ray photon energy is set low, and to change the three-dimensional atomic arrangement structure in the depth direction of a multilayer thin film. An object of the present invention is to provide a polarized total reflection fluorescent X-ray structure analysis device capable of analysis.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、入射X線強度、蛍光X線強度、二次電子
強度、全反射X線強度を測定する各々の検出器及び試料
表面で入射X線が全反射するように入射X線ビームの軸
と試料表面とのなす角度とを相対的に微調整し、且つ入
射X線ビームの偏向方向に合わせて試料を入射X線ビー
ムの軸中心に回転できる機構を高真空に排気することが
可能な真空容器内に設置することにより、硅素の蛍光X
線(約1.7keV)及び試料から放出される二次電子の強度
測定をも可能とするとともに、更には真空容器内にイオ
ン銃を取り付け試料表面を削除(エッチング)すること
を可能とすることにより達成される。更に詳しく本発明
装置の特徴点を述べれば、次のとおりである。
The above-mentioned purpose is to measure the incident X-ray intensity, the fluorescent X-ray intensity, the secondary electron intensity, and the total reflection X-ray intensity, and the axis of the incident X-ray beam so that the incident X-ray is totally reflected on the surface of each detector and the sample. It is possible to evacuate to a high vacuum a mechanism capable of relatively finely adjusting the angle between the sample surface and the sample surface and rotating the sample around the axis of the incident X-ray beam in accordance with the deflection direction of the incident X-ray beam. By installing in a vacuum container, fluorescent X of silicon
By making it possible to measure the intensity of the secondary electron emitted from the line (about 1.7 keV) and the sample, and also to remove (etch) the sample surface by attaching an ion gun in the vacuum container. To be achieved. The features of the device of the present invention will be described in more detail as follows.

(1)真空容器の中に少なくとも入射X線の強度を検出
する手段と、入射X線ビームを少なくとも全反射させる
ことのできる角度で試料を前記入射X線ビーム軸に対し
傾斜し且つ試料上の任意の位置にX線ビームを設定する
ための試料昇降機構及び入射X線ビームの偏光方向に対
し試料を平行もしくは垂直に回転移動できる試料回転機
構を備えた試料載置手段と、試料が放出する蛍光X線、
二次電子及び全反射されたX線のそれぞれの強度を検出
する粒子線検出手段とを備え、入射X線光子のエネルギ
を走査しながら入射X線強度と蛍光X線強度と二次電子
強度と全反射X線強度とを計測することにより試料表面
から深さ方向の原子の三次元的配列構造を解析可能とし
たこと。
(1) A means for detecting at least the intensity of an incident X-ray in a vacuum container, and a sample which is inclined with respect to the axis of the incident X-ray beam at an angle capable of at least totally reflecting the incident X-ray beam on the sample. Sample placing means provided with a sample elevating mechanism for setting the X-ray beam at an arbitrary position and a sample rotating mechanism capable of rotationally moving the sample parallel or perpendicular to the polarization direction of the incident X-ray beam, and the sample is emitted. X-ray fluorescence,
A particle beam detecting means for detecting the respective intensities of the secondary electrons and the totally reflected X-rays, and the incident X-ray intensity, the fluorescent X-ray intensity, and the secondary electron intensity while scanning the energy of the incident X-ray photons. It is possible to analyze the three-dimensional array structure of atoms in the depth direction from the sample surface by measuring the total reflection X-ray intensity.

(2)前記真空容器の中に更に集束イオンビーム照射手
段を設け、前記試料表面をエッチングし得るようになし
たこと。
(2) A focused ion beam irradiation means is further provided in the vacuum container so that the sample surface can be etched.

さらにまた、本発明装置の測定原理について、以下図
面を引用して詳述する。
Furthermore, the measurement principle of the device of the present invention will be described in detail below with reference to the drawings.

第1図は試料表面でのX線ビームの全反射の様子を示
した模式図である。同図において、入射X線ビームXiは
試料1の表面Sで反射角θで全反射される。入射X線は
表面から深さdまで侵入し、この範囲内で全反射が生
じ、Xiとほぼ同等なX線強度をもつ全反射ビームXrが出
射される。このとき、入射X線ビームの侵入深さdが、
試料となる薄膜層2(第一層)の厚さdaより小さけれ
ば、Xrは表面第一層のみによる。なお、21は第二層目の
薄膜を示す。
FIG. 1 is a schematic diagram showing the state of total reflection of an X-ray beam on the sample surface. In the figure, the incident X-ray beam Xi is totally reflected by the surface S of the sample 1 at a reflection angle θ. The incident X-ray penetrates from the surface to the depth d, total reflection occurs within this range, and a total reflection beam Xr having an X-ray intensity almost equal to Xi is emitted. At this time, the penetration depth d of the incident X-ray beam is
If the thickness is smaller than the thickness da of the thin film layer 2 (first layer) as a sample, Xr is due to the surface first layer only. In addition, 21 shows a thin film of the second layer.

全反射の効率ηは下記(1)式で定義され、1に近い
値をとる。
The efficiency η of total reflection is defined by the following equation (1) and takes a value close to 1.

η=I(Xr)/I(Xi) ……(1) ここで、I(Xi)は入射X線強度、I(Xr)は全反射X
線強度である。η1となるが、これは全反射されなか
ったX線が試料表面で散乱するか、侵入深さdまでの薄
膜の原子を蛍光励起し、蛍光X線Xfや二次電子esを試料
表面から放出することによる。
η = I (Xr) / I (Xi) (1) where I (Xi) is the incident X-ray intensity and I (Xr) is the total reflection X.
It is the line strength. η1, which is the result of X-rays that have not been totally reflected scattered on the sample surface or fluorescently excite atoms in the thin film up to the penetration depth d to cause fluorescent X-rays X f and secondary electrons e s on the sample surface. By releasing from.

蛍光励起は、対象となる元素によりその蛍光X線Xf
エネルギーが異なり、入射X線Xiのエネルギーによって
蛍光X線強度I(Xf)が変化する。蛍光X線収率αは
(2)式で表わされる。
In fluorescence excitation, the energy of the fluorescent X-ray Xf differs depending on the target element, and the fluorescent X-ray intensity I ( Xf ) changes depending on the energy of the incident X-ray Xi. The fluorescent X-ray yield α is represented by the formula (2).

α=I(Xf)/I(Xi) ……(2) 入射X線Xiの光子エネルギーEを蛍光X線Xfのエネルギ
ーから1keV高いエネルギー付近まで走査して得られるα
のスペクトルα(E)は蛍光EXAFSと呼ばれ、蛍光X線X
fを発生する元素周囲の原子配列の情報を含むことが知
られている。
α = I (X f ) / I (Xi) (2) α obtained by scanning the photon energy E of the incident X-ray Xi from the energy of the fluorescent X-ray X f to near 1 keV higher energy
The spectrum α (E) of is called fluorescence EXAFS, and X-ray fluorescence X
It is known to include information on the atomic arrangement around the element generating f .

α(E)と同様な情報をもつ量として、二次電子収率
β(E)がある。β(E)は(3)式で表わされる。
Secondary electron yield β (E) is an amount having the same information as α (E). β (E) is expressed by equation (3).

β=I(es)/I(Xi) ……(3) ここで、I(es)は二次電子の強度である。これらのス
ペクトル,α,βは全反射を生じている試料表面の深さ
dの範囲内の原子配列に関する情報をもっている。
β = I (e s ) / I (Xi) (3) where I (e s ) is the intensity of the secondary electron. These spectra, α and β, have information on the atomic arrangement within the depth d of the sample surface that causes total internal reflection.

試料表面層に侵入する深さdは試料表面の密度ρや全
反射角θに依存するが、およそ5〜10nm程度である。試
料がX線を全反射できる最大のエネルギー(全反射臨界
エネルギー、Ec)は(4)式で示され、Ecより小さなX
線エネルギーに対して全反射を生ずる。
The depth d that penetrates into the sample surface layer depends on the density ρ of the sample surface and the total reflection angle θ, but is about 5 to 10 nm. The maximum energy (total reflection critical energy, Ec) at which the sample can totally reflect X-rays is shown by equation (4), and X is smaller than Ec.
It produces total internal reflection for linear energy.

SiO2を試料として、SiのEXAFSスペクトルを測定するに
はθ=0.5°とすれば(4)式によりEc=4.4keVであ
り、測定可能となる。
To measure the EXAFS spectrum of Si using SiO 2 as a sample, if θ = 0.5 °, Ec = 4.4 keV according to the equation (4), and measurement is possible.

半導体用の膜として積層される薄膜は厚さは、20〜10
0nm程度であり、d=10nmであれば、積層状態の最上層
の原子配列構造のみを得ることが可能である。
The thickness of the thin film laminated as a film for semiconductor is 20 to 10
If it is about 0 nm and d = 10 nm, it is possible to obtain only the atomic arrangement structure of the uppermost layer in the stacked state.

入射X線Xiが偏光であるとき、試料に入射する電気ベ
クトルの方向を変化させると、α(E),β(E)のス
ペクトルが変化することがある。これは、試料表面の原
子配列構造が試料の深さ方向と試料の平面方向とで異な
ることによる。試料に入射する偏光のX線の電気ベクト
ルを第2図(a)のような表面に垂直な状態に設定する
と、電気ベクトルは、最表面原子層と第2層との方向を
向くことになり、この方向の原子間距離などの構造情報
を含んだスペクトルα(E)、β(E)が得られる。最
表面原子を励起して蛍光X線や二次電子スペクトルを測
定する場合を考えると、最表面原子層と第2層の元素が
異なり、特に第2図(b)に示すように第2層の元素が
複数種あるような場合には、このスペクトルは第2図
(c)に示すように複雑になる。一方、偏光のX線電気
ベクトルを第3図(a)らように表面に平行な状態に設
定すると、電気ベクトルは第3図(b)に示すように最
表面原子層と平行な状態にあり、単一原子の構造情報が
得られ、第3図(c)に示すような比較的単純なα
(E)、β(E)スペクトルが得られる。したがって、
第2図(c)や第3図(c)に示すようなスペクトルを
測定し、それぞれを解析することにより、第2図(b)
や第3図(b)の原子の配列が解析可能であり、三次元
的な構造情報を取得することができる。
When the incident X-ray Xi is polarized light, if the direction of the electric vector incident on the sample is changed, the spectra of α (E) and β (E) may change. This is because the atomic arrangement structure on the surface of the sample differs between the depth direction of the sample and the plane direction of the sample. When the electric vector of the polarized X-rays incident on the sample is set in a state perpendicular to the surface as shown in Fig. 2 (a), the electric vector is directed to the outermost atomic layer and the second layer. , Spectra α (E) and β (E) containing structural information such as the interatomic distance in this direction are obtained. Considering the case of exciting the outermost surface atoms to measure a fluorescent X-ray or a secondary electron spectrum, the elements of the outermost surface atomic layer and the second layer are different, and in particular, as shown in FIG. When there are plural kinds of elements, the spectrum becomes complicated as shown in FIG. 2 (c). On the other hand, when the X-ray electric vector of polarized light is set parallel to the surface as shown in FIG. 3 (a), the electric vector is parallel to the outermost atomic layer as shown in FIG. 3 (b). , Structural information of a single atom is obtained, and a relatively simple α as shown in FIG.
(E) and β (E) spectra are obtained. Therefore,
By measuring the spectra as shown in FIG. 2 (c) and FIG. 3 (c) and analyzing each, FIG. 2 (b)
The atomic arrangement in FIG. 3B can be analyzed, and three-dimensional structural information can be obtained.

各データの収得後に、真空チヤンバに装着したイオン
銃から加速したArイオン等の電離イオンを試料の表面に
衝突させることにより、試料表面を削除することができ
る。削除する厚さはイオン銃の使用時間あるいはイオン
電流等で電気的に制御することが可能であり、この厚さ
を10nm程に選ぶことは容易である。上記のようにEXAFS
の測定とイオン銃による試料表面の削除を繰り返すこと
により、10nm程度を分解能とする試料の深さ方向の三次
元的原子配列構造の変化を解析可能である。
After collecting each data, the sample surface can be deleted by colliding ionized ions such as Ar ions accelerated by an ion gun attached to the vacuum chamber with the surface of the sample. The thickness to be removed can be electrically controlled by the operating time of the ion gun or the ion current, and it is easy to select this thickness to about 10 nm. EXAFS as above
It is possible to analyze the changes in the three-dimensional atomic arrangement structure in the depth direction of the sample with a resolution of about 10 nm by repeating the measurement of 1 and the removal of the sample surface by the ion gun.

〔作用〕[Action]

本発明では、X線強度を測定するための検出器は高真
空に排気された真空容器の中に設定されるため、空気に
よるX線の吸収や散乱が無いため硅素の蛍光X線のよう
な低エネルギーのX線の強度や試料表面から放出される
二次電子の強度が精度高く測定可能である。また、試料
の入射X線ビームに対する角度及び位置の設定機構を真
空容器内に設け、真空容器外部から制御することによ
り、高精度を要する全反射条件をX線検出器の出力を見
ながら容易に調整可能である。更に、入射X線のエネル
ギーを走査して各々の検出器によるデータ収得終了後毎
に、入射X線の偏光方向に対する試料位置を変更し、真
空容器に設置したイオン銃により試料表面を削除するこ
とにより、試料表面から深さ方向の一連のデータを収得
することができる。つまり、入射X線の偏光面が試料面
に対し平行であれば、試料表面の面方向の情報(原子の
配列構造に関する)が得られ、また偏光面が試料面に対
し垂直であれば、試料表面から深さ方向の情報が得られ
る。さらにまた、イオン銃を用いて集束イオンビームを
試料表面に照射すれば、照射条件(イオンビームの電流
及び照射時間)により任意の幅と深さの加工ができ、こ
れにより得られた新たな試料表面についての原子配列構
造の情報を得ることができる。
In the present invention, since the detector for measuring the X-ray intensity is set in a vacuum container evacuated to a high vacuum, there is no absorption or scattering of X-rays by the air, and therefore, it is possible to use a detector such as a fluorescent X-ray of silicon. The intensity of low-energy X-rays and the intensity of secondary electrons emitted from the sample surface can be measured with high accuracy. Further, by providing a mechanism for setting the angle and position of the sample with respect to the incident X-ray beam inside the vacuum container and controlling from outside the vacuum container, it is possible to easily observe the total reflection condition requiring high accuracy while observing the output of the X-ray detector. It is adjustable. Furthermore, the energy of incident X-rays is scanned and the sample position with respect to the polarization direction of incident X-rays is changed after each data acquisition by each detector is completed, and the sample surface is deleted by the ion gun installed in the vacuum container. Thus, a series of data in the depth direction can be obtained from the sample surface. That is, if the plane of polarization of the incident X-ray is parallel to the sample plane, information on the plane direction of the sample surface (related to the atomic arrangement structure) is obtained, and if the plane of polarization is perpendicular to the sample plane, Information in the depth direction can be obtained from the surface. Furthermore, by irradiating the sample surface with a focused ion beam using an ion gun, it is possible to process with any width and depth depending on the irradiation conditions (ion beam current and irradiation time). Information on the atomic arrangement structure about the surface can be obtained.

〔実施例〕〔Example〕

次に本発明の実施例を図面に従って説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

第4図に本発明による実施例装置の正面からの概念図
を示す。第4図において真空容器6は真空ポンプ10によ
り、高真空に排気される。試料は入射X線の偏光方向に
対して、試料面が垂直あるいは水平(平行)となるよう
に1a,1bの位置が選択できる。1aの位置のとき蛍光X線
検出器3が、1bのときは蛍光X線検出器4が用いられ
る。試料表面の削除は、試料を1cの位置に設定し、イオ
ン銃5からの電離イオンを照射することにより行う。真
空容器6を常に高真空に保つため、試料の交換は予備排
気室8及びバルブ7を介して行なう。9は真空ポンプに
よる排気手段である。
FIG. 4 shows a conceptual view from the front of the embodiment apparatus according to the present invention. In FIG. 4, the vacuum container 6 is evacuated to a high vacuum by a vacuum pump 10. The positions of 1a and 1b of the sample can be selected so that the sample surface is vertical or horizontal (parallel) with respect to the polarization direction of the incident X-ray. The fluorescent X-ray detector 3 is used at the position 1a, and the fluorescent X-ray detector 4 is used at the position 1b. The sample surface is deleted by setting the sample at the position 1c and irradiating it with ionized ions from the ion gun 5. In order to keep the vacuum container 6 always at a high vacuum, the sample is replaced through the preliminary exhaust chamber 8 and the valve 7. Reference numeral 9 is an exhaust means using a vacuum pump.

第5図に本発明による実施例装置の斜視図を示す。偏
光である入射X線Xiは入射スリット11に入射し、スリッ
トにより断面形状を整形された後、入射X線検出器12に
より試料入射X線強度を測定する。第5図では偏光の電
気ベクトルが水平方向の例を示すが、これはどの方向で
も装置の設置状態を回転すれば本発明の効果に影響はな
い。本実施例装置の真空チャンバ内部には図示していな
いが、第4図に1a、1b、1cで示すような、試料表面に入
射X線の方向とほぼ平行な回転軸をもって90度以上回転
可能な試料ステージが内蔵され、偏光の入射X線の電気
ベクトルの試料表面に対する角度を選択する。蛍光X線
検出器3、4および二次電子検出器13、14は試料の回転
軸に対する投影がそれぞれ90度となるように設置され、
本実施例の場合、検出器3、13と検出器4、14がそれぞ
れ対をなし、それぞれ同種の検出器の投影角度が90度と
なるようにした。試料面への入射状態が異なる場合で
も、試料それぞれの表面状態でどちらの角度の検出器の
信号対雑音比が優れているかは一定ではなく、状態の良
い信号が得られる検出器を利用してα(E)、β(E)
スペクトルを得る。また、試料による全反射X線強度は
入射X線検出器12と全反射X線検出器15とから測定す
る。
FIG. 5 shows a perspective view of an apparatus according to the present invention. The incident X-ray Xi, which is polarized light, is incident on the incident slit 11, the cross-sectional shape is shaped by the slit, and the incident X-ray detector 12 measures the sample incident X-ray intensity. FIG. 5 shows an example in which the electric vector of the polarized light is in the horizontal direction, but this does not affect the effect of the present invention if the installed state of the device is rotated in any direction. Although not shown in the inside of the vacuum chamber of the apparatus of this embodiment, it can be rotated by 90 degrees or more with a rotation axis substantially parallel to the direction of the incident X-ray on the sample surface as shown by 1a, 1b and 1c in FIG. The sample stage is built in, and the angle of the electric vector of the incident X-ray of polarized light with respect to the sample surface is selected. The fluorescent X-ray detectors 3 and 4 and the secondary electron detectors 13 and 14 are installed so that the projections on the rotation axis of the sample are 90 degrees,
In the case of the present embodiment, the detectors 3 and 13 and the detectors 4 and 14 form a pair, and the projection angles of the detectors of the same type are 90 degrees. Even if the incident state on the sample surface is different, it is not constant which angle of the detector has a superior signal-to-noise ratio for each surface state of the sample. α (E), β (E)
Get the spectrum. The total reflection X-ray intensity of the sample is measured by the incident X-ray detector 12 and the total reflection X-ray detector 15.

〔発明の効果〕〔The invention's effect〕

上記のように、本発明によれば、高真空の容器内にX
線検出器及び二次電子検出器を設置し、試料に入射する
X線の偏光方向を試料表面に対し平行、垂直の2種類選
択し、試料表面での全反射によりα(E),β(E)を
測定するので、硅素化合物の厚さ10nm程度の原子配列構
造の三次元情報を収集可能であり、更には本装置真空容
器に取付けられたイオン銃による試料表面の削除(エッ
チング)と、全反射によるα(E),β(E)のデータ
測定を繰り返すことにより、半導体等に多用される積層
薄膜の厚さ10nm程度を分解能とした深さ方向の構造変化
の情報が得られるという効果がある。
As described above, according to the present invention, X is stored in a high vacuum container.
A line detector and a secondary electron detector are installed, the polarization direction of X-rays incident on the sample is selected from two types, parallel and perpendicular to the sample surface, and α (E), β ( Since E) is measured, it is possible to collect three-dimensional information of the atomic arrangement structure of a silicon compound having a thickness of about 10 nm, and further, the sample surface is deleted (etched) by an ion gun attached to the vacuum container of this device, By repeating the data measurement of α (E) and β (E) by total reflection, it is possible to obtain the information of the structural change in the depth direction with the resolution of about 10 nm of the thickness of the laminated thin film, which is often used for semiconductors. There is.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理説明用の試料表面でのX線全反射
の模式図、第2図(a)は同じく本発明の原理説明用の
偏光X線の全反射の模式図で、偏光のX線電気ベクトル
を試料表面に垂直な状態に設定した例、第2図(b)は
原子の配列状態(最表面原子層と第2層との配列状態)
を説明する模式図、第2図(c)はα(E)、β(E)
スペクトル曲線図、第3図(a)は同じく本発明の原理
説明用の偏光X線の全反射の模式図で、偏光のX線電気
ベクトルを試料表面に平行な状態に設定した例、第3図
(b)は原子の配列状態(最表面原子層と第2層との配
列状態)を説明する模式図、第3図(c)はα(E)、
β(E)スペクトル曲線図、第4図及び第5図は本発明
の実施例をそれぞれ示す装置の正面概念図及び斜視概念
図である。 図において、 1……試料、2……表面薄膜層 3,4……蛍光X線検出器 5……イオン銃、6……真空容器 7……バルブ、8……予備排気室 9,10……真空ポンプ、11……入射スリット 12……入射X線検出器、13,14……二次電子検出器 15……全反射X線検出器
FIG. 1 is a schematic diagram of total reflection of X-rays on a sample surface for explaining the principle of the present invention, and FIG. 2A is a schematic diagram of total reflection of polarized X-rays for explaining the principle of the present invention. 2 (b) shows the arrangement state of the atoms (the arrangement state of the outermost atomic layer and the second layer), in which the X-ray electric vector of is set perpendicular to the sample surface.
FIG. 2 (c) is a schematic view for explaining α (E), β (E)
A spectrum curve diagram and FIG. 3 (a) are also schematic diagrams of total reflection of polarized X-rays for explaining the principle of the present invention. An example in which the X-ray electric vector of polarized light is set in a state parallel to the sample surface, FIG. 3B is a schematic diagram for explaining the arrangement state of atoms (the arrangement state of the outermost atomic layer and the second layer), and FIG. 3C is α (E),
β (E) spectrum curve diagram, FIG. 4 and FIG. 5 are a front conceptual diagram and a perspective conceptual diagram of an apparatus showing an embodiment of the present invention, respectively. In the figure, 1 ... Sample, 2 ... Surface thin film layer 3, 4 ... Fluorescent X-ray detector 5 ... Ion gun, 6 ... Vacuum container 7 ... Valve, 8 ... Preliminary exhaust chamber 9, 10 ... … Vacuum pump, 11 …… Injection slit 12 …… Injection X-ray detector, 13,14 …… Secondary electron detector 15 …… Total reflection X-ray detector

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空容器の中に少なくとも入射X線の強度
を検出する手段と、入射X線ビームを少なくとも全反射
させることのできる角度で試料を前記入射X線ビーム軸
に対し傾斜し且つ試料上の任意の位置にX線ビームを設
定するための試料昇降機構及び偏光している入射X線ビ
ームの電気ベクトルが最大値となる方向に対し試料平面
を平行もしくは垂直に回転移動できる試料回転機構を備
えた試料載置手段と、試料が放出する蛍光X線、二次電
子及び全反射されたX線のそれぞれの強度を検出する粒
子線検出手段とを備え、入射X線光子のエネルギを走査
しながら入射X線強度と蛍光X線強度と二次電子強度と
全反射X線強度とを計測することにより試料表面から深
さ方向の原子の三次元的配列構造を解析可能としたこと
を特徴とする偏光全反射蛍光X線構造解析装置。
1. A means for detecting at least the intensity of an incident X-ray in a vacuum container, and a sample which is inclined with respect to the incident X-ray beam axis at an angle capable of at least totally reflecting the incident X-ray beam. A sample elevating mechanism for setting the X-ray beam at an arbitrary position above and a sample rotating mechanism capable of rotationally moving the sample plane in parallel or perpendicular to the direction in which the electric vector of the polarized incident X-ray beam has the maximum value. And a particle beam detecting means for detecting the intensities of the fluorescent X-rays emitted from the sample, the secondary electrons, and the totally reflected X-rays, respectively, and scanning the energy of incident X-ray photons. However, it is possible to analyze the three-dimensional array structure of atoms in the depth direction from the sample surface by measuring the incident X-ray intensity, the fluorescent X-ray intensity, the secondary electron intensity, and the total reflection X-ray intensity. Polarized light Reflection fluorescent X-ray structural analysis apparatus.
【請求項2】前記真空容器の中に更に集束イオンビーム
照射手段を設け、前記試料表面をエッチングし得るよう
になしたことを特徴とする特許請求の範囲第1項記載の
偏光全反射蛍光X線構造解析装置。
2. The polarized total reflection fluorescence X according to claim 1, characterized in that a focused ion beam irradiation means is further provided in the vacuum container so that the sample surface can be etched. Line structure analysis device.
JP62253817A 1987-10-09 1987-10-09 Polarized total reflection X-ray fluorescence structure analyzer Expired - Lifetime JP2507484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253817A JP2507484B2 (en) 1987-10-09 1987-10-09 Polarized total reflection X-ray fluorescence structure analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253817A JP2507484B2 (en) 1987-10-09 1987-10-09 Polarized total reflection X-ray fluorescence structure analyzer

Publications (2)

Publication Number Publication Date
JPH0197844A JPH0197844A (en) 1989-04-17
JP2507484B2 true JP2507484B2 (en) 1996-06-12

Family

ID=17256547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253817A Expired - Lifetime JP2507484B2 (en) 1987-10-09 1987-10-09 Polarized total reflection X-ray fluorescence structure analyzer

Country Status (1)

Country Link
JP (1) JP2507484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202760A (en) * 1989-10-19 1991-09-04 Sumitomo Electric Ind Ltd Total-reflection fluorescent x-ray analyzer

Also Published As

Publication number Publication date
JPH0197844A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US5778039A (en) Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
Henke et al. Techniques of low energy x-ray spectroscopy (0.1 to 2 keV region)
US7551719B2 (en) Multifunction X-ray analysis system
US6173036B1 (en) Depth profile metrology using grazing incidence X-ray fluorescence
KR101231731B1 (en) Multifunction x-ray analysis system
US5594246A (en) Method and apparatus for x-ray analyses
US7035375B2 (en) X-ray scattering with a polychromatic source
Streli et al. Total reflection X-ray fluorescence analysis of low-Z elements
JP2507484B2 (en) Polarized total reflection X-ray fluorescence structure analyzer
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
Baur et al. Peer Reviewed: Looking at Trace Impurities on Silicon Wafers with Synchrotron Radiation
EP0697109B1 (en) X-ray spectrometer with a grazing take-off angle
Wittry Methods of quantitative electron probe analysis
JPH0712763A (en) Surface analysis method and surface analysis device
JP2514687B2 (en) Fluorescent X-ray structure analysis apparatus and fluorescent X-ray structure analysis method
EP1049928B1 (en) Apparatus for x-ray analysis in grazing exit conditions
Helsen et al. Wavelength-dispersive x-ray fluorescence
JPH0798285A (en) X-ray evaluation apparatus
JP2728627B2 (en) Wavelength dispersive X-ray spectrometer
JP3339267B2 (en) X-ray analysis method and X-ray analyzer
Pérez et al. New spectrometer for grazing exit x-ray fluorescence
JPH06160312A (en) X-ray evaluation apparatus
JPH063295A (en) Surface analyzing device
JPH0792112A (en) X-ray evaluation system
JPH0361840A (en) Measuring apparatus for x-ray absorption spectrum