JP2601072B2 - Internal combustion engine, operating method thereof, and automobile - Google Patents

Internal combustion engine, operating method thereof, and automobile

Info

Publication number
JP2601072B2
JP2601072B2 JP3241671A JP24167191A JP2601072B2 JP 2601072 B2 JP2601072 B2 JP 2601072B2 JP 3241671 A JP3241671 A JP 3241671A JP 24167191 A JP24167191 A JP 24167191A JP 2601072 B2 JP2601072 B2 JP 2601072B2
Authority
JP
Japan
Prior art keywords
air
catalyst
temperature
fuel ratio
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3241671A
Other languages
Japanese (ja)
Other versions
JPH0579320A (en
Inventor
黒田  修
寿生 山下
章夫 本地
紀子 渡辺
敏男 小川
博 宮寺
武士 阿田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3241671A priority Critical patent/JP2601072B2/en
Priority to DE4231575A priority patent/DE4231575C2/en
Publication of JPH0579320A publication Critical patent/JPH0579320A/en
Priority to US08/351,167 priority patent/US5577383A/en
Application granted granted Critical
Publication of JP2601072B2 publication Critical patent/JP2601072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/02Arrangements for controlling or regulating exhaust apparatus using electric components only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関に係り、特にエ
ンジンから排出される排気ガスの浄化手段を備えた内燃
機関に関する。本発明はまた排気ガス浄化性能を高める
ことができる内燃機関の運転方法及び排気ガス浄化手段
を備えた自動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine provided with a means for purifying exhaust gas discharged from an engine. The present invention also relates to an operation method of an internal combustion engine capable of improving exhaust gas purification performance and an automobile provided with exhaust gas purification means.

【0002】[0002]

【従来の技術】内燃機関から排出される排気ガスに含ま
れる一酸化炭素(CO)、炭化水素(HC)及び窒素酸
化物(NOx)等は大気汚染物質として人体に悪影響を
及ぼすほかに植物の発育を妨げる等の問題をもたらす。
2. Description of the Related Art Carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx) and the like contained in exhaust gas discharged from an internal combustion engine not only have an adverse effect on the human body as air pollutants, but also have an adverse effect on plants. It causes problems such as hindering growth.

【0003】そこで、従来より、これらの排出量低減に
は多大の努力が払われ、内燃機関の構造や燃焼条件など
の改良を通じて生成量を低減する方法、或は内燃機関か
ら排出された排気ガスを触媒等で浄化する後処理方法の
両面から技術開発が進められてきた。
Therefore, a great deal of effort has conventionally been made to reduce these emissions, and a method for reducing the amount of generated gas by improving the structure and combustion conditions of the internal combustion engine, or the exhaust gas discharged from the internal combustion engine, has been used. Technical development has been promoted from both aspects of a post-treatment method for purifying methane with a catalyst or the like.

【0004】このうち触媒方式は、エンジン排気ガスの
流路に排気ガス浄化触媒を設けて一酸化炭素(CO)、
炭化水素(HC)及び窒素酸化物(NOx)等の有害ガ
スを酸化或は還元するものである。触媒方式の従来技術
の一例として特開昭48−58215 号公報には、エンジン排
気ガス流路のエンジンになるべく近い位置に第1触媒を
設けその後段に第2触媒を設けてエンジン起動当初の触
媒温度が低いときの排気ガス浄化性能を高めることが示
されている。
[0004] Among them, the catalyst system is provided with an exhaust gas purifying catalyst in a flow path of an engine exhaust gas to provide carbon monoxide (CO),
It oxidizes or reduces harmful gases such as hydrocarbons (HC) and nitrogen oxides (NOx). Japanese Patent Application Laid-Open No. 48-58215 discloses an example of a conventional catalyst system in which a first catalyst is provided at a position as close as possible to an engine in an engine exhaust gas flow path, and a second catalyst is provided at a subsequent stage to provide a catalyst at the beginning of engine startup. It shows that the exhaust gas purification performance at low temperatures is enhanced.

【0005】触媒は所定値以上の温度に高められてはじ
めて高い活性を示すようになる。この温度は通常250
〜400℃といわれており、例えば特開昭54−16018 号
公報に記載されている。エンジンの起動当初は排気ガス
の温度が低く、低温の排気ガスが触媒に導かれることに
なり、触媒の機能を十分に引き出すことができない。前
記従来技術は、エンジン起動当初の触媒温度が低いとき
の排気ガス浄化性能を高める方法を開示している。
[0005] The catalyst becomes highly active only when it is heated to a temperature higher than a predetermined value. This temperature is usually 250
To 400 DEG C., which is described in, for example, JP-A-54-16018. When the engine is started, the temperature of the exhaust gas is low, and low-temperature exhaust gas is led to the catalyst, so that the function of the catalyst cannot be sufficiently brought out. The above prior art discloses a method for improving exhaust gas purification performance when the catalyst temperature at the start of the engine is low.

【0006】[0006]

【発明が解決しようとする課題】内燃機関のエンジンを
排気ガスの温度は、エンジン起動後次第に上昇していく
が、触媒が有効に機能する温度に上昇するまでには、お
よそ2分或はそれ以上かかる。一説には3〜5分かかる
という説もあり、特開昭54−79319 号公報に示されてい
る。エンジン起動時から触媒が活性を示す温度に高まる
までの間の排気ガスの浄化性能をいかに高めるかが、触
媒方式の成否を決することになる。
The temperature of the exhaust gas of the engine of the internal combustion engine gradually rises after the engine is started, but it takes about two minutes or longer until the temperature of the exhaust gas rises to a temperature at which the catalyst can function effectively. It takes more. One theory is that it takes 3 to 5 minutes, which is disclosed in Japanese Patent Application Laid-Open No. 54-79319. How to improve the purification performance of exhaust gas during the period from the start of the engine to the temperature at which the catalyst becomes active will determine the success or failure of the catalyst system.

【0007】本発明の目的は、エンジン起動直後に排出
される燃料未燃分及び部分燃焼成分の触媒による浄化性
能を高めた内燃機関及びエンジン起動方法を提供するに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine and an engine starting method in which the catalytic conversion of unburned fuel and partial combustion components discharged immediately after the engine is started is enhanced.

【0008】[0008]

【課題を解決するための手段】本発明は、エンジンの吸
気系に燃料と空気の量を制御する空燃比制御部を有し、
排気系の前段に空気供給手段を有し後段に排気ガス浄化
用三元触媒を有する内燃機関において、前記排気系の前
記空気供給手段よりも下流側で前記三元触媒よりも上流
側に燃焼触媒よりなる前触媒を備え、前記空燃比制御部
の空燃比A/F(Aは空気重量、Fは燃料重量)を前記
エンジンが始動してから前記三元触媒が活性を示す温度
に昇温するまでの間は理論空燃比よりも燃料過剰の13
以下且つ10以上の値、前記三元触媒が活性を示す温度
に昇温してからは理論空燃比になるように設定し、前記
空燃比制御部の空燃比が理論空燃比よりも燃料過剰に設
定されている間中、前記空気供給手段から空気を供給す
るようにしたものである。
According to the present invention, there is provided an air-fuel ratio control unit for controlling the amounts of fuel and air in an intake system of an engine ,
Air supply means in front of exhaust system, exhaust gas purification in rear
In an internal combustion engine having a use three-way catalyst, before the exhaust system
Downstream of the air supply means and upstream of the three-way catalyst
A pre-catalyst comprising a combustion catalyst on the side, wherein the air-fuel ratio control unit
Of the air-fuel ratio A / F (A is the weight of air, F is the weight of fuel)
Temperature at which the three-way catalyst becomes active after the engine starts
Until the temperature rises to 13, the excess fuel exceeds the stoichiometric air-fuel ratio.
Below and at a value of 10 or more, a temperature at which the three-way catalyst exhibits activity
After the temperature rises, set to the stoichiometric air-fuel ratio,
The air-fuel ratio of the air-fuel ratio control unit is set
Air is supplied from the air supply means during the specified period.
That's what I did .

【0009】エンジン排気ガスの成分はエンジンの操作
条件、特に空燃比により変化し、エンジンを理論空燃比
よりも燃料過剰の状態で操作すると、一酸化炭素が多く
発生し、炭化水素も比較的多量に発生するようになる。
ここで注目すべきことは、空燃比が理論値より小さい場
合すなわち燃料過剰の場合には、排ガス中にHCの濃度
をはるかにしのぐ数%から10数%の多量のCOが含ま
れることである。COはHCよりかなり低い温度で触媒
燃焼させることができる。
The composition of the engine exhaust gas varies depending on the operating conditions of the engine, especially the air-fuel ratio. If the engine is operated with a fuel excess of the stoichiometric air-fuel ratio, a large amount of carbon monoxide is generated and a relatively large amount of hydrocarbons is generated. Will occur.
It should be noted here that when the air-fuel ratio is smaller than the theoretical value, that is, when the fuel is excessive, the exhaust gas contains a large amount of CO of several% to several tens%, far exceeding the concentration of HC. . CO can be catalyzed at much lower temperatures than HC.

【0010】本発明においては、COの触媒燃焼による
発熱を触媒及び排気ガスの昇温に利用する。しかしHC
の濃度はCOに比べて低いもののHCの単位重量当りの
発熱量はCOの5倍程度と大きい。従って、COの低温
触媒燃焼に引き続きHCの触媒燃焼が加われば、触媒及
び排気ガスを急速に昇温することができる。エンジンを
理論空燃比よりも燃料過剰の状態で操作することは、理
論空燃比で操作する場合に較べてCOとHCを多量に発
生することになるので触媒及び排気ガスを急速に昇温す
るのに望ましい。
In the present invention, the heat generated by catalytic combustion of CO is used for raising the temperature of the catalyst and the exhaust gas. But HC
Although the concentration of is lower than that of CO, the calorific value per unit weight of HC is as large as about 5 times that of CO. Therefore, if the catalytic combustion of HC is added to the catalytic combustion of low-temperature CO, the temperature of the catalyst and the exhaust gas can be rapidly increased. Operating the engine with an excess of fuel over the stoichiometric air-fuel ratio generates a greater amount of CO and HC than operating at the stoichiometric air-fuel ratio. Desirable.

【0011】エンジンを理論空燃比よりも燃料過剰の状
態で操作しつづけることは、燃費の面からすると好まし
くない。また、触媒の温度が高くなりすぎ耐熱性の面か
らも問題がある。そこで、触媒の温度が上昇したならば
理論空燃比でのエンジン操作に切り替えることが望まし
い。
It is not preferable from the viewpoint of fuel efficiency to keep operating the engine in a state where the fuel is more than the stoichiometric air-fuel ratio. Further, the temperature of the catalyst becomes too high, and there is a problem in terms of heat resistance. Therefore, if the temperature of the catalyst rises, it is desirable to switch to engine operation at the stoichiometric air-fuel ratio.

【0012】本発明において、内燃機関とはシリンダ内
で燃料を爆発燃焼させ、そのエネルギーによって流体エ
ネルギーを機械的エネルギーに変換する装置を意味す
る。本発明は、内燃機関を動力源として運転される内燃
動車例えばガソリンカー、ディ−ゼルカーなどに適用す
るのに好適である。
In the present invention, the term "internal combustion engine" means a device that explodes and burns fuel in a cylinder and converts fluid energy into mechanical energy by the energy. INDUSTRIAL APPLICABILITY The present invention is suitable to be applied to an internal combustion vehicle driven by an internal combustion engine as a power source, such as a gasoline car or a diesel car.

【0013】本発明は、以下の各構成を採ることにより
達成することができる。
The present invention can be achieved by adopting the following configurations.

【0014】(i)排気ガス浄化用三元触媒の温度を温
度検出手段によって検出し、この検出温度に基づいて空
燃比制御部の空燃比A/F(Aは空気重量、Fは燃料重
量)を制御する。すなわち、エンジンの始動後、三元触
媒の温度が活性を示す温度に到達するまでの間は、空燃
比制御部の空燃比A/F(Aは空気重量、Fは燃料重
量)を13以下、10以上の値に設定し、三元触媒の温
度が活性を示す温度に到達したならば空燃比制御部の空
燃比を理論空燃比に設定する。
(I) The temperature of the three-way catalyst for purifying exhaust gas is
Temperature detection means, and based on this detected temperature,
The air-fuel ratio A / F of the fuel ratio control unit (A is air weight, F is fuel weight
Amount). That is, after starting the engine,
Until the temperature of the medium reaches the active temperature,
The air-fuel ratio A / F of the ratio control unit (A is air weight, F is fuel weight
Volume) is set to 13 or less and 10 or more, and the temperature of the three-way catalyst is set.
When the temperature reaches a temperature that indicates activity, the air-fuel ratio
Set the fuel ratio to the stoichiometric air-fuel ratio.

【0015】[0015]

【0016】燃料過剰状態での空燃比A/F(Aは空気
重量、Fは燃料重量)は13以下、10以上とする。こ
の空燃比にすることにより、エンジン排ガスのCO濃度
が3%以上、14%以下と多くなり、かつHC濃度も比
較的多くなるので、排ガス温度が低くても前触媒である
燃焼触媒による触媒燃焼が速やかに起こり、排ガス温度
を急速に高めて三元触媒が活性を示す温度まで急速に到
達させることができる。
The air-fuel ratio A / F (A is the weight of air, F is the weight of fuel) in an excess fuel state is 13 or less and 10 or more . This
, The CO concentration of the engine exhaust gas increases from 3% to 14% and the HC concentration also increases.
Because it is relatively large, it is a pre-catalyst even at low exhaust gas temperatures
Catalytic combustion by the combustion catalyst occurs quickly, and the exhaust gas temperature
To a temperature at which the three-way catalyst becomes active.
Can be reached.

【0017】理論空燃比は、触媒上で効果的にHCとC
Oの酸化とNOの還元を行わせるため空燃比のことであ
り、一般にはA/F=14.7 或はそれに近い値が選定
される。
The stoichiometric air-fuel ratio is determined by the effective amount of HC and C
An air-fuel ratio for oxidizing O and reducing NO. Generally, A / F = 14.7 or a value close to it is selected.

【0018】[0018]

【0019】本発明においては、例えば自動車の床下に
排気ガス浄化主触媒を設け、エンジンになるべく近い位
置に燃焼触媒よりなる前触媒を設けることが望ましい。
エンジン排気ガスの温度は排気ガス流路を流れる過程で
低下する。エンジンになるべく近い位置に前触媒を備え
ることにより排気ガス温度が低下しないうちに触媒に導
くことができる。また、前触媒を燃焼触媒とすることに
より、CO及びHCの酸化活性を高めることができる。
In the present invention, for example, it is desirable to provide an exhaust gas purifying main catalyst under the floor of an automobile and to provide a pre-catalyst comprising a combustion catalyst at a position as close as possible to the engine.
The temperature of the engine exhaust gas decreases as it flows through the exhaust gas passage. By providing the pre-catalyst at a position as close as possible to the engine, the exhaust gas can be guided to the catalyst before the exhaust gas temperature decreases. Further, by using the pre-catalyst as a combustion catalyst, the oxidation activity of CO and HC can be increased.

【0020】(ii)排気ガス流路の前触媒よりも上流側
の位置には空気供給手段を設ける。
(Ii) Upstream of the front catalyst from the exhaust gas passage
Is provided with air supply means.

【0021】燃料過剰条件で燃焼し生成した排気ガス中
の酸素は一般に低濃度である。そこで、前触媒の前段に
空気等の酸素含有ガスを添加することにより前触媒にお
けるCO,HCの燃焼を効果的に行わせる。
Oxygen in exhaust gas produced by combustion under excess fuel conditions is generally low in concentration. Therefore, by adding an oxygen-containing gas such as air to the front stage of the pre-catalyst, the combustion of CO and HC in the pre-catalyst is effectively performed.

【0022】(iii)空気供給手段の酸素の供給量として
排気ガスの理論酸素消費量と当量か当量より過剰と
することが望ましい。この場合、前触媒における燃焼と
主触媒である三元触媒における排ガス浄化をともに良好
に行うことができる。
The (iii) The The supply amount of the oxygen of the air supply means, it is desirable that the excess of the theoretical oxygen consumption and equivalents or equivalent of the exhaust gas. In this case, both the combustion in the pre-catalyst and the purification of the exhaust gas in the three-way catalyst as the main catalyst can be favorably performed.

【0023】前触媒には、COの酸化とHCの酸化に共
に活性を有する燃焼触媒を用いることが望ましい。具体
的には、触媒活性成分として、周期律表の第VIII族,Ib
族,希土類金属,亜鉛及び錫から選ばれた金属あるいは
酸化物の少なくとも1種をもちいることが望ましい。
As the pre-catalyst, it is desirable to use a combustion catalyst having activity for both oxidation of CO and oxidation of HC. Specifically, as the catalytically active component, group VIII of the periodic table, Ib
It is preferable to use at least one of metals or oxides selected from group III, rare earth metals, zinc and tin.

【0024】排気ガス浄化主触媒としては、COとHC
酸化とNOxの還元に共に活性を示す三元触媒を用いる
ことが望ましい。
The main catalysts for purifying exhaust gas include CO and HC.
It is desirable to use a three-way catalyst that is active in both oxidation and reduction of NOx.

【0025】前触媒の支持体としてコージェライト,ム
ライト,アルミニウムチタネイト等のいわゆるセラミッ
クスハニカムを用い、これに前述の触媒活性成分を担持
するか、或は支持体としてのセラミックスハニカムにシ
リカ,アルミナ,チタニア等の多孔質坦体を添着し、さ
らに前述の触媒活性成分を担持することが望ましい。本
発明においては、前触媒の触媒燃焼により発生した熱を
有効に利用して前触媒自身を急速に加熱し活性化するこ
とが肝要である。これは触媒担体や支持体の熱伝達率を
小さくして触媒と担体あるいは支持体との間の温度勾配
を大きくすることにより達成できる。上記したセラミッ
クスの熱伝達率は小さく触媒の温度を急速に上昇させる
のに有効に機能する。
A so-called ceramic honeycomb made of cordierite, mullite, aluminum titanate or the like is used as a support for the pre-catalyst, and the above-mentioned catalytically active component is supported on the honeycomb. It is desirable to attach a porous carrier such as titania and further carry the above-mentioned catalytically active component. In the present invention, it is important to rapidly heat and activate the pre-catalyst itself by effectively utilizing the heat generated by the catalytic combustion of the pre-catalyst. This can be achieved by reducing the heat transfer coefficient of the catalyst carrier or support and increasing the temperature gradient between the catalyst and the carrier or support. The heat transfer coefficient of the above-mentioned ceramics is small and effectively functions to rapidly raise the temperature of the catalyst.

【0026】前触媒の支持体としては、ステンレス等の
導電性の金属あるいは合金のハニカムを用いることがで
きる。
As a support for the precatalyst, a honeycomb made of a conductive metal such as stainless steel or an alloy can be used.

【0027】触媒を急速に加熱することは触媒担体ある
いは支持体の比熱を小さくすることによってもまた達成
できる。ステンレス等の金属からなるハニカムを触媒の
支持体として使用することにより材料そのものの比熱が
小さくなるに加え材料の薄板化が可能となり、その結
果、熱容量を小さくでき、急速な昇温が可能となる。
Rapid heating of the catalyst can also be achieved by reducing the specific heat of the catalyst support or support. By using a honeycomb made of metal such as stainless steel as a support for the catalyst, the specific heat of the material itself can be reduced, and the material can be made thinner. As a result, the heat capacity can be reduced and the temperature can be rapidly increased. .

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】(iv)エンジンの吸気系に燃料と空気の量
を制御する空燃比制御部を設け、排気系に空気供給手段
と排気ガス浄化用三元触媒及び該三元触媒の温度検検出
手段を設け、エンジンの始動後前記温度検出手段によっ
て検出された三元触媒の温度が活性を示す温度に到達す
るまでの間は前記空燃比制御部の空燃比を理論空燃比よ
りも燃料過剰に設定するとともに前記空気供給手段より
空気を供給し、前記三元触媒の温度が活性を示す温度に
到達してからは前記空燃比制御部の空燃比を理論空燃比
に設定すると共に前記空気供給手段からの空気の供給を
停止するようにした内燃機関の運転方法において、前記
排気系の前記空気供給手段よりも下流側で前記三元触媒
よりも上流側に燃焼触媒よりなる前触媒を備え、前記エ
ンジンを始動してから前記三元触媒の温度が活性を示す
温度に到達するまでの間、前記空燃比制御部の空燃比A
/F(Aは空気重量、Fは燃料重量)を13以下、10
以上に設定して運転する。
(Iv) The amount of fuel and air in the intake system of the engine
Air-fuel ratio control unit for controlling the
Catalyst for exhaust gas purification and temperature detection and detection of the three-way catalyst
Means, and after the engine starts, the temperature detecting means
The temperature of the detected three-way catalyst reaches the temperature at which activity is detected.
Until the air-fuel ratio of the air-fuel ratio controller is
And the air supply means
Supply air, and bring the temperature of the three-way catalyst to a temperature at which activity is exhibited.
After that, the air-fuel ratio of the air-fuel ratio controller is changed to the stoichiometric air-fuel ratio.
And supply of air from the air supply means.
In the method for operating an internal combustion engine which is configured to be stopped,
The three-way catalyst downstream of the air supply means in the exhaust system
A pre-catalyst consisting of a combustion catalyst is provided upstream of
After starting the engine, the temperature of the three-way catalyst shows activity
Until the temperature is reached, the air-fuel ratio A of the air-fuel ratio control unit
/ F (A is air weight, F is fuel weight) 13 or less, 10
Operate with the above settings.

【0033】[0033]

【0034】[0034]

【0035】[0035]

【0036】(v)エンジンの排気系にバイパス路を設
け、このバイパス路に燃焼触媒よりなる三元触媒を備え
る。そして理論空燃比よりも過剰の燃料が供給されてい
る間は前記バイパス路を経て前記三元触媒に排気ガスを
流し、該過剰燃料供給が停止されたならば前記バイパス
路を経ずに直接前記三元触媒に排気ガスを流すように排
気ガス流路を切り替える
(V) A bypass is provided in the exhaust system of the engine.
And a three-way catalyst consisting of a combustion catalyst
You. And excess fuel is supplied than the stoichiometric air-fuel ratio.
Exhaust gas to the three-way catalyst through the bypass
If the excess fuel supply is stopped, the bypass
Exhaust gas is allowed to flow directly to the three-way catalyst without passing through the
Switch the gas gas flow path .

【0037】前触媒は起動直後の短時間(大略2分程
度)機能すればあとは本質的には不要となる。不要とな
った後も、排ガスを流通することはいたずらに圧力損失
を増加させることになる。また、前触媒を長時間高温に
さらすことは触媒劣化の原因を持ち込むこととなる。エ
ンジンから主触媒に至る排ガスの流路にバイパスを設
け、バイパス内に前触媒を設け、エンジン起動直後で主
触媒が作動温度に達していない間のみ燃料過剰の燃焼を
行い、その排気ガスをバイパスの前触媒を経て主触媒に
導くことによりこれらの問題を排除することができる。
If the pre-catalyst functions for a short time (approximately 2 minutes) immediately after startup, the pre-catalyst becomes essentially unnecessary. Even after it becomes unnecessary, flowing exhaust gas unnecessarily increases pressure loss. Exposure of the pre-catalyst to a high temperature for a long time also brings about a cause of catalyst deterioration. A bypass is provided in the flow path of exhaust gas from the engine to the main catalyst, a pre-catalyst is provided in the bypass, and excess fuel is burned only immediately after the engine starts and only when the main catalyst has not reached the operating temperature, and the exhaust gas is bypassed. These problems can be eliminated by leading to the main catalyst via the pre-catalyst.

【0038】また、エンジンと前触媒の間の排ガス流路
に除湿手段好ましくは冷却除湿器を備えることは望まし
いことである。前触媒の温度が排ガスの露点以下の場
合、該除湿手段で排ガスを除湿し、例えば前触媒温度と
同等かもしくはそれ以下に冷却除湿し、その後、前触媒
に供給することが望ましい。
It is also desirable to provide a dehumidifying means, preferably a cooling dehumidifier, in the exhaust gas flow path between the engine and the precatalyst. When the temperature of the precatalyst is equal to or lower than the dew point of the exhaust gas, it is desirable that the exhaust gas is dehumidified by the dehumidifying means, for example, cooled and dehumidified to a temperature equal to or lower than the precatalyst temperature, and then supplied to the precatalyst.

【0039】エンジン排気ガスには通常多量の水蒸気が
含まれる。水蒸気を含む排ガスが前触媒に供給され前触
媒温度が低い場合、正確には前触媒の温度が排ガスの露
点以下の場合には、排気ガス中の水分は触媒上もしくは
触媒細孔内に凝縮する。この現象は触媒の性能を低下さ
せるのみならず触媒劣化の原因となり、また圧力損失を
増加させることにもなる。更に、一度凝縮が起こるとこ
れを蒸発させるには蒸発潜熱が必要となるため100℃
以上に昇温するには多量の熱量が必要となり、したがっ
て時間を要することともなる。排気ガスを除湿し、例え
ば前触媒温度と同等かもしくはそれ以下に冷却除湿し、
その後に前触媒に供給することにより、前触媒部での水
蒸気の凝縮を防止でき、それに伴う障害を回避すること
ができる。(vi)前記(v)における バイパス流路に排ガス除湿手
段を設け、前触媒の温度が燃焼排ガスの露点以下の場合
にバイパスの除湿手段により排気ガスを除湿した後主触
である三元触媒に導き、前触媒の温度が排ガスの露点
以上の場合に排気ガスを直接前触媒へ導く。
Engine exhaust gas usually contains a large amount of water vapor. When exhaust gas containing water vapor is supplied to the pre-catalyst and the pre-catalyst temperature is low, more precisely, when the temperature of the pre-catalyst is lower than the dew point of the exhaust gas, the moisture in the exhaust gas condenses on the catalyst or in the catalyst pores. . This phenomenon not only deteriorates the performance of the catalyst but also causes deterioration of the catalyst, and also increases the pressure loss. Furthermore, once condensation has occurred, latent heat of vaporization is required to evaporate it.
A large amount of heat is required to raise the temperature as described above, and thus it takes time. Dehumidifying the exhaust gas, for example, cooling and dehumidifying to a temperature equal to or lower than the pre-catalyst temperature,
By subsequently supplying the pre-catalyst, the condensation of water vapor in the pre-catalyst section can be prevented, and the accompanying trouble can be avoided. (Vi) the (v) a gas dehumidifying means to the bypass passage is provided in, the three-way catalyst is a main catalyst after dehumidified exhaust gas by dehumidifying means of the bypass when the temperature of the front catalyst is below the dew point of the combustion exhaust gas When the temperature of the pre-catalyst is equal to or higher than the dew point of the exhaust gas, the exhaust gas is directly guided to the pre-catalyst.

【0040】前触媒温度が排気ガスの露点以上となれば
水凝縮の可能性は無くなる。この状態で排ガスを除湿す
ることは不要な操作である。そこで、エンジンから主触
媒に至る排気ガスの流路にバイパスを設け、バイパス内
に排ガス除湿手段を設け、前触媒の温度が排ガスの露点
以下のときバイパスの除湿手段により排気ガスを除湿し
た後主触媒に導き、前触媒の温度が排気ガスの露点以上
のとき排気ガスを直接前触媒へ導くことにより、不要な
除湿をを行うこと無く前触媒における水の凝縮とそれに
伴う障害を取り除くことができる。
If the temperature of the pre-catalyst is equal to or higher than the dew point of the exhaust gas, there is no possibility of water condensation. Dehumidifying the exhaust gas in this state is an unnecessary operation. Therefore, a bypass is provided in the flow path of the exhaust gas from the engine to the main catalyst, an exhaust gas dehumidifying means is provided in the bypass, and the exhaust gas is dehumidified by the dehumidifying means of the bypass when the temperature of the pre-catalyst is equal to or lower than the dew point of the exhaust gas. By guiding the exhaust gas directly to the pre-catalyst when the temperature of the pre-catalyst is equal to or higher than the dew point of the exhaust gas, it is possible to eliminate water condensation in the pre-catalyst and unnecessary troubles without performing unnecessary dehumidification. .

【0041】なお、エンジンに理論空燃比よりも過剰の
燃料を供給した例が、特開昭61−58912号公報に示され
ている。しかし、エンジン始動当初の排気ガス対策につ
いては全く考慮していない。
An example in which fuel is supplied to the engine in excess of the stoichiometric air-fuel ratio is disclosed in JP-A-61-58912. However, they do not consider exhaust gas measures at the start of the engine.

【0042】[0042]

【実施例】以下、具体的実施例を挙げて本発明を詳細に
説明する。但し、本発明は以下の実施例に限定されるも
のではない。
Hereinafter, the present invention will be described in detail with reference to specific examples. However, the present invention is not limited to the following examples.

【0043】図1は、本発明の一実施例による内燃機関
の概略図である。エンジン1の排気ガス流路11に前触
媒2と主触媒3が設けられている。エンジン1の吸気管
4に空気量調整弁8と燃料供給弁9が取り付けられてい
る。空気量調整弁8と燃料供給弁9は空燃比制御部(A
/F制御部)10にて開閉度が制御されるようになって
いる。排気ガス流路11の前触媒2の前段には酸化剤
(空気)を供給する二次空気供給管6が設けられ、該二
次空気供給管6には空気ポンプが設けられている。主触
媒3の後段には温度センサー7が設けられ、排気ガスの
温度を検出するようにしている。ここで検出された温度
は空燃比制御部(A/F制御部)10に連絡され、空燃
比制御部10ではかかる温度に基づいて燃料過剰操作を
継続するか停止するかを判断するようになっている。
FIG. 1 is a schematic diagram of an internal combustion engine according to one embodiment of the present invention. A front catalyst 2 and a main catalyst 3 are provided in an exhaust gas passage 11 of the engine 1. An air amount adjusting valve 8 and a fuel supply valve 9 are attached to an intake pipe 4 of the engine 1. The air amount adjusting valve 8 and the fuel supply valve 9 are connected to an air-fuel ratio control unit (A
/ F control section 10 controls the opening / closing degree. A secondary air supply pipe 6 for supplying an oxidizing agent (air) is provided in the exhaust gas flow path 11 at a stage before the pre-catalyst 2, and the secondary air supply pipe 6 is provided with an air pump. A temperature sensor 7 is provided downstream of the main catalyst 3 so as to detect the temperature of the exhaust gas. The detected temperature is communicated to the air-fuel ratio control unit (A / F control unit) 10, and the air-fuel ratio control unit 10 determines whether to continue or stop the excessive fuel operation based on the temperature. ing.

【0044】図2は、ガソリンエンジンにおける空燃比
と排気ガスの組成との関係を示している。
FIG. 2 shows the relationship between the air-fuel ratio and the composition of exhaust gas in a gasoline engine.

【0045】図3は本発明による内燃機関の他の例を示
す概略図である。エンジン排気ガス流路11にバイパス
流路20を設け、このバイパス流路に前触媒2を設け
る。また、排気ガスの流れの切り替えを行うために弁1
2および弁21を設ける。温度センサー7で主触媒出口
の排気ガス温度を検出して温度信号をA/F制御部10
に送り、その温度が主触媒の作動温度以下の場合に弁2
1を閉、弁12を開として排気ガスをバイパス流路20
の前触媒2に導き、同時に空気量調制弁8および燃料供
給弁9を制御して燃料過剰の燃焼を行う。また、その温
度が主触媒の作動温度以上の場合に弁21を開,弁12
を閉として排気ガスを直接主触媒3に導き、同時に空気
量調制弁8および燃料供給弁9を制御して理論空燃比に
近い条件で燃焼を行わせる。
FIG. 3 is a schematic view showing another example of the internal combustion engine according to the present invention. A bypass flow path 20 is provided in the engine exhaust gas flow path 11, and a pre-catalyst 2 is provided in the bypass flow path. Also, a valve 1 is provided to switch the flow of exhaust gas.
2 and valve 21 are provided. The temperature sensor 7 detects the temperature of the exhaust gas at the outlet of the main catalyst and outputs a temperature signal to the A / F controller 10.
To the valve 2 when the temperature is lower than the operating temperature of the main catalyst.
1 is closed, the valve 12 is opened, and the exhaust gas is
To the pre-catalyst 2, and at the same time, controls the air amount regulating valve 8 and the fuel supply valve 9 to perform combustion with excess fuel. If the temperature is equal to or higher than the operating temperature of the main catalyst, the valve 21 is opened and the valve 12 is opened.
Is closed and the exhaust gas is directly led to the main catalyst 3, and at the same time, the air amount regulating valve 8 and the fuel supply valve 9 are controlled to perform combustion under conditions close to the stoichiometric air-fuel ratio.

【0046】図4は本発明の更に他の実施例による内燃
機関の概略図を示したものである。エンジン排気ガス流
路11にバイパス流路20を設け、このバイパス流路2
0に除湿器15を設けている。また、排気ガスの流れの
切り替えを行うため弁13および14を設けている。前
触媒2内には温度センサー16を設けた。前触媒の温度
が燃焼排ガスの露点以下の場合にバイパス流路20の除
湿器15により排気ガスを除湿した後主触媒に導き、前
触媒の温度が燃焼排ガスの露点以上の場合に排気ガスを
直接前触媒へ導く。
FIG. 4 is a schematic diagram showing an internal combustion engine according to still another embodiment of the present invention. A bypass flow path 20 is provided in the engine exhaust gas flow path 11, and the bypass flow path 2
0 is provided with a dehumidifier 15. Further, valves 13 and 14 are provided to switch the flow of the exhaust gas. A temperature sensor 16 was provided in the pre-catalyst 2. When the temperature of the pre-catalyst is lower than the dew point of the flue gas, the exhaust gas is dehumidified by the dehumidifier 15 in the bypass passage 20 and then guided to the main catalyst. When the temperature of the pre-catalyst is higher than the dew point of the flue gas, the exhaust gas is directly discharged. Lead to pre-catalyst.

【0047】比較例1 前触媒2に容積1リットル、開口比76%のセラミック
(コージェライト)ハニカムにアルミナをコーティング
し、これにパラジウム(Pd)を0.5 重量%(以下w
t%という。)持した触媒を用い、主触媒3に容積2
リットルの同一材料かつ同一構造のセラミックハニカム
にPdを担持した触媒を用い、これらにシリーズにガソ
リンエンジン排ガスを流通させた。空燃比(A/F)を
12として燃焼させて得たCO7体積%(いかvol%
という。)、HC0.35vol% の排気ガスを1000リ
ットル/分の流速で前触媒2に導いたところ、前触媒出
口温度は63秒後に300℃に達し、主触媒7の出口温
度は135秒後に300℃に達した。
COMPARATIVE EXAMPLE 1 A ceramic (cordierite) honeycomb having a volume of 1 liter and an opening ratio of 76% was coated on the pre-catalyst 2 with alumina, and palladium (Pd) was added with 0.5% by weight (hereinafter referred to as w).
It is called t%. ) Using a charge of lifting the catalyst, volume 2 to the main catalyst 3
A liter of a catalyst having Pd supported on a ceramic honeycomb having the same material and the same structure was used, and gasoline engine exhaust gas was circulated through the series. CO7 volume% (squid vol%) obtained by burning with an air-fuel ratio (A / F) of 12
That. ), When 0.35 vol% of HC exhaust gas was led to the pre-catalyst 2 at a flow rate of 1000 l / min, the pre-catalyst outlet temperature reached 300 ° C after 63 seconds, and the outlet temperature of the main catalyst 7 reached 300 ° C after 135 seconds. Reached.

【0048】比較例 理論空燃比に近い空燃比14.5で燃焼させて得たCO
0.9vol%、HC0.2vol% の排気ガスを1000リ
ットル/分の流速で前触媒2に導いたところ、前触媒出
口温度は87秒後に300℃に達し、主触媒3の出口温
度は170秒後に300℃に達した。
Comparative Example 2 CO obtained by burning at an air-fuel ratio of 14.5 close to the stoichiometric air-fuel ratio
When 0.9 vol% and HC 0.2 vol% exhaust gas were introduced into the pre-catalyst 2 at a flow rate of 1000 liter / min, the pre-catalyst outlet temperature reached 300 ° C. after 87 seconds, and the main catalyst 3 outlet temperature was 170 seconds. Later, 300 ° C. was reached.

【0049】実施例 比較例1 と同じ前触媒および主触媒さらには同じ燃焼条
件(A/F=12)において生成した排気ガスに前触媒
の前で空気を380リットル/分添加したところ、前触
媒出口温度は40秒後に300℃に達し、主触媒の出口
温度は87秒後に300℃に達した。
Example 1 To the exhaust gas generated under the same pre-catalyst and main catalyst as in Comparative Example 1 and under the same combustion conditions (A / F = 12), 380 l / min of air was added before the pre-catalyst. The catalyst outlet temperature reached 300 ° C. after 40 seconds and the outlet temperature of the main catalyst reached 300 ° C. after 87 seconds.

【0050】実施例 実施例と同一条件で、各種触媒を用いて前触媒出口温
度300℃に達するのに要する時間を測定し表1の結果
を得た。前触媒及び主触媒の支持体としてはセラミック
ハニカムを用い、これにアルミナをコーティングして表
1に示す触媒活性成分を担持した。
Example 2 Under the same conditions as in Example 1 , the time required to reach the pre-catalyst outlet temperature of 300 ° C. was measured using various catalysts, and the results shown in Table 1 were obtained. A ceramic honeycomb was used as a support for the pre-catalyst and the main catalyst, and was coated with alumina to support the catalytically active components shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】実施例 実施例と同一条件で、PdおよびPtを各種多孔質担
体および支持体に担持したものについて、前触媒出口温
度300℃に達するのに要する時間を測定し表2の結果
を得た。
Example 3 Under the same conditions as in Example 1 , for Pd and Pt supported on various porous carriers and supports, the time required to reach a pre-catalyst outlet temperature of 300 ° C. was measured. I got

【0053】[0053]

【表2】 [Table 2]

【0054】実施例 前触媒として、厚さ0.05mm のフェライト系ステンレ
ス板からなる開孔率90%のハニカムにPdを0.5w
t% 担持した触媒を用い、実施例と同一条件で触媒
昇温速度を測定したところ、前触媒出口温度は36秒で
300℃に達し、主触媒出口温度は83秒で300℃に
達した。
Example 4 As a pre-catalyst, 0.5% of Pd was added to a honeycomb of a 0.05% thick ferrite stainless steel plate having a porosity of 90%.
When the catalyst heating rate was measured under the same conditions as in Example 1 using the catalyst loaded with t%, the pre-catalyst outlet temperature reached 300 ° C. in 36 seconds, and the main catalyst outlet temperature reached 300 ° C. in 83 seconds. .

【0055】[0055]

【0056】[0056]

【発明の効果】以上の本発明によれば、内燃機関のエン
ジン起動直後に排出される燃料未燃分及び部分燃焼成分
を浄化することができる。特に前触媒を設けて理論空燃
比よりも燃料過剰の状態で操作したエンジンの排気ガス
を酸化することにより前触媒を速やかに昇温し、前触媒
の後流に設けた主触媒を急速に活性化温度まで高めるこ
とができる。これにより内燃機関のエンジン起動当初の
排気時の排気ガス浄化性能を高めることができる。
According to the present invention described above, it is possible to purify unburned fuel and partial combustion components discharged immediately after the start of the engine of the internal combustion engine. In particular, the temperature of the pre-catalyst is quickly raised by oxidizing the exhaust gas of an engine operated with excess fuel over the stoichiometric air-fuel ratio with the pre-catalyst, and the main catalyst provided downstream of the pre-catalyst is quickly activated. Temperature can be increased to the formation temperature. As a result, it is possible to enhance the exhaust gas purification performance at the time of exhaustion at the start of the engine of the internal combustion engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内燃機関の一実施例を示す概略図。FIG. 1 is a schematic diagram showing an embodiment of an internal combustion engine of the present invention.

【図2】ガソリンエンジンにおける空燃比と排気ガス組
成の関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an air-fuel ratio and an exhaust gas composition in a gasoline engine.

【図3】本発明の内燃機関の他の実施例を示す概略図。FIG. 3 is a schematic diagram showing another embodiment of the internal combustion engine of the present invention.

【図4】本発明の内燃機関の他の実施態様を示す概略
図。
FIG. 4 is a schematic diagram showing another embodiment of the internal combustion engine of the present invention.

【符号の説明】[Explanation of symbols]

1…エンジン、2…前触媒、3…主触媒、4…吸気管、
5…空気ポンプ、6…二次空気供給管、7,16…温度
センサー、8…空気量調整弁、9…燃料調整弁、10…
空燃比制御部(A/F制御部)、11,13,14,2
1…弁、12…バイパス流路、15…除湿器。
1 engine, 2 front catalyst, 3 main catalyst, 4 intake pipe,
5 ... Air pump, 6 ... Secondary air supply pipe, 7,16 ... Temperature sensor, 8 ... Air amount adjustment valve, 9 ... Fuel adjustment valve, 10 ...
Air-fuel ratio control unit (A / F control unit), 11, 13, 14, 2
DESCRIPTION OF SYMBOLS 1 ... Valve, 12 ... Bypass flow path, 15 ... Dehumidifier.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/14 310 F02D 41/14 310J (72)発明者 渡辺 紀子 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 小川 敏男 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 宮寺 博 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 阿田子 武士 茨城県勝田市大字高場2520番地 株式会 社 日立製作所 自動車機器事業部内 (56)参考文献 特開 昭49−13515(JP,A) 特開 昭54−79319(JP,A) 実公 昭63−38340(JP,Y2)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication F02D 41/14 310 F02D 41/14 310J (72) Inventor Noriko Watanabe 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Laboratory (72) Inventor Toshio Ogawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Laboratory Co., Ltd. (72) Inventor Hiroshi Miyadera 4026 Kuji-cho, Hitachi City, Ibaraki Hitachi, Ltd.Hitachi Research, Ltd. In-house (72) Inventor Takeshi Atako 2520 Oaza Takaba, Katsuta-shi, Ibaraki Hitachi, Ltd. Automotive Equipment Division (56) References JP-A-49-13515 (JP, A) JP-A-54-79319 ( JP, A) Jiko 63-38340 (JP, Y2)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジンの吸気系に燃料と空気の量を制御
する空燃比制御部を有し、排気系の前段に空気供給手段
を有し後段に排気ガス浄化用三元触媒を有する内燃機関
において、 前記排気系の前記空気供給手段よりも下流側で前記三元
触媒よりも上流側に燃焼触媒よりなる前触媒を備え、 前記空燃比制御部の空燃比A/F(Aは空気重量、Fは
燃料重量)を前記エンジンが始動してから前記三元触媒
が活性を示す温度に昇温するまでの間は理論空燃比より
も燃料過剰の13以下且つ10以上の値、前記三元触媒
が活性を示す温度に昇温してからは理論空燃比になるよ
うに設定し、 前記空燃比制御部の空燃比が理論空燃比よりも燃料過剰
に設定されている間中、前記空気供給手段から空気を供
給するようにし たことを特徴とする内燃機関。
An intake system of an engine has an air-fuel ratio control unit for controlling the amounts of fuel and air, and an air supply means is provided upstream of an exhaust system.
An internal combustion engine having a three-way catalyst for purifying exhaust gas at a subsequent stage, wherein the three-way catalyst is provided downstream of the air supply means in the exhaust system.
A pre-catalyst consisting of a combustion catalyst is provided upstream of the catalyst, and the air-fuel ratio A / F (A is air weight, F is
Fuel weight) after the engine is started and the three-way catalyst
Until the temperature rises to the level at which
The fuel excess is also 13 or less and 10 or more, the three-way catalyst
After the temperature rises to a temperature at which
The air-fuel ratio of the air-fuel ratio control unit is higher than the stoichiometric air-fuel ratio.
While the air supply means is set to
An internal combustion engine characterized in that the internal combustion engine is supplied .
【請求項2】請求項1において、前記空気供給手段とし
て、排気ガスの理論酸素消費量と等量か或いはそれ以上
の酸化剤を供給する手段を備えたことを特徴とする内燃
機関。
2. The air supply means according to claim 1, wherein
Equal to or greater than the theoretical oxygen consumption of the exhaust gas
An internal combustion engine comprising: means for supplying an oxidizing agent .
【請求項3】請求項1又は2において、前記三元触媒の
温度を検出する手段を設け、該手段により検出された温
度に基づいて前記三元触媒の温度が活性を示す温度に到
達したか否かを判断するようにしたことを特徴とする内
燃機関。
3. The three-way catalyst according to claim 1, wherein
A means for detecting a temperature, wherein the temperature detected by the means is provided;
Based on the temperature, the temperature of the three-way catalyst reaches an active temperature.
An internal combustion engine characterized in that it is determined whether or not it has reached .
【請求項4】請求項1ないし3のいずれか1項におい
て、前記排気系にエンジンから前記三元触媒の上流に至
るバイパス路を設け、該バイパス路に前記燃焼触媒より
なる前触媒を備えたことを特徴とする内燃機関。
4. The method according to claim 1, wherein:
To the exhaust system from the engine upstream of the three-way catalyst.
And a bypass passage is provided in the bypass passage.
An internal combustion engine comprising a pre-catalyst .
【請求項5】請求項4において、前記エンジンに理論空
燃比よりも過剰の燃料が供給されている間はエンジン排
気ガスを前記バイパス路に流し、前記エンジンに理論空
燃比の燃料が供給されるようになってからはエンジン排
気ガスを前記バイパス路を通 さずに直接前記三元触媒へ
流すようにした排気ガス流路切り替え手段を備えたこと
を特徴とする内燃機関。
5. The engine according to claim 4, wherein
Engine exhaust while fuel is being supplied in excess of the fuel ratio
The gas flows into the bypass, and the engine
After the fuel of the fuel ratio is supplied, the engine exhaust
Said air gas directly the bypass passage without being passed to the three-way catalyst
An internal combustion engine comprising exhaust gas flow switching means for flowing .
【請求項6】請求項1ないし5のいずれか1項におい
て、前記エンジンから前記前触媒に至る排気ガス流路に
除湿手段を備えたことを特徴とする内燃機関。
6. The method according to claim 1, wherein:
In the exhaust gas flow path from the engine to the pre-catalyst.
An internal combustion engine comprising dehumidifying means .
【請求項7】請求項1ないし5のいずれか1項におい
て、前記バイパス路の前記前触媒よりも後段に排気ガス
除湿手段を備え、該前触媒の温度が排気ガスの露点以下
のときに該除湿手段により排気ガスを除湿して前記三元
触媒に導くようにしたことを特徴とする内燃機関。
7. The method according to claim 1, wherein:
Exhaust gas downstream of the front catalyst in the bypass passage.
Dehumidifying means, the temperature of the pre-catalyst is below the dew point of exhaust gas
When the exhaust gas is dehumidified by the dehumidifying means,
An internal combustion engine characterized by being guided to a catalyst .
【請求項8】エンジンの吸気系に燃料と空気の量を制御
する空燃比制御部を設け、排気系に空気供給手段と排気
ガス浄化用三元触媒及び該三元触媒の温度検検出手段を
設け、エンジンの始動後前記温度検出手段によって検出
された三元触媒の温度が活性を示す温度に到達するまで
の間は前記空燃比制御部の空燃比を理論空燃比よりも燃
料過剰に設定するとともに前記空気供給手段より空気を
供給し、前記三元触媒の温度が活性を示す温度に到達し
てからは前記空燃比制御部の空燃比を理論空燃比に設定
すると共に前記空気供給手段からの空気の供給を停止す
るようにした内燃機関の運転方法において、 前記排気系の前記空気供給手段よりも下流側で前記三元
触媒よりも上流側に燃焼触媒よりなる前触媒を備え、前
記エンジンを始動してから前記三元触媒の温度が活性を
示す温度に到達するまでの間前記空燃比制御部の空燃比
A/F(Aは空気重量、Fは燃料重量)を13以下、1
0以上に設定するようにしたことを特徴とする内燃機関
の運転方法。
8. An air-fuel ratio control unit for controlling the amounts of fuel and air is provided in an intake system of an engine, and an air supply means and an exhaust gas are provided in an exhaust system.
Gas purification three-way catalyst and temperature detection and detection means of the three-way catalyst
Provided and detected by the temperature detecting means after the engine is started.
Until the temperature of the activated three-way catalyst reaches a temperature at which activity is exhibited.
During the period, the air-fuel ratio of the air-fuel ratio controller is set to be lower than the stoichiometric air-fuel ratio.
And set air to excess, and supply air from the air supply means.
Supply and the temperature of the three-way catalyst reaches a temperature at which activity is exhibited.
After that, set the air-fuel ratio of the air-fuel ratio controller to the stoichiometric air-fuel ratio
And the supply of air from the air supply means is stopped.
In the operating method for an internal combustion engine, the three-way system is provided downstream of the air supply means in the exhaust system.
A pre-catalyst consisting of a combustion catalyst is provided upstream of the catalyst.
After the engine is started, the temperature of the three-way catalyst becomes active.
The air-fuel ratio of the air-fuel ratio control unit until the temperature reaches
A / F (A is air weight, F is fuel weight) is 13 or less, 1
An internal combustion engine characterized by being set to 0 or more
Driving method.
【請求項9】内燃機関エンジンの吸気系に燃料と空気の
量を制御する空燃比制御部を有し、排気系の前段に空気
供給手段を有し後段に排気ガス浄化用三元触媒を有する
自動車において、 前記排気系の前記空気供給手段よりも下流側で前記三元
触媒よりも上流側に燃 焼触媒よりなる前触媒を備え、 前記空燃比制御部の空燃比A/F(Aは空気重量、Fは
燃料重量)を前記エンジンが始動してから前記三元触媒
の温度が活性を示す温度に昇温するまでの間は理論空燃
比よりも燃料過剰の13以下且つ10以上の値、前記三
元触媒の温度が活性を示す温度に昇温してからは理論空
燃比に設定し、前記空燃比制御部の空燃比が理論空燃比
よりも燃料過剰に設定されている間中、前記空気供給手
段から空気を供給するようにしたことを特徴とする自動
車。
9. A fuel and air supply system for an intake system of an internal combustion engine.
It has an air-fuel ratio control unit that controls the amount of air.
It has a supply means and has a three-way catalyst for exhaust gas purification at the subsequent stage
In the automobile, the three-way valve is disposed downstream of the air supply means in the exhaust system.
Comprises a pre-catalyst consisting of combustion catalyst on the upstream side of the catalyst, the air-fuel ratio A / F (A of the air-fuel ratio control unit air weight, F is
Fuel weight) after the engine is started and the three-way catalyst
Until the temperature rises to the level at which activity occurs.
A value of 13 or less and 10 or more of fuel excess over the ratio,
After the temperature of the source catalyst rises to a temperature at which activity
Fuel ratio, and the air-fuel ratio of the air-fuel ratio controller is the stoichiometric air-fuel ratio.
During the period when the air supply is set to be over fueled,
Automatic, characterized in that air is supplied from the stage
car.
JP3241671A 1991-09-20 1991-09-20 Internal combustion engine, operating method thereof, and automobile Expired - Fee Related JP2601072B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3241671A JP2601072B2 (en) 1991-09-20 1991-09-20 Internal combustion engine, operating method thereof, and automobile
DE4231575A DE4231575C2 (en) 1991-09-20 1992-09-21 Method and device for controlling an internal combustion engine
US08/351,167 US5577383A (en) 1991-09-20 1994-11-30 Apparatus for controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241671A JP2601072B2 (en) 1991-09-20 1991-09-20 Internal combustion engine, operating method thereof, and automobile

Publications (2)

Publication Number Publication Date
JPH0579320A JPH0579320A (en) 1993-03-30
JP2601072B2 true JP2601072B2 (en) 1997-04-16

Family

ID=17077791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241671A Expired - Fee Related JP2601072B2 (en) 1991-09-20 1991-09-20 Internal combustion engine, operating method thereof, and automobile

Country Status (2)

Country Link
JP (1) JP2601072B2 (en)
DE (1) DE4231575C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430965C2 (en) * 1994-08-31 1997-09-11 Siemens Ag Method for controlling the fuel supply for an internal combustion engine with a heated catalyst
DE19505687A1 (en) * 1995-02-20 1996-08-22 Audi Ag Control of fuel-injected IC engine, with exhaust catalyst, in secondary-air mode
US5822976A (en) * 1995-04-05 1998-10-20 Ford Global Technologies, Inc. Method and system for controlling the amount of secondary air introduced into an internal combustion engine
DE19928559C2 (en) * 1999-06-22 2003-03-20 Bayerische Motoren Werke Ag Method for determining the end of the dew point when controlling exhaust-gas-related functions in a motor vehicle
DE10360355A1 (en) * 2003-09-26 2005-04-28 Das Duennschicht Anlagen Sys Modular system to detoxify gases arising from thin-film manufacturing process has electronic control unit
JP4654977B2 (en) * 2006-05-30 2011-03-23 日産自動車株式会社 Internal combustion engine
DE102017113366A1 (en) 2017-06-19 2018-12-20 Volkswagen Aktiengesellschaft Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791143A (en) * 1971-11-10 1974-02-12 Engelhard Min & Chem Process and apparatus
DE2215533C3 (en) * 1972-03-30 1979-11-22 Robert Bosch Gmbh, 7000 Stuttgart Device for reducing the harmful components in the exhaust gases of an internal combustion engine
JPS5479319A (en) * 1977-12-05 1979-06-25 Nissan Motor Co Ltd Device of warming up catalyst for automobile
JPS6158912A (en) * 1984-08-31 1986-03-26 Mazda Motor Corp Exhaust cleaning apparatus of engine
JPS6245326A (en) * 1985-08-23 1987-02-27 Hitachi Zosen Corp Method of denitrating exhaust gas of boiler
JPS6338340U (en) * 1986-08-27 1988-03-11
JPS6483817A (en) * 1987-09-28 1989-03-29 Toyota Motor Corp Exhaust gas purifying method for dual exhaust type internal combustion engine
JPH0625541B2 (en) * 1987-10-31 1994-04-06 株式会社土屋製作所 Cooling water control device for heat exchanger
JPH01227815A (en) * 1988-03-07 1989-09-12 Mitsubishi Motors Corp Exhaust gas purifying device
DE3930380A1 (en) * 1989-09-12 1991-03-21 Porsche Ag EXHAUST SYSTEM OF A MULTI-CYLINDER COMBUSTION ENGINE
DE3933924A1 (en) * 1989-10-11 1991-04-18 Bayerische Motoren Werke Ag METHOD FOR EXHAUST GAS TREATMENT ON AN INTERNAL COMBUSTION ENGINE
JPH03164549A (en) * 1989-11-22 1991-07-16 Fuji Heavy Ind Ltd Engine control device of two-cycle engine
DE4106249C2 (en) * 1990-03-09 1999-09-09 Volkswagen Ag Device for the catalytic purification of the exhaust gases of an internal combustion engine

Also Published As

Publication number Publication date
DE4231575C2 (en) 2003-04-24
DE4231575A1 (en) 1993-04-01
JPH0579320A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US5577383A (en) Apparatus for controlling internal combustion engine
JP3396378B2 (en) Method and apparatus for purifying exhaust gas of an internal combustion engine
EP0774054B1 (en) Combatting air pollution
US20090188240A1 (en) Apparatus for purification of exhaust gas and method for purification of exhaust gas using the same
JPH01159029A (en) Exhaust gas purification apparatus of diesel engines
JP3201237B2 (en) Exhaust gas purification device for internal combustion engine
JP2002503784A (en) Apparatus for converting components in exhaust gas stream of internal combustion engine and method of operating the same
WO2002095197A1 (en) Diesel engine exhaust purifying device
JP2601072B2 (en) Internal combustion engine, operating method thereof, and automobile
JP2946064B2 (en) Engine exhaust purification device
JPH0538421A (en) Cleaning method for exhaust gas from gas engine
JP5320994B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3113065B2 (en) Exhaust gas purification device
JP3629953B2 (en) Exhaust gas purification device for internal combustion engine
JP3412459B2 (en) Engine exhaust purification device
JPH06193490A (en) Control device for internal combustion engine
JP4258871B2 (en) Exhaust gas purification device
JP3465584B2 (en) Exhaust gas purification device for internal combustion engine
JPH05288035A (en) Exhaust gas treating device for internal combustion engine
JP3055270B2 (en) Exhaust gas purification device for internal combustion engine
JP3467795B2 (en) Engine exhaust purification device
KR100282601B1 (en) Exhaust aftertreatment device for lean burn cars
JPH08270439A (en) Exhaust emission control device for internal combustion engine
JP3774918B2 (en) Exhaust gas purification equipment for automobiles
JP3433461B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees