JPS6245326A - Method of denitrating exhaust gas of boiler - Google Patents

Method of denitrating exhaust gas of boiler

Info

Publication number
JPS6245326A
JPS6245326A JP60186321A JP18632185A JPS6245326A JP S6245326 A JPS6245326 A JP S6245326A JP 60186321 A JP60186321 A JP 60186321A JP 18632185 A JP18632185 A JP 18632185A JP S6245326 A JPS6245326 A JP S6245326A
Authority
JP
Japan
Prior art keywords
boiler
preheater
exhaust gas
air preheater
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60186321A
Other languages
Japanese (ja)
Inventor
Takashi Yudasaka
湯田坂 隆
Yasushi Sakamoto
裕史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP60186321A priority Critical patent/JPS6245326A/en
Publication of JPS6245326A publication Critical patent/JPS6245326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To remove the adhered substance on a preheater, by passing a part of exhaust gas through a first regeneration type air preheater through a denitration apparatus to heat secondary air and passing the remainder of the exhaust gas through a second regeneration type air preheater and bypassing secondary air to send the same to a boiler. CONSTITUTION:The exhaust gas 2 issued from a coal firing boiler 1 is divided into two systems and a part of the exhaust gas is mixed with NH3 from an ammonia injection nozzle 3 to perform denitration in a denitration apparatus 4 and guided to an electric precipitator 7 through a first regeneration type air preheater 20 while the remainder of the exhaust gas is directly guided to the electric precipitator 7 through a second regeneration type air preheater 21. When the adhered substance of the first preheater 20 is removed, a damper B is opened to allow secondary air 6b to bypass the first preheater 20 and said air 6b is heated only by a steam type air preheater 12 to be supplied to the boiler 1 while primary water 6a is heated by the second preheater 21. Whereupon, the temp. of the first preheater 20 rises and acidic ammonium sulfate is decomposed and the adhered substance is removed without stopping the operation of the boiler.

Description

【発明の詳細な説明】 産業上の利用分野 木光明はボイラ排ガスの脱硝方法に関1Jる。[Detailed description of the invention] Industrial applications Mitsuaki Ki is a 1st year student who is concerned with denitrification methods for boiler exhaust gas.

従来の技術 第4図に従来の排ガスの脱硝方法のフローを示す。従来
では、石炭焚ボイラ1を出た排ガス2にアンモニアガス
を注入ノズル3から注入し、IA生生学空気予熱器5前
に設置した脱硝装置4の触媒の触きにJ、す、次の反応
を起こして窒素酸化物を還元していた。
BACKGROUND OF THE INVENTION FIG. 4 shows the flow of a conventional exhaust gas denitrification method. Conventionally, ammonia gas is injected into the exhaust gas 2 from the coal-fired boiler 1 through the injection nozzle 3, and when it touches the catalyst of the denitrification device 4 installed in front of the IA biological air preheater 5, the next reaction occurs. was generated to reduce nitrogen oxides.

この場合、注入されたアンモニアの余剰分の一部は次の
反応によって草木と水恭気に分解される。
In this case, a portion of the injected surplus ammonia is decomposed into plants and water by the following reaction.

しかしながら、注入されたアンモニアのうらで上記触媒
作用で分解されなかったものは脱硝装置を通過した後火
の反応を起こし、酸性硫安となる。
However, the injected ammonia that is not decomposed by the catalytic action undergoes a fire reaction after passing through the denitrification device and becomes acidic ammonium sulfate.

NH3+SO3+H20−NHq H3O+生成された
酸性硫安は220〜230℃で液体となる。脱硝装置4
を出た排ガス2は、再生式空気予熱器5に入り空気6と
熱交換を行なって温度が低下する。排ガス2はこの後、
電気集1m器7、誘引ファン8、脱硝装置9、煙突10
へと導かれる。ボイラ1に供給される空気6は、押込み
ファン11がら蒸気式空気予熱器12、再生式空気予熱
器5へと導かれ、この後、2次空気6bは直接ボイラ1
に、1次空気6aは1次空気ファン13、微゛扮炭機1
4を経てボイラコにそれぞれ供給される。15は微粉炭
機14に石炭を供給する石炭バンカである。
NH3+SO3+H20-NHq H3O+The generated acidic ammonium sulfate becomes liquid at 220-230°C. Denitration equipment 4
The exhaust gas 2 that has exited the exhaust gas 2 enters the regenerative air preheater 5 and exchanges heat with the air 6 to lower its temperature. After this, exhaust gas 2
1m electric collector 7, induction fan 8, denitrification device 9, chimney 10
be led to. The air 6 supplied to the boiler 1 is guided through the forced fan 11 to the steam air preheater 12 and the regenerative air preheater 5, and then the secondary air 6b is directly supplied to the boiler 1.
The primary air 6a is supplied by a primary air fan 13 and a small coal machine 1.
4 and then supplied to the boilerco. 15 is a coal bunker that supplies coal to the pulverizer 14.

発明が解決しようとり−る問題点 ところで、再生式空気予熱器5内に樽かれた排ガス2の
温度が低下づると、液状酸性硫安が凝縮し、再生式空気
予熱器5のエレメントに付着する状態となる。そして、
エレメントの表面に付着した液状酸性硫安は、排ガス中
のダストや71′?1等を取り込んで成長(150°C
程度では酸性硫安は固体となる)し、抵抗が増大して行
くことになる。
Problems to be Solved by the Invention By the way, when the temperature of the exhaust gas 2 barreled in the regenerative air preheater 5 decreases, liquid acidic ammonium sulfate condenses and adheres to the element of the regenerative air preheater 5. becomes. and,
The liquid acidic ammonium sulfate that adheres to the surface of the element is caused by dust in the exhaust gas and 71'? Grows by taking in the 1st class (150°C
(At certain temperatures, acidic ammonium sulfate becomes solid) and its resistance increases.

通常のボイラ運転においてはスートブローでこれを取り
除いているが、およそ半年余りで再生式空気予熱器5の
圧]0が増大し、運転を続けることがl!I ffi[
になる。そのため従来はア1;イラを停止してエレメン
トの水洗を行なっていた。
During normal boiler operation, this is removed by soot blowing, but after about half a year, the pressure in the regenerative air preheater 5 increases, making it impossible to continue operation! I ffi [
become. Therefore, in the past, the element was washed with water after stopping the irradiation.

本発明はこのような問題を解決Jることのでさるボイラ
排カスのll5(哨方rlx ’j Lt供することを
−【」的とりる。
The present invention aims to solve such problems by providing a control system for boiler waste.

問題点を解決するための手段 上記問題点を解決覆るため、本発明のボイラ(升ガスの
脱硝方法は、ボイラから出たIJ!ガスの一部にアンし
ニアを注入し’CIIQ !Il’l装置に導き、脱t
rl後、第1の再生J(空気予熱器に樽いて前記ボイラ
に供給される2次空気の予熱に供せしめ、一方、前記排
ガスの残りを第2のiQ生式空気子熱器に礎いて前記ボ
イラに供給される1次空気の予熱に供けじめ、11を記
第1の再生式空気予熱器内に刊盾した硫安化合物を分解
するときは、11i記2次空気をバイパスさけで110
記ボイラに直接供給し、前記第1の再生式空気予熱器の
温度を上!/?させるようにした。
Means for Solving the Problems In order to overcome the above-mentioned problems, the boiler gas denitrification method of the present invention involves injecting annine into a part of the IJ! gas discharged from the boiler. l device and remove it.
After RL, the first regeneration J (is placed in an air preheater to preheat the secondary air supplied to the boiler, while the remainder of the exhaust gas is sent to a second iQ raw air heater). When decomposing the ammonium sulfate compound contained in the first regenerative air preheater described in 11 for preheating the primary air supplied to the boiler, avoid bypassing the secondary air described in 11i.
Supplied directly to the boiler and raised the temperature of the first regenerative air preheater! /? I tried to let them do it.

作用 このような方法でボイラ排ガスのIIQ哨を行なうと、
酸性硫安付着によって第1の再生式空気予熱器の抵抗が
増大した場合でもボイラを停止せずにエレメントのサー
マルクリーニングが行なえる。
Function When performing IIQ monitoring of boiler exhaust gas using this method,
Even if the resistance of the first regenerative air preheater increases due to adhesion of acidic ammonium sulfate, the element can be thermally cleaned without stopping the boiler.

すなわ15、従来方法で上記サーマルクリーニングを行
なうと、空気側を全てバイパスさせるために微3)炭の
乾燥に必要な1次空気の熱を得ることが不可能だったの
でボイラの連続運転が不可能であったが、本邦明方法に
よれば、サーマルクリーニングを行なっている時でも1
次空気用の第2の再生式空気予熱器は通常運転を行なっ
ているので継1、ト運転が可能となり、ボイラを停止覆
ること無く第1の1■生工(空気予熱器の抵抗」(1と
なる付着物を除去覆ることが可能となる。
In other words, 15. When performing the above thermal cleaning using the conventional method, continuous operation of the boiler was required because the air side was completely bypassed, and it was impossible to obtain the primary air heat necessary for drying the coal. However, according to Japan's Akira method, even when performing thermal cleaning, 1
Since the second regenerative air preheater for secondary air is in normal operation, it is possible to operate the second regenerative air preheater without stopping the boiler. It becomes possible to remove and cover the deposits that become No. 1.

実廂例 以下、本発明方法の−・実施例を図面に基づいて説明す
る。なお、111記従来例で述べたしのと同−構成のも
のは同一番号をイ」シて説明を省略する。
Practical Examples Examples of the method of the present invention will be described below with reference to the drawings. Incidentally, those having the same configuration as those described in the conventional example No. 111 are designated by the same reference numerals and the explanation thereof will be omitted.

第1図において、20は第1の再生式空気予熱器、21
は第2の再生式空気予熱器で、第1の再生式空気予熱器
20にボイラ排ガス2の一部2aと2次空気6bが、第
2の再生式空気予熱S21に残りのボイラ排ガス2bと
1次空気6aがそれぞれ熱交換ザベく通される構成とさ
れている。22は第1の再生式空気予熱′a20の後方
に位iff シて排ガス2aライン中に設けられた冷却
装置、23は2次空気6bラインの途中に設けられたバ
イパスラインで、後述するように第1の再生式空気予熱
器2oをサーマルクリーニングする際に2次空気6bを
バイパスさせて直接ボイラ1に導く動きをなすものであ
る。
In FIG. 1, 20 is a first regenerative air preheater, 21
is a second regenerative air preheater, in which a part 2a of the boiler exhaust gas 2 and the secondary air 6b are sent to the first regenerative air preheater 20, and the remaining boiler exhaust gas 2b is sent to the second regenerative air preheater S21. The primary air 6a is configured to pass through each heat exchanger. 22 is a cooling device located behind the first regenerative air preheater 20 and installed in the exhaust gas 2a line, and 23 is a bypass line installed in the middle of the secondary air 6b line, as will be described later. When thermally cleaning the first regenerative air preheater 2o, the secondary air 6b is bypassed and guided directly to the boiler 1.

(A)(B)は空気ライン5a、5b、23の途中適所
に配設されたダンパである。
(A) and (B) are dampers disposed at appropriate locations along the air lines 5a, 5b, and 23.

先ず、通常運転時はダンパ(^)を開き、ダンパ(8)
を閉じて、1次空気6aを蒸気式空気予熱器12で加熱
した後、第2の再生式空気予熱器21を通して一次空気
フアン13から微粉炭機14に4き、微粉炭と共にして
ボイラ1に供給する。2次空気6bは蒸気式空気予熱器
12、第1の再生式空気予熱器20を通してボイラ1に
供給する。
First, during normal operation, open the damper (^) and close the damper (8).
After the primary air 6a is heated by the steam air preheater 12, it is passed through the second regenerative air preheater 21 from the primary air fan 13 to the pulverizer 14, and is sent together with the pulverized coal to the boiler 1. supply to. The secondary air 6b is supplied to the boiler 1 through a steam air preheater 12 and a first regenerative air preheater 20.

一方、ボイラ1を出た排ガス2は二系統に分け、一部の
排ガス2aは注入ノズル3から噴射したアンモニアガス
と混合して脱硝装置4で脱硝し、その後、第1の再生式
空気予熱器20を通して電気集塵機7に導く。この場合
、冷却装置22は順がi!ない。残りの排ガス2bは直
接第2の再生式空気予熱器21を通して電気集塵器7に
々く。
On the other hand, the exhaust gas 2 that exits the boiler 1 is divided into two systems, and a part of the exhaust gas 2a is mixed with ammonia gas injected from the injection nozzle 3 and denitrified in the denitrification device 4, and then transferred to the first regenerative air preheater. 20 to the electrostatic precipitator 7. In this case, the order of the cooling devices 22 is i! do not have. The remaining exhaust gas 2b is directly sent to the electrostatic precipitator 7 through the second regenerative air preheater 21.

硫安化合物の(;J着は脱硝装置4からの残留アンモニ
アにJ、って発生するので、第1の再生式空気−j;熱
器20に鋒牛ηるが、系統に脱硝装置を持たない第2の
再生ヱ(空気予熱器21には発生しない。そこ−C1I
juI安化合物のイ・1着による抵抗の増大が第1の占
牛ヱ(空気予熱器20でJffl生して付着物を除去す
る必要が生じた場合には、空気側のタンパ(八)を閉じ
、タンパ(B)を聞けて2次空気6bは第1の再生工(
空気予熱器20をバイパスさけて蒸気式空気予熱器12
t1′jみでj11熱し、ボイラ1へ供給づる。そして
、ボイラ1の連続運転に必要な微粉炭の乾燥用空気であ
る1次窄気6aは第2再生式空気予熱器21で加熱し、
微粉炭供14を経てボイラ1に供給ザる。
Since ammonium sulfate compounds (J) are generated from the residual ammonia from the denitrification device 4, the first regenerative air is fed to the heater 20, but the system does not have a denitrification device. Second regeneration (does not occur in the air preheater 21. There-C1I
The increase in resistance caused by the first step of the A/1 compound is the first reason (if it is necessary to remove deposits caused by Jffl generation in the air preheater 20, use the tamper (8) on the air side). After closing and listening to the tamper (B), the secondary air 6b is transferred to the first recycler (
Bypassing the air preheater 20, the steam air preheater 12
It is heated to j11 at t1'j and supplied to boiler 1. The primary constricted air 6a, which is air for drying pulverized coal necessary for continuous operation of the boiler 1, is heated by a second regenerative air preheater 21,
The pulverized coal is supplied to the boiler 1 via a pulverized coal feeder 14.

ぞうJると、第1の再生J、(空気予熱器20にJ3い
(は冷1、Dしていた空気が流れヂ370〜400℃の
排カスのみが予熱器20を通過づるのC゛ニレメン1の
温度が1−背する。その結果酸性硫安、l1iff酸鉄
アンモニウt\等は分解(サーマルクリーニング)して
排ガス2aの流れで運ばれてしまい、エレメント表面に
はダストやすすだけが残る。この残ったササ、ダスト等
はスートブローによって除去できる。
In the first regeneration stage, the air that had been previously cooled flows into the air preheater 20, and only the waste at a temperature of 370 to 400°C passes through the preheater 20. The temperature of Niremen 1 is 1-1. As a result, acid ammonium sulfate, l1iff acid iron ammonium t\, etc. are decomposed (thermal cleaning) and carried away by the flow of exhaust gas 2a, leaving only dust and soot on the element surface. .This remaining grass, dust, etc. can be removed by soot blowing.

第1の再生式空気予熱器20を出た排ガス2aは温度が
高いので、そのまま電気集塵器7に入れると熱によるト
ラブルが発生する。そこで冷却装置22で冷却した後、
電気集塵器7に導く。
Since the exhaust gas 2a exiting the first regenerative air preheater 20 has a high temperature, if it is directly fed into the electrostatic precipitator 7, troubles will occur due to the heat. After cooling with the cooling device 22,
It is led to the electrostatic precipitator 7.

、験 第2図、第3図に実W例を示す。第2図に示すように、
ボイラ1から出た排ガス2の85%(44000ON 
m/h ) 2 aを第1の再生式空気予熱器20へ、
15%(8000ON rrt/h )を第2の再生式
空気予熱器21へ導いた場合(出口温度400℃、出口
N OX 300ppl) 、煙突10から開放される
排ガス2のNOX濃度は83.25pl)TIとなり、
規制値である200+)l)TIを大幅に下回った。一
方、第3図に示すように、ボイラ1から出た排ガス2の
50%(26000ONTrt/h)2aを第1の再生
式空気予熱器20へ、残り50%(26000ON m
/h ) 2 bを第2の再生式空気予熱器21へ導い
た場合(出口温度400℃、出[1N OX 300p
DII) 、f突10から開成される排ガス2のN O
X濃度は172.5p111となり、規制値内に納まっ
た。
, Fig. 2 and Fig. 3 show actual W examples. As shown in Figure 2,
85% of exhaust gas 2 coming out of boiler 1 (44000ON
m/h) 2 a to the first regenerative air preheater 20,
When 15% (8000ON rrt/h) is led to the second regenerative air preheater 21 (outlet temperature 400°C, outlet NOX 300ppl), the NOX concentration of the exhaust gas 2 released from the chimney 10 is 83.25pl) Became TI,
It was significantly lower than the regulation value of 200+)l)TI. On the other hand, as shown in FIG.
/h) 2b is led to the second regenerative air preheater 21 (outlet temperature 400°C, output [1N OX 300p
DII), N O of the exhaust gas 2 released from the f end 10
The X concentration was 172.5p111, which was within the regulation value.

なJ3、本実施例では説明のために再生式空気予熱器2
0.21を二基に分けたがローテミューレタイプのツイ
ンフロー形再生式空気予熱器を採用づれば一基で同じフ
ローを@成することが可能である〇よた石炭焚ボイラ1
を例として説明したが、油、万ス等他の燃+1のボイラ
にも本方法は適用可能である。
In this example, the regenerative air preheater 2 is used for explanation purposes.
0.21 was divided into two units, but if a Rotemühle type twin flow type regenerative air preheater is adopted, it is possible to create the same flow with one unit.〇Yota coal-fired boiler 1
Although this method has been described as an example, the present method can also be applied to boilers using other fuels such as oil and 10,000 sq.

′jl明の効果 以Jm、木ブを明方法によれば、酸性硫安の付着にJ、
って第1の再生式空気予熱器の抵抗が増大した場合でも
ボイラを停止せずにエレメントのサーマルクリーニング
を行なうことができる。
According to the light method, J,
Therefore, even if the resistance of the first regenerative air preheater increases, the element can be thermally cleaned without stopping the boiler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図へ・第3図はそれぞれ本光明方法に係るフロー図
、第4図(よ従来方法に係るフロー図である。
Figures 1 and 3 are a flow diagram of the present Komei method, and Figure 4 (a flow diagram of the conventional method).

Claims (1)

【特許請求の範囲】[Claims] 1、ボイラから出た排ガスの一部にアンモニアを注入し
て脱硝装置に導き、脱硝後、第1の再生式空気予熱器に
導いて前記ボイラに供給される2次空気の予熱に供せし
め、一方、前記排ガスの残りを第2の再生式空気予熱器
に導いて前記ボイラに供給される1次空気の予熱に供せ
しめ、前記第1の再生式空気予熱器内に付着した硫安化
合物を分解するときは、前記2次空気をバイパスさせて
前記ボイラに直接供給し、前記第1の再生式空気予熱器
の温度を上昇させることを特徴とするボイラ排ガスの脱
硝方法。
1. Injecting ammonia into a part of the exhaust gas discharged from the boiler and guiding it to a denitrification device, and after denitration, leading it to a first regenerative air preheater to preheat the secondary air supplied to the boiler, On the other hand, the remainder of the exhaust gas is guided to a second regenerative air preheater to preheat the primary air supplied to the boiler, and ammonium sulfate compounds adhering to the inside of the first regenerative air preheater are decomposed. In this case, the secondary air is bypassed and directly supplied to the boiler to raise the temperature of the first regenerative air preheater.
JP60186321A 1985-08-23 1985-08-23 Method of denitrating exhaust gas of boiler Pending JPS6245326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186321A JPS6245326A (en) 1985-08-23 1985-08-23 Method of denitrating exhaust gas of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186321A JPS6245326A (en) 1985-08-23 1985-08-23 Method of denitrating exhaust gas of boiler

Publications (1)

Publication Number Publication Date
JPS6245326A true JPS6245326A (en) 1987-02-27

Family

ID=16186287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186321A Pending JPS6245326A (en) 1985-08-23 1985-08-23 Method of denitrating exhaust gas of boiler

Country Status (1)

Country Link
JP (1) JPS6245326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579320A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Internal combustion engine, operation thereof and automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579320A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Internal combustion engine, operation thereof and automobile

Similar Documents

Publication Publication Date Title
CN102667343B (en) Integrated boiler and air pollution control system
JP7207810B2 (en) Method and system for improving boiler efficiency
CN104033921B (en) A kind of device and method preventing ammonium hydrogen sulfate from blocking coal-burning boiler air preheater
EP2561919B1 (en) Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
US9873635B2 (en) Method and device for producing cement clinker
GB2082085A (en) Apparatus for removing nox and for providing better plant efficiency in simple cycle combustion turbine plants
JPH09509474A (en) Method for purifying nitrogen oxide-containing gas and apparatus for purifying gas in steam generating boiler
CN209885578U (en) Dust removal SOx/NOx control takes off white integration system
DK1075627T3 (en) Operation of steam generator system
US10436096B2 (en) Heat exchanger and method for controlling heat exchanger
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
CN109731472B (en) Energy-saving boiler flue gas purification system and method
KR102178815B1 (en) Environmental equipment and power generation system including the same
CN105233669B (en) A kind of denitrating flue gas SCR system
JPS6245326A (en) Method of denitrating exhaust gas of boiler
WO2017022522A1 (en) Coal-fired power generation equipment
JPS6084131A (en) Waste gas treating method and apparatus thereof
KR102077738B1 (en) Power generation system
US6405791B1 (en) Air heater gas inlet plenum
CN209155534U (en) A kind of flue gas desulfurization and denitrification exhaust system
CN208082232U (en) It is a kind of can on-line maintenance low temperature SCR denitration reactor
JPH05228341A (en) Method for reducing nitrogen oxide and reheating flue gas
JPS63302214A (en) Catalytic type denitrifier for flue gas
KR102672465B1 (en) Circulating fluidized bed combustion system performing hybrid de-nox operation in the combustor
AT385211B (en) Process for cleaning the off-gas from incineration plants, and device for carrying out the process