JP2598825B2 - Mold for isostatic pressing of ceramics tubes - Google Patents

Mold for isostatic pressing of ceramics tubes

Info

Publication number
JP2598825B2
JP2598825B2 JP25952389A JP25952389A JP2598825B2 JP 2598825 B2 JP2598825 B2 JP 2598825B2 JP 25952389 A JP25952389 A JP 25952389A JP 25952389 A JP25952389 A JP 25952389A JP 2598825 B2 JP2598825 B2 JP 2598825B2
Authority
JP
Japan
Prior art keywords
rubber
mold
beta
surface side
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25952389A
Other languages
Japanese (ja)
Other versions
JPH03121813A (en
Inventor
博己 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP25952389A priority Critical patent/JP2598825B2/en
Publication of JPH03121813A publication Critical patent/JPH03121813A/en
Application granted granted Critical
Publication of JP2598825B2 publication Critical patent/JP2598825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス管の静水圧加圧成形用成形型に
係り、更に詳しくは、例えばナトリウム−硫黄電池用に
用いられるベータアルミナ管等のセラミックス管を静水
圧加圧成形するに最適の成形型に関する。
Description: FIELD OF THE INVENTION The present invention relates to a mold for isostatic pressing of ceramic tubes, and more particularly, to ceramics such as beta-alumina tubes used for sodium-sulfur batteries. The present invention relates to a mold most suitable for isostatic pressing of a tube.

[従来の技術] 従来、例えばセラミックス管を用いる一例としてのナ
トリウム−硫黄電池は、一方に陰極活物質である溶融金
属ナトリウム、他方には陽極活物質である溶融硫黄を配
し、両者をナトイウムイオンに対して選択的な透過性を
有するベータアルミナ固体電解質で隔離し、300〜350℃
で作動させる高温二次電池である。
2. Description of the Related Art Conventionally, for example, a sodium-sulfur battery as an example using a ceramic tube is provided with molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both of them are sodium ion Beta-alumina solid electrolyte with selective permeability to 300-350 ° C
It is a high-temperature secondary battery operated with.

このようなナトリウム−硫黄電池の構成は、例えば第
3図に示すように、陽極活物質である溶融硫黄Sを含浸
したカーボンフェルト等の陽極用導電材1を収容する円
筒状の陽極容器2と、該陽極容器2の上端部と例えばア
ルファアルミナ製の絶縁体リング3を介して連結され、
且つ溶融金属ナトリウムNaを貯留する陰極容器4と、前
記絶縁体リング3の内周部に接合され、且つセラミック
ス管であってナトリウムイオンNa+を選択的に透過させ
る機能を有する有底円筒状のベータアルミナ管5とから
なっている。また、前記陰極容器4の上蓋6の中央部に
は、陰極容器4を通して下方向にベータアルミナ管5の
底部付近まで延びた陰極管7が貫通支持されている。
As shown in FIG. 3, for example, a configuration of such a sodium-sulfur battery includes a cylindrical anode container 2 containing an anode conductive material 1 such as carbon felt impregnated with molten sulfur S as an anode active material. Is connected to the upper end of the anode container 2 via an insulator ring 3 made of, for example, alpha alumina,
And a cathode container 4 for storing molten metal sodium Na, a bottomed cylindrical member joined to the inner peripheral portion of the insulator ring 3 and having a function of selectively transmitting sodium ions Na + through a ceramic tube. Beta alumina tube 5. At the center of the upper lid 6 of the cathode container 4, a cathode tube 7 extending downward through the cathode container 4 to near the bottom of the beta-alumina tube 5 is supported.

以上のような構成を有するナトリウム−硫黄電池にお
いて、放電時には溶融金属ナトリウムは電子を放出して
ナトリウムイオンとなり、これがセラミックス管である
ベータアルミナ固定電解質中を透過して陽極側に移動
し、陽極の硫黄と外部回路を通ってきた電子と反応して
多硫化ナトリウムを生成し、2V程度の電圧を発生する。
充電時には放電のは逆にナトリウム及び硫黄の生成反応
が起こる。
In the sodium-sulfur battery having the above-described configuration, at the time of discharge, molten metal sodium emits electrons to become sodium ions, which pass through the beta alumina fixed electrolyte which is a ceramic tube and move to the anode side, and It reacts with sulfur and the electrons that have passed through the external circuit to produce sodium polysulfide, generating a voltage of about 2V.
At the time of charging, a reaction of forming sodium and sulfur occurs in reverse to discharging.

このように、ナトリウム−硫黄電地の性能は、セラミ
ックス管であるベータアルミナ固体電解質管中における
ナトリウムイオンの透過能、いわゆるイオン伝導性(電
気伝導度)に依存するものである。
As described above, the performance of the sodium-sulfur electric field depends on the permeability of sodium ions in the beta-alumina solid electrolyte tube which is a ceramic tube, that is, the so-called ion conductivity (electric conductivity).

ここで、ベータアルミナはその理論組成Na2O・5.5Al2
O3からわかる通りNa2Oを含み、これがベータアルミナの
結晶格子中でNa+となっており、イオン伝導性に寄与し
ている。従ってベータアルミナ管が雰囲気に露出された
場合、Na+が雰囲気中のヒドロニウムイオンH3O+と容易
にイオン交換することにより、極めて短期間にベータア
ルミナの表面が変質する。しかも、イオン交換したNa+
が雰囲気中のCO2及びH+と反応し、ベータアルミナ管表
面においてNaHCO3やNa2CO3が析出し、ベータアルミナ管
の機械的強度が著しく低下する。このことは、例えば、
Solid State Ionic 9 & 10(1983)231−236頁、およ
びMaterifls Science.Vol.XI No.2(1985)57−62頁な
どに記載されている。
Here, beta alumina has the theoretical composition of Na 2 O5.5Al 2
As can be seen from O 3 , it contains Na 2 O, which is Na + in the crystal lattice of beta alumina and contributes to ionic conductivity. Therefore, when the beta-alumina tube is exposed to the atmosphere, the surface of the beta-alumina is transformed in a very short time because Na + easily ion-exchanges with the hydronium ion H 3 O + in the atmosphere. Moreover, ion-exchanged Na +
Reacts with CO 2 and H + in the atmosphere, and NaHCO 3 and Na 2 CO 3 are precipitated on the surface of the beta alumina tube, and the mechanical strength of the beta alumina tube is significantly reduced. This means, for example,
Solid State Ionic 9 & 10 (1983), pp. 231-236, and Materifls Science. Vol. XI No. 2 (1985), pp. 57-62.

また、ナトリウム−硫黄電池の内部抵抗のうち、ベー
タアルミナ管の抵抗が占める割合は約50%と高く、水分
の吸着、イオン交換によるベータアルミナ管の高抵抗化
は直接電池性能に影響する。
Further, the ratio of the resistance of the beta-alumina tube to the internal resistance of the sodium-sulfur battery is as high as about 50%, and the increase in the resistance of the beta-alumina tube by the adsorption of water and the ion exchange directly affects the battery performance.

このようなセラミックス管としてのベータアルミナ管
の製造方法としては、従来より一般に、微粉砕原料の成
形性の悪さを補うために原料粉末をスラリー状とし、ス
プレードライヤー等を用いて造粒操作を施し造粒物を得
ている。そしてその造粒物を、ゴム型を用いて静水圧加
圧成形(コールドアイソスタティックプレス:CIP、又ラ
バープレスとも呼ばれる。)により所定形状に成形し、
次いでこれを焼成することによりセラミックス管である
ベータアルミナ管を製造している。
Conventionally, as a method for producing a beta-alumina pipe as such a ceramic pipe, conventionally, in order to compensate for poor formability of the finely pulverized raw material, the raw material powder is made into a slurry state, and a granulation operation is performed using a spray drier or the like. Granules are obtained. Then, the granulated product is molded into a predetermined shape by a hydrostatic pressure molding (cold isostatic press: CIP, also called rubber press) using a rubber mold,
Then, this is fired to produce a beta alumina tube which is a ceramic tube.

[発明が解決しようとする課題] しかしながら、従来、上記のようなセラミックスのラ
バープレス(アイソスタティックプレス)成形に用いる
ゴム型としては全体が単一層で単一の硬度を有するゴム
材質で構成される成形型を使用しており、これによれ
ば、ゴム質の成形型の硬度を小さく、即ち軟らかくすれ
ばゴム質の成形型表面に接する造粒粉体の層が充分に潰
れずに造粒粒子の形骸が残り、得られるベータアルミナ
管成形体表面が平滑化しない虞れがある。このようにベ
ータアルミナ管成形体表面が平滑化しないと、表面の水
分吸着性が上昇し、前記したようにベータアルミナ管は
高抵抗化するほか機械的強度が低下し、さらに電池の寿
命も低下する。
[Problems to be Solved by the Invention] However, conventionally, as a rubber mold used for rubber press (isostatic press) molding of ceramics as described above, the whole is formed of a rubber material having a single layer and a single hardness. According to this, the hardness of the rubbery mold is reduced, that is, if the rubbery mold is softened, the layer of the granulated powder in contact with the surface of the rubbery mold is not sufficiently crushed and the granulated particles are May remain, and the surface of the obtained formed beta-alumina pipe may not be smoothed. If the surface of the formed body of the beta-alumina tube is not smoothed as described above, the water absorption of the surface will increase, and as described above, the beta-alumina tube will have a high resistance, a reduced mechanical strength, and a reduced battery life. I do.

一方、ゴム質の成形型の硬度を大きく、即ち硬くすれ
ばベータアルミナ管成形体が破壊され易くなり成形歩留
が低下するという問題がある。
On the other hand, if the hardness of the rubbery mold is increased, that is, if the hardness is increased, there is a problem that the beta-alumina tube molded body is easily broken and the molding yield is reduced.

[課題を解決するための手段] そこで、本発明者は、上記の問題に鑑みて種々検討を
行なったところ、セラミックス管の静水圧加圧成形用成
形型として硬度の異なる二種以上のゴム材の複層材料に
より作製したゴム成形型を用いることにより前記従来の
問題点を解決できることを見出し本発明に到達したもの
である。
Means for Solving the Problems In view of the above problems, the present inventor has conducted various studies, and found that two or more types of rubber materials having different hardnesses are used as a hydrostatic pressure molding die for a ceramic tube. The present inventors have found that the above-mentioned conventional problems can be solved by using a rubber mold made of a multilayer material of the present invention, and have reached the present invention.

すなわち、本発明によれば、セラミックス管を静水圧
加圧成形するに際して用いる成形型であって、硬度の異
なる二種類以上の複層のゴム材からなり、成形面側(加
圧面側)のゴム材を被圧縮面側(マンドレル側)のゴム
材より大きな硬度としたことを特徴とする静水圧加圧成
形用成形型、が提供される。
That is, according to the present invention, a molding die used for hydrostatic pressure molding of a ceramic tube, comprising two or more types of multiple layers of rubber materials having different hardnesses, and having a rubber on a molding surface side (pressing surface side). A molding die for isostatic pressing is characterized in that the material has a hardness greater than that of the rubber material on the compressed surface side (mandrel side).

[作用] 本発明においては、セラミックス管を静水圧加圧成形
するに際し、硬度の異なる二種類以上の複層のゴム材か
らなり成形面側のゴム材を被圧縮面側のゴム材より大き
な硬度とした成形型を用いることを特徴とする。
[Function] In the present invention, when the ceramic tube is subjected to hydrostatic pressure molding, the rubber material on the molding surface side, which is composed of two or more types of rubber materials having different hardnesses, has a higher hardness than the rubber material on the compression surface side. It is characterized by using a molding die set as follows.

このような複層のゴム材から成り、加圧面側のゴム硬
度をマンドレル側のゴム硬度より大きな硬度のゴム質の
成形型を使用してセラミックス管を静水圧加圧成形する
ため、高い成形歩留を維持しつつセラミックス管成形体
の外表面を平滑化することが可能となる。
Since a ceramic tube is made of such a multi-layer rubber material and has a rubber hardness on the pressing surface side larger than the rubber hardness on the mandrel side, the ceramic tube is subjected to hydrostatic pressure molding. It is possible to smooth the outer surface of the formed ceramic tube while maintaining the retention.

本発明の成形型は硬度の異なる二種類以上の複層のゴ
ム材からなるもので、通常、第1図に示すような二層構
造、あるいは第2図に示すような三層構造のものが適用
される。
The mold of the present invention is made of two or more types of rubber materials having different hardnesses, and usually has a two-layer structure as shown in FIG. 1 or a three-layer structure as shown in FIG. Applied.

成形型の成形面側(加圧面側)のゴム層10としては、
好ましくはそのショア硬度が70〜90゜、さらに好ましく
は80〜90゜であり、厚さが1〜4mm程度のゴム硬度のも
のが用いられる。被圧縮面側(マンドレル側)のゴム層
11としては、二層構造の成形型の場合、好ましくはショ
ア硬度が30〜65゜、更に好ましくは40〜55゜で、厚さは
任意のものが用いられる。
As the rubber layer 10 on the molding surface side (pressing surface side) of the molding die,
Preferably, a rubber having a Shore hardness of 70 to 90 °, more preferably 80 to 90 °, and a rubber hardness of about 1 to 4 mm is used. Rubber layer on the compressed surface side (mandrel side)
As for 11, in the case of a mold having a two-layer structure, any one having a Shore hardness of 30 to 65 °, more preferably 40 to 55 °, and an arbitrary thickness is used.

また、三層構造の成形型の場合、成形面側ゴム層10と
被圧縮面側ゴム層11との間に中間層のゴム層12が挿入さ
れた態様となっており、この場合、中間層のゴム層12は
成形面側ゴム層10と被圧縮面側ゴム層11の中間の硬度を
有し、通常50〜70゜程度のショア硬度で、任意の厚さを
有する。
Further, in the case of a three-layered mold, the rubber layer 12 of the intermediate layer is inserted between the molding surface side rubber layer 10 and the compressed surface side rubber layer 11, and in this case, the intermediate layer The rubber layer 12 has an intermediate hardness between the molding surface side rubber layer 10 and the compression surface side rubber layer 11, and usually has a Shore hardness of about 50 to 70 ° and an arbitrary thickness.

ゴム材の材質としては、特にその種類は限定されず、
例えば天然ゴム、ネオプレン、ウレタン等が用いられ
る。
The type of the rubber material is not particularly limited,
For example, natural rubber, neoprene, urethane and the like are used.

なお、本発明の静水圧加圧成形用成形型は、セラミッ
クス管のラバープレス成形、例えばナトリウム−硫黄電
池に用いられるベータアルミナ管を静水圧加圧成形する
のに特に適したものであるが、これに限らず、その他ア
ルミナ、ジルコニア、窒化珪素(シリコンナイトライ
ド)等の静水圧加圧成形の分野にも適用できるものであ
る。
Incidentally, the hydrostatic pressure molding die of the present invention is particularly suitable for isostatic pressing of a ceramic tube, such as rubber press molding, for example, a beta-alumina tube used in a sodium-sulfur battery. The present invention is not limited to this, and can be applied to the field of isostatic pressing of alumina, zirconia, silicon nitride (silicon nitride), and the like.

[実施例] 次に、本発明を実施例に基き更に詳しく説明するが、
本発明は、これらの実施例に限られるものではない。
[Examples] Next, the present invention will be described in more detail based on examples,
The present invention is not limited to these examples.

(実施例) 原料粉末をスラリー状とし、スプレードライヤー等を
用いて造粒操作を施した後得られた造粒物を、 外径52mmφ、内径35mmφで、成形面側ゴムの厚さが2.
5mm、ショア硬度が90゜、被圧縮面側ゴム層の厚さが6.0
mm、ショア硬度が50゜の二重構造の静水圧加圧成形用成
形型(二重ゴム型)、 外径120mmφ、内径35mmφで、成形面側ゴム層の厚さ
が3mm、ショア硬度が80゜、中間層ゴム層の厚さが5mm、
ショア硬度が65゜、被圧縮面側ゴム層の厚さが34.5mm、
ショア硬度が50゜の三重構造の静水圧加圧成形用成形型
(三重ゴム型)、 を用いて、最高加圧圧力2000kgf/cm2で静水圧加圧成形
を行ない、外径30mmφ、長さ200mmの有底円筒状のベー
タアルミナ管成形体を得た。
(Example) The raw material powder was made into a slurry, and a granulated material obtained by performing a granulating operation using a spray drier or the like was used to obtain an outer diameter of 52 mmφ, an inner diameter of 35 mmφ, and a thickness of the molding surface side rubber of 2.
5mm, Shore hardness 90mm, Compressed surface side rubber layer thickness 6.0
mm, Shore hardness of 50 mm, double mold for hydrostatic pressure molding (double rubber mold), outer diameter 120mmφ, inner diameter 35mmφ, thickness of molding surface side rubber layer 3mm, Shore hardness 80゜, the thickness of the intermediate rubber layer is 5mm,
Shore hardness is 65 mm, thickness of rubber layer to be compressed is 34.5 mm,
Hydrostatic pressure molding with a maximum pressure of 2000 kgf / cm 2 using a triple structure hydrostatic pressure molding die (triple rubber type) with a Shore hardness of 50 mm, outer diameter 30 mmφ, length A 200 mm bottomed cylindrical beta-alumina tube was obtained.

なお、比較のため、静水圧加圧成形用成形型として、
硬度が80゜の単一層のゴム材からなる成形型、および硬
度が50゜の単一層のゴム材からなる成形型を用い、上記
と同様にしてベータアルミナ管成形体を得た。
For comparison, as a mold for isostatic pressing,
Using a molding die made of a single-layer rubber material having a hardness of 80 ° and a molding die made of a single-layer rubber material having a hardness of 50 °, a beta-alumina tube molded body was obtained in the same manner as described above.

得られたベータアルミナ管成形体の表面粗さ及び成形
体破損の有無を、下記の表に示す。
The following table shows the surface roughness of the obtained beta-alumina tube molded product and the presence or absence of breakage of the molded product.

表から明らかなように、二重ゴム型および三重ゴム型
を用いて静水圧加圧成形を行なった場合には、単一ゴム
型を用いた場合に比べて、得られる成形体の表面粗さが
小さくなり、しかも成形体の破損がなく成形歩留がよい
ことがわかる。
As is evident from the table, the surface roughness of the molded product obtained when the hydrostatic pressure molding was performed using the double rubber mold and the triple rubber mold was compared with the case where the single rubber mold was used. It can be seen that the molding yield was small and the molded body was not damaged, and the molding yield was good.

[発明の効果] 以上説明したように、本発明によれば、硬度の異なる
種類以上の複層のゴム材からなり成形面側、即ち加圧
面側のゴム材硬度を被圧縮面側、即ちマンドレル側のゴ
ム材硬度より大きな硬度としたゴム質の成形型を用いて
いるので、高い成形歩留を維持しつつセラミックス管成
形体の外表面を平滑化することが可能となる。
[Effects of the Invention] As described above, according to the present invention, the rubber hardness of the molding surface side, that is, the pressing surface side, which is made of multiple layers of rubber materials having different hardness, and the compression surface side, that is, the mandrel, Since the rubber molding die having a hardness higher than that of the rubber material on the side is used, it is possible to smooth the outer surface of the ceramic tube molded body while maintaining a high molding yield.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の二層構造の成形型の一例を示す断面
図、第2図は本発明の三層構造の成形型の一例を示す断
面図、第3図はナトリウム−硫黄電池の断面構成図であ
る。 10……成形面側ゴム層、11……被圧縮面側ゴム層、11…
…中間層。
FIG. 1 is a sectional view showing an example of a mold having a two-layer structure of the present invention, FIG. 2 is a sectional view showing an example of a mold having a three-layer structure of the present invention, and FIG. 3 is a sectional view of a sodium-sulfur battery. It is a block diagram. 10: Molded surface side rubber layer, 11: Compressed surface side rubber layer, 11 ...
... intermediate layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックス管を静水圧加圧成形するに際
して用いる成形型であって、硬度の異なる二種類以上の
複層のゴム材からなり、成形面側のゴム材を被圧縮面側
のゴム材より大きな硬度としたことを特徴とする静水圧
加圧成形用成形型。
1. A molding die used for isostatic pressing of a ceramic tube, comprising two or more types of multiple layers of rubber materials having different hardnesses, wherein a rubber material on a molding surface side is a rubber material on a compression surface side. A mold for isostatic pressing, characterized by having a hardness greater than that of the material.
JP25952389A 1989-10-04 1989-10-04 Mold for isostatic pressing of ceramics tubes Expired - Lifetime JP2598825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25952389A JP2598825B2 (en) 1989-10-04 1989-10-04 Mold for isostatic pressing of ceramics tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25952389A JP2598825B2 (en) 1989-10-04 1989-10-04 Mold for isostatic pressing of ceramics tubes

Publications (2)

Publication Number Publication Date
JPH03121813A JPH03121813A (en) 1991-05-23
JP2598825B2 true JP2598825B2 (en) 1997-04-09

Family

ID=17335284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25952389A Expired - Lifetime JP2598825B2 (en) 1989-10-04 1989-10-04 Mold for isostatic pressing of ceramics tubes

Country Status (1)

Country Link
JP (1) JP2598825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038219B2 (en) 2005-07-29 2008-01-23 ファナック株式会社 Injection molding machine to detect resin accumulation level

Also Published As

Publication number Publication date
JPH03121813A (en) 1991-05-23

Similar Documents

Publication Publication Date Title
CA2161076A1 (en) An anode with an anode active material retaining body having a number ofpores distributed therein for rechargeable battery, rechargeable batteryprovided with said anode, and process for the production of said anode
JPH04230957A (en) Synthetic ion conducting electolyte constituent material
EP1087453A3 (en) Enhanced capacity Li/CFx electrochemical cell
JP2634674B2 (en) Mold for isostatic pressing of ceramics tubes
JP2598825B2 (en) Mold for isostatic pressing of ceramics tubes
US4207389A (en) Solid state cells
JP2552737B2 (en) Method for firing beta-alumina tube for sodium-sulfur battery
EP0375192B1 (en) Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
CN202423404U (en) Solid electrolyte pipe for sodium-sulfur battery and sodium-sulfur battery
US6143041A (en) Process for manufacturing a button type alkaline battery
JP2685736B2 (en) Method of firing beta-alumina tube for sodium-sulfur battery
JPS6220259A (en) Sodium-sulfur battery
JP2610350B2 (en) Method for forming beta-alumina tube for sodium-sulfur battery
JPH10154527A (en) Positive electrode conductive material for sodium-sulfur battery
KR101353600B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JP2000128627A (en) Bottomed cylindrical beta-alumina tube and its production
JP2620339B2 (en) Thermo-pressure joining method of insulating ring and anode container and cathode container in sodium-sulfur battery
JPH0631647Y2 (en) Solid electrolyte tube for sodium-sulfur battery
JPH0637289B2 (en) MgO-stabilized beta alumina and method for producing the same
JP2661407B2 (en) Cathode plate for lead-acid battery and method of manufacturing cathode plate for lead-acid battery
JPH0665069B2 (en) Method of firing beta-alumina tube for sodium-sulfur battery
JPH0388276A (en) Solid electrolyte for sodium-sulfur battery and manufacture thereof
JPH0811708B2 (en) Solid electrolyte body and method for producing the same
JPH0665068B2 (en) Method of firing beta-alumina tube for sodium-sulfur battery
JPH0215578A (en) Solid electrolytic pipe for sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100109

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100109